Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Front Oncol ; 13: 1200897, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37384296

RESUMO

Introduction: Resistance in anti-cancer treatment is a result of clonal evolution and clonal selection. In chronic myeloid leukemia (CML), the hematopoietic neoplasm is predominantly caused by the formation of the BCR::ABL1 kinase. Evidently, treatment with tyrosine kinase inhibitors (TKIs) is tremendously successful. It has become the role model of targeted therapy. However, therapy resistance to TKIs leads to loss of molecular remission in about 25% of CML patients being partially due to BCR::ABL1 kinase mutations, while for the remaining cases, various other mechanisms are discussed. Methods: Here, we established an in vitro-TKI resistance model against the TKIs imatinib and nilotinib and performed exome sequencing. Results: In this model, acquired sequence variants in NRAS, KRAS, PTPN11, and PDGFRB were identified in TKI resistance. The well-known pathogenic NRAS p.(Gln61Lys) variant provided a strong benefit for CML cells under TKI exposure visible by increased cell number (6.2-fold, p < 0.001) and decreased apoptosis (-25%, p < 0.001), proving the functionality of our approach. The transfection of PTPN11 p.(Tyr279Cys) led to increased cell number (1.7-fold, p = 0.03) and proliferation (2.0-fold, p < 0.001) under imatinib treatment. Discussion: Our data demonstrate that our in vitro-model can be used to study the effect of specific variants on TKI resistance and to identify new driver mutations and genes playing a role in TKI resistance. The established pipeline can be used to study candidates acquired in TKI-resistant patients, thereby providing new options for the development of new therapy strategies to overcome resistance.

2.
Pharmacol Res ; 185: 106510, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36252775

RESUMO

Glioblastoma multiforme (GBM) is the most common malignant brain tumor with limited therapeutic options. Besides surgery, chemotherapy using temozolomide, carmustine or lomustine is the main pillar of therapy. However, therapy success is limited and prognosis still is very poor. One restraining factor is drug resistance caused by drug transporters of the ATP-binding cassette family, e.g. ABCB1 and ABCG2, located at the blood-brain barrier and on tumor cells. The active efflux of xenobiotics including drugs, e.g. temozolomide, leads to low intracellular drug concentrations and subsequently insufficient anti-tumor effects. Nevertheless, the role of efflux transporters in GBM is controversially discussed. In the present study, we analyzed the role of ABCB1 and ABCG2 in GBM cells showing that ABCB1, but marginally ABCG2, is relevant. Applying a CRISPR/Cas9-derived ABCB1 knockout, the response to temozolomide was significantly augmented demonstrated by decreased cell number (p < 0.001) and proliferation rate (p = 0.04), while apoptosis was increased (p = 0.04). For carmustine, a decrease of cells in G1-phase was detected pointing to cell cycle arrest in the ABCB1 knockout (p = 0.006). For lomustine, however, loss of ABCB1 did not alter the response to the treatment. Overall, this study shows that ABCB1 is involved in the active transport of temozolomide out of the tumor cells diminishing the response to temozolomide. Interestingly, loss of ABCB1 also affected the response to the lipophilic drug carmustine. These findings show that ABCB1 is not only relevant at the blood-brain barrier, but also in the tumor cells diminishing success of chemotherapy.


Assuntos
Glioblastoma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Carmustina/farmacologia , Carmustina/uso terapêutico , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Lomustina/uso terapêutico , Lomustina/farmacologia , Sistemas CRISPR-Cas , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo
4.
PLoS Genet ; 17(7): e1009679, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34324492

RESUMO

Numerous genetic studies have established a role for rare genomic variants in Congenital Heart Disease (CHD) at the copy number variation (CNV) and de novo variant (DNV) level. To identify novel haploinsufficient CHD disease genes, we performed an integrative analysis of CNVs and DNVs identified in probands with CHD including cases with sporadic thoracic aortic aneurysm. We assembled CNV data from 7,958 cases and 14,082 controls and performed a gene-wise analysis of the burden of rare genomic deletions in cases versus controls. In addition, we performed variation rate testing for DNVs identified in 2,489 parent-offspring trios. Our analysis revealed 21 genes which were significantly affected by rare CNVs and/or DNVs in probands. Fourteen of these genes have previously been associated with CHD while the remaining genes (FEZ1, MYO16, ARID1B, NALCN, WAC, KDM5B and WHSC1) have only been associated in small cases series or show new associations with CHD. In addition, a systems level analysis revealed affected protein-protein interaction networks involved in Notch signaling pathway, heart morphogenesis, DNA repair and cilia/centrosome function. Taken together, this approach highlights the importance of re-analyzing existing datasets to strengthen disease association and identify novel disease genes and pathways.


Assuntos
Variações do Número de Cópias de DNA/genética , Haploinsuficiência/genética , Cardiopatias Congênitas/genética , Bases de Dados Genéticas , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Predisposição Genética para Doença/genética , Genômica/métodos , Humanos , Canais Iônicos/genética , Proteínas de Membrana/genética , Polimorfismo de Nucleotídeo Único/genética , Transcriptoma/genética
5.
Hum Genet ; 140(8): 1229-1239, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34159400

RESUMO

The extensive clinical and genetic heterogeneity of congenital limb malformation calls for comprehensive genome-wide analysis of genetic variation. Genome sequencing (GS) has the potential to identify all genetic variants. Here we aim to determine the diagnostic potential of GS as a comprehensive one-test-for-all strategy in a cohort of undiagnosed patients with congenital limb malformations. We collected 69 cases (64 trios, 1 duo, 5 singletons) with congenital limb malformations with no molecular diagnosis after standard clinical genetic testing and performed genome sequencing. We also developed a framework to identify potential noncoding pathogenic variants. We identified likely pathogenic/disease-associated variants in 12 cases (17.4%) including four in known disease genes, and one repeat expansion in HOXD13. In three unrelated cases with ectrodactyly, we identified likely pathogenic variants in UBA2, establishing it as a novel disease gene. In addition, we found two complex structural variants (3%). We also identified likely causative variants in three novel high confidence candidate genes. We were not able to identify any noncoding variants. GS is a powerful strategy to identify all types of genomic variants associated with congenital limb malformation, including repeat expansions and complex structural variants missed by standard diagnostic approaches. In this cohort, no causative noncoding SNVs could be identified.


Assuntos
Heterogeneidade Genética , Proteínas de Homeodomínio/genética , Deformidades Congênitas dos Membros/genética , Mutação , Fatores de Transcrição/genética , Enzimas Ativadoras de Ubiquitina/genética , Sequência de Bases , Estudos de Coortes , Variações do Número de Cópias de DNA , Expressão Gênica , Testes Genéticos , Humanos , Lactente , Deformidades Congênitas dos Membros/metabolismo , Deformidades Congênitas dos Membros/patologia , Masculino , Linhagem , Fatores de Transcrição/deficiência , Enzimas Ativadoras de Ubiquitina/deficiência , Sequenciamento Completo do Genoma
6.
Leuk Lymphoma ; 62(9): 2120-2129, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34165048

RESUMO

Breast and ovary have been described as rare but typical sites of presentation of Burkitt lymphoma (BL) in females, particularly after puberty. We revised a historic series of 44 lymphomas of the breast or the ovary in women diagnosed between 1973 and 2014 as BL. Fluorescence in situ hybridization (FISH) was applied to all, and array-based copy number analysis as well as expression profiling to a subset of those cases. Of the 42 cases evaluable for FISH, 19 cases showed an IG-MYC translocation but only 9 of those fulfilled the criteria of the current WHO classification for the diagnosis of BL. Those nine cases resembled BL of other sites with regard to molecular features. Our findings along with literature data suggest that breast and ovarian BL (1) seem to be rarer than hitherto assumed, (2) share typical molecular features with other BL, and (3) predominantly affect women in the fertile age.


Assuntos
Linfoma de Burkitt , Linfoma Difuso de Grandes Células B , Linfoma , Linfoma de Burkitt/diagnóstico , Linfoma de Burkitt/genética , Feminino , Humanos , Hibridização in Situ Fluorescente , Linfoma/genética , Linfoma Difuso de Grandes Células B/genética , Ovário , Translocação Genética
7.
Exp Hematol ; 99: 54-64.e7, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34090970

RESUMO

The mRNA-destabilizing proteins ZFP36L1 and ZFP36L2 are described as mediators of quiescence and play a pivotal role in hematopoietic malignancies. Both genes are mainly classified as tumor suppressor genes as they posttranscriptionally downregulate the expression of oncogenes and contribute to cellular quiescence. Here, we analyzed the role of ZFP36L1 and ZFP36L2 in chronic myeloid leukemia (CML). We found ZFP36L1 and ZFP36L2 expression to be deregulated in patients with CML. By use of in vitro models of tyrosine kinase inhibitor resistance, an increase in ZFP36L1 and ZFP36L2 expression was detected during the development of imatinib resistance. CRISPR/Cas9-derived knockout of ZFP36L1, but not of ZFP36L2, in imatinib-sensitive cells led to decreased proliferation rates in response to tyrosine kinase inhibitor treatment. This effect was also observed in untreated ZFP36L1 knockout cells, albeit to a lower extent. Genomewide gene expression analyses of ZFP36L1 knockout cells revealed differential expression of cell cycle regulators, in particular upregulation of the cell cycle inhibitor CDKN1A. In addition, the 3' untranslated region of CDKN1A was proven to be a direct target of ZFP36L1. This indicates that tumor suppressor genes can also be targeted by ZFP36L1. Hence, ZFP36L1 cannot unambiguously be regarded as a tumor suppressor gene.


Assuntos
Fator 1 de Resposta a Butirato , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21 , Regulação Leucêmica da Expressão Gênica , Neoplasias Hematológicas , Leucemia Mielogênica Crônica BCR-ABL Positiva , Adulto , Idoso , Idoso de 80 Anos ou mais , Fator 1 de Resposta a Butirato/biossíntese , Fator 1 de Resposta a Butirato/genética , Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Inibidor de Quinase Dependente de Ciclina p21/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Humanos , Mesilato de Imatinib/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Masculino , Pessoa de Meia-Idade
8.
Br J Cancer ; 123(4): 619-623, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32451468

RESUMO

BACKGROUND: Beckwith-Wiedemann syndrome (BWS) is a cancer predisposition syndrome caused by defects on chromosome 11p15.5. The quantitative cancer risks in BWS patients depend on the underlying (epi)genotype but have not yet been assessed in a population-based manner. METHODS: We identified a group of 321 individuals with a molecularly confirmed diagnosis of BWS and analysed the cancer incidence up to age 15 years and cancer spectrum by matching their data with the German Childhood Cancer Registry. RESULTS: We observed 13 cases of cancer in the entire BWS cohort vs 0.4 expected. This corresponds to a 33-fold increased risk (standardised incidence ratio (SIR) = 32.6; 95% confidence interval = 17.3-55.7). The specific cancers included hepatoblastoma (n = 6); nephroblastoma (n = 4); astrocytoma (n = 1); neuroblastoma (n = 1) and adrenocortical carcinoma (n = 1). The cancer SIR was highest in patients with a paternal uniparental disomy of 11p15.5 (UPDpat). A high cancer risk remained when cases of cancer diagnosed prior to the BWS diagnosis were excluded. CONCLUSIONS: This study confirms an increased cancer risk in children with BWS. Our findings suggest that the highest cancer risk is associated with UPDpat. We were unable to confirm an excessive cancer risk in patients with IC1 gain of methylation (IC1-GOM) and this finding requires further investigation.


Assuntos
Síndrome de Beckwith-Wiedemann/genética , Cromossomos Humanos Par 11/genética , Neoplasias/epidemiologia , Dissomia Uniparental/genética , Adolescente , Síndrome de Beckwith-Wiedemann/epidemiologia , Criança , Pré-Escolar , Feminino , Alemanha/epidemiologia , Humanos , Incidência , Lactente , Masculino , Neoplasias/classificação , Sistema de Registros , Estudos Retrospectivos
9.
Cancer Cell ; 30(5): 806-821, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27846393

RESUMO

We analyzed the in silico purified DNA methylation signatures of 82 mantle cell lymphomas (MCL) in comparison with cell subpopulations spanning the entire B cell lineage. We identified two MCL subgroups, respectively carrying epigenetic imprints of germinal-center-inexperienced and germinal-center-experienced B cells, and we found that DNA methylation profiles during lymphomagenesis are largely influenced by the methylation dynamics in normal B cells. An integrative epigenomic approach revealed 10,504 differentially methylated regions in regulatory elements marked by H3K27ac in MCL primary cases, including a distant enhancer showing de novo looping to the MCL oncogene SOX11. Finally, we observed that the magnitude of DNA methylation changes per case is highly variable and serves as an independent prognostic factor for MCL outcome.


Assuntos
Metilação de DNA , Elementos Facilitadores Genéticos , Epigenômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Linfoma de Célula do Manto/genética , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Linhagem da Célula , Simulação por Computador , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Fatores de Transcrição SOXC/genética
10.
Epigenomics ; 8(6): 801-16, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27323310

RESUMO

AIM: To characterize the genotypic and phenotypic extent of multilocus imprinting disturbances (MLID). MATERIALS & METHODS: We analyzed 37 patients with imprinting disorders (explorative cohort) for DNA methylation changes using the Infinium HumanMethylation450 BeadChip. For validation, three independent cohorts with imprinting disorders or cardinal features thereof were analyzed (84 patients with imprinting disorders, 52 with growth disorder, 81 with developmental delay). RESULTS: In the explorative cohort 21 individuals showed array-based MLID with each one displaying an Angelman or Temple syndrome phenotype, respectively. Epimutations in ZDBF2 and FAM50B were associated with severe MLID regarding number of affected regions. By targeted analysis we identified methylation changes of ZDBF2 and FAM50B also in the three validation cohorts. CONCLUSION: We corroborate epimutations in ZDBF2 and FAM50B as frequent changes in MLID whereas these rarely occur in other patients with cardinal features of imprinting disorders. Moreover, we show cell lineage specific differences in the genomic extent of FAM50B epimutation.


Assuntos
Metilação de DNA , Deficiências do Desenvolvimento/genética , Impressão Genômica , Estudos de Casos e Controles , Proteínas de Ligação a DNA/genética , Feminino , Estudos de Associação Genética , Humanos , Masculino , Fenótipo , Proteínas/genética , Análise de Sequência de DNA
11.
Genes Chromosomes Cancer ; 55(9): 677-87, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27121553

RESUMO

Congenital gliobastoma multiforme (GBM) is rare and little is known about the molecular defects underlying the initiation and progression of this tumor type. We present a case of congenital GBM analyzed by conventional cytogenetics, fluorescence in situ hybridization, array comparative genomic hybridization and next generation sequencing. On cytogenetic analysis we detected a reciprocal translocation t(6;12)(q21;q24.3). By sequencing, the translocation was shown to form a fusion between the 5' region of ZCCHC8 and the 3' region of ROS1. RT-PCR analyses confirmed the existence of an in-frame fusion transcript with ZCCHC8 exons 1-3 joined to ROS1 exons 36-43. In addition to the ZCCHC8-ROS1 fusion, we detected a deletion in the short arm of chromosome 9, including homozygous loss of the CDKN2A/2B locus in 9p21.3 and heterozygous deletion of the HAUS6 gene in 9p22.1. The latter encodes a protein involved in faithful chromosome segregation by regulating microtubule nucleation and its deletion might be associated with the marked subclonal changes of ploidy observed in the tumor. This report adds the ZCCHC8-ROS1 fusion as oncogenic driver in GBM and supports the role of ROS1 activation in the pathogenesis of a subset of GBM. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas de Transporte/genética , Cromossomos Humanos Par 12/genética , Cromossomos Humanos Par 6/genética , Glioblastoma/congênito , Glioblastoma/genética , Proteínas Nucleares/genética , Proteínas de Fusão Oncogênica/genética , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Translocação Genética/genética , Hibridização Genômica Comparativa , Análise Citogenética , Glioblastoma/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hibridização in Situ Fluorescente , Lactente , Masculino , Prognóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Orphanet J Rare Dis ; 11: 44, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27101822

RESUMO

BACKGROUND: Fructose-1,6-bisphosphatase deficiency is a rare inborn error of metabolism affecting gluconeogenesis with only sporadic reports on its molecular genetic basis. RESULTS: We report our experience with mutation analysis in 14 patients (13 families) with fructose-1,6-bisphosphatase deficiency using conventional Sanger sequencing and multiplex ligation-dependent probe amplification analysis, and we provide a mutation update for the fructose bisphosphatase-1 gene (FBP1). Mutations were found on both chromosomes in all of our 14 patients including 5 novel mutations. Among the novel mutations is a 5412-bp deletion (c.-24-26_170 + 5192del) including the entire coding sequence of exon 2 of FBP1 that was repeatedly found in patients from Turkey and Armenia which may explain earlier poorly defined findings in patients from this area. This deletion can be detected with specific primers by generation of a junction fragment and by MLPA and SNP array assays. MLPA analysis was able to detect copy number variations in two further patients, one heterozygous for a deletion within exon 8, another heterozygous for a novel deletion of the entire FBP1 gene. CONCLUSIONS: Based on our update for the FBP1 gene, currently listing 35 mutations worldwide, and knowledge of PCR conditions that allow simple detection of a common FBP1 deletion in the Armenian and Turkish population, molecular genetic diagnosis has become easier in FBP1 deficiency. Furthermore, MLPA analysis may plays a useful role in patients with this disorder.


Assuntos
DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Deficiência de Frutose-1,6-Difosfatase/genética , Variações do Número de Cópias de DNA/genética , Análise Mutacional de DNA , Éxons/genética , Humanos , Mutação , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único/genética , Proteínas de Ligação a RNA
13.
Am J Med Genet A ; 170A(4): 1050-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26749249

RESUMO

Many chromosomal rearrangements that lead to copy-number gains or losses have been shown to cause distinctive and recognizable clinical phenotypes. Conventional cytogenetic analysis can detect many, but not all, rearrangements depending on its power of resolution. The wide use of whole-genome array-based comparative genomic hybridization (array-CGH) techniques has allowed the detection of novel syndromes and to establish genotype-phenotype correlations by delineating at high resolution the regions involved in specific chromosomal aberrations. We report on a two and half-year-old female patient with intellectual disability and distinctive phenotypic features resulting from a de novo duplication of about 0.3 Mb in 21q22.3 associated with duplication of about 0.3 Mb in 12p13.33. The patient's chromosomal abnormalities were identified at the cytogenetic molecular level, using SNP array analysis, while GTG banding technique revealed a normal karyotype. Clinical findings of the patient were compared with Down syndrome and 12p duplication syndrome. This study suggests that an area of contiguous genes on the distal part of chromosome 21 (21q22.3) contribute to the Down syndrome phenotype and indicates that genes in the distal region of 12p (12p13.33) account for many facial characteristics and hypotonia of trisomy 12p syndrome.


Assuntos
Cromossomos Humanos Par 12 , Cromossomos Humanos Par 21 , Estudos de Associação Genética , Fenótipo , Trissomia , Encéfalo/patologia , Pré-Escolar , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/genética , Variações do Número de Cópias de DNA , Fácies , Feminino , Humanos , Cariotipagem , Imageamento por Ressonância Magnética , Polimorfismo de Nucleotídeo Único
14.
Nat Genet ; 47(11): 1316-1325, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26437030

RESUMO

Although Burkitt lymphomas and follicular lymphomas both have features of germinal center B cells, they are biologically and clinically quite distinct. Here we performed whole-genome bisulfite, genome and transcriptome sequencing in 13 IG-MYC translocation-positive Burkitt lymphoma, nine BCL2 translocation-positive follicular lymphoma and four normal germinal center B cell samples. Comparison of Burkitt and follicular lymphoma samples showed differential methylation of intragenic regions that strongly correlated with expression of associated genes, for example, genes active in germinal center dark-zone and light-zone B cells. Integrative pathway analyses of regions differentially methylated in Burkitt and follicular lymphomas implicated DNA methylation as cooperating with somatic mutation of sphingosine phosphate signaling, as well as the TCF3-ID3 and SWI/SNF complexes, in a large fraction of Burkitt lymphomas. Taken together, our results demonstrate a tight connection between somatic mutation, DNA methylation and transcriptional control in key B cell pathways deregulated differentially in Burkitt lymphoma and other germinal center B cell lymphomas.


Assuntos
Linfoma de Burkitt/genética , Metilação de DNA , Linfoma Folicular/genética , Mutação , Transcriptoma/genética , Adolescente , Adulto , Idoso , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Criança , Pré-Escolar , Feminino , Genoma Humano/genética , Centro Germinativo/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Fusão Oncogênica/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-myc/genética , Transdução de Sinais/genética , Translocação Genética , Adulto Jovem
15.
Eur J Hum Genet ; 23(10): 1334-40, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25604858

RESUMO

X-linked recessive dystonia-parkinsonism is a rare movement disorder that is highly prevalent in Panay Island in the Philippines. Earlier studies identified seven different genetic alterations within a 427-kb disease locus on the X chromosome; however, the exact disease-causing variant among these is still not unequivocally determined. To further investigate the genetic cause of this disease, we sequenced all previously reported genetic alterations in 166 patients and 473 Filipino controls. Singly occurring variants in our ethnically matched controls would have allowed us to define these as polymorphisms, but none were found. Instead, we identified five patients carrying none of the disease-associated variants, and one male control carrying all of them. In parallel, we searched for novel single-nucleotide variants using next-generation sequencing. We did not identify any shared variants in coding regions of the X chromosome. However, by validating intergenic variants discovered via genome sequencing, we were able to define the boundaries of the disease-specific haplotype and narrow the disease locus to a 294-kb region that includes four known genes. Using microarray-based analyses, we ruled out the presence of disease-linked copy number variants within the implicated region. Finally, we utilized in silico analysis and detected no strong evidence of regulatory regions surrounding the disease-associated variants. In conclusion, our finding of disease-specific variants occurring in complete linkage disequilibrium raises new insights and intriguing questions about the origin of the disease haplotype, the existence of phenocopies and of reduced penetrance, and the causative genetic alteration in XDP.


Assuntos
Cromossomos Humanos X/genética , Distúrbios Distônicos/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Ligação Genética/genética , Doença de Parkinson/genética , Adulto , Idoso , Mapeamento Cromossômico/métodos , Haplótipos/genética , Humanos , Desequilíbrio de Ligação/genética , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Filipinas , Polimorfismo Genético/genética
16.
J Med Genet ; 51(6): 407-12, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24721835

RESUMO

BACKGROUND: In a subset of imprinting disorders caused by epimutations, multiple imprinted loci are affected. Familial occurrence of multilocus imprinting disorders is rare. PURPOSE/OBJECTIVE: We have investigated the clinical and molecular features of a familial DNA-methylation disorder. METHODS: Tissues of affected individuals and blood samples of family members were investigated by conventional and molecular karyotyping. Sanger sequencing and RT-PCR of imprinting-associated genes (NLRP2, NLRP7, ZFP57, KHDC3L, DNMT1o), exome sequencing and locus-specific, array-based and genome-wide technologies to determine DNA-methylation were performed. RESULTS: In three offspring of a healthy couple, we observed prenatal onset of severe growth retardation and dysmorphism associated with altered DNA-methylation at paternally and maternally imprinted loci. Array-based analyses in various tissues of the offspring identified the DNA-methylation of 2.1% of the genes in the genome to be recurrently altered. Despite significant enrichment of imprinted genes (OR 9.49), altered DNA-methylation predominately (90.2%) affected genes not known to be imprinted. Sequencing of genes known to cause comparable conditions and exome sequencing in affected individuals and their ancestors did not unambiguously point to a causative gene. CONCLUSIONS: The family presented herein suggests the existence of a familial disorder of DNA-methylation affecting imprinted but also not imprinted gene loci potentially caused by a maternal effect mutation in a hitherto not identified gene.


Assuntos
Metilação de DNA/genética , Doenças Genéticas Inatas/genética , Alelos , Análise Mutacional de DNA , Epigenômica , Feminino , Humanos , Recém-Nascido , Masculino , Linhagem
17.
Blood ; 123(8): 1187-98, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24398325

RESUMO

The genetic hallmark of Burkitt lymphoma (BL) is the t(8;14)(q24;q32) and its variants leading to activation of the MYC oncogene. It is a matter of debate whether true BL without MYC translocation exists. Here, we identified 59 lymphomas concordantly called BL by 2 gene expression classifiers among 753 B-cell lymphomas. Only 2 (3%) of these 59 molecular BL lacked a MYC translocation, which both shared a peculiar pattern of chromosome 11q aberration characterized by interstitial gains including 11q23.2-q23.3 and telomeric losses of 11q24.1-qter. We extended our analysis to 17 MYC-negative high-grade B-cell lymphomas with a similar 11q aberration and showed this aberration to be recurrently associated with morphologic and clinical features of BL. The minimal region of gain was defined by high-level amplifications in 11q23.3 and associated with overexpression of genes including PAFAH1B2 on a transcriptional and protein level. The recurrent region of loss contained a focal homozygous deletion in 11q24.2-q24.3 including the ETS1 gene, which was shown to be mutated in 4 of 16 investigated cases. These findings indicate the existence of a molecularly distinct subset of B-cell lymphomas reminiscent of BL, which is characterized by deregulation of genes in 11q.


Assuntos
Linfócitos B/fisiologia , Linfoma de Burkitt/classificação , Linfoma de Burkitt/genética , Genes myc/genética , Translocação Genética/genética , Adolescente , Adulto , Idoso , Linfoma de Burkitt/patologia , Linhagem Celular , Criança , Cromossomos Humanos Par 11 , Cromossomos Humanos Par 14 , Cromossomos Humanos Par 8 , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Gradação de Tumores , Recidiva , Adulto Jovem
18.
Genes Chromosomes Cancer ; 53(4): 309-16, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24446122

RESUMO

T-cell prolymphocytic leukemia (T-PLL) is an aggressive post-thymic T-cell malignancy characterized by the recurrent inv(14)(q11q32)/t(14;14)(q11;q32) or t(X;14)(q28;q11) leading to activation of either the TCL1 or MTCP1 gene, respectively. However, these primary genetic events are insufficient to drive leukemogenesis. Recently, activating mutations in JAK3 have been identified in other T-cell malignancies. Since JAK3 is essential for T-cell maturation, we analyzed a cohort of 32 T-PLL patients for mutational hot spots in the JAK3 gene using a step-wise screening approach. We identified 14 mutations in 11 of 32 patients (34%). The most frequently detected mutation in our cohort was M511I (seen in 57% of cases) previously described as an activating change in other T-cell malignancies. Three patients carried two mutations in JAK3. In two patients M511I and R657Q were simultaneously detected and in another patient V674F and V678L. In the latter case we could demonstrate that the mutations were on the same allele in cis. Protein modeling and homology analyses of mutations present in other members of the JAK family suggested that these mutations likely activate JAK3, possibly by disrupting the activation loop and the interface between N and C lobes, increasing the accessibility of the catalytic loop. In addition, four of the 21 patients lacking a JAK3 point mutation presented an aberrant karyotype involving the chromosomal band 19p13 harboring the JAK3 locus. The finding of recurrent activating JAK3 mutations in patients with T-PLL could enable the use of JAK3 inhibitors to treat patients with this unfavorable malignancy who otherwise have a very poor prognosis.


Assuntos
Cromossomos Humanos Par 14/genética , Janus Quinase 3/genética , Leucemia Prolinfocítica de Células T/genética , Idoso , Sequência de Aminoácidos , Estudos de Coortes , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Mutação
19.
PLoS One ; 8(10): e75692, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24116068

RESUMO

The human hepatic cell line LX-2 has been described as tool to study mechanisms of hepatic fibrogenesis and the testing of antifibrotic compounds. It was originally generated by immortalisation with the Simian Vacuolating Virus 40 (SV40) transforming (T) antigen and subsequent propagation in low serum conditions. Although this immortalized line is used in an increasing number of studies, detailed genetic characterisation has been lacking. We here have performed genetic characterisation of the LX-2 cell line and established a single-locus short tandem repeat (STR) profile for the cell line and characterized the LX-2 karyotype by several cytogenetic and molecular cytogenetic techniques. Spectral karyotyping (SKY) revealed a complex karyotype with a set of aberrations consistently present in the metaphases analyses which might serve as cytogenetic markers. In addition, various subclonal and single cell aberrations were detected. Our study provides criteria for genetic authentication of LX-2 and offers insights into the genotype changes which might underlie part of its phenotypic features.


Assuntos
Linhagem Celular , Células Estreladas do Fígado/citologia , Cariótipo , Células Estreladas do Fígado/metabolismo , Humanos , Cariotipagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...