Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
PLoS Genet ; 19(9): e1010934, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37733769

RESUMO

Findings from genome-wide association studies have facilitated the generation of genetic predictors for many common human phenotypes. Stratifying individuals misaligned to a genetic predictor based on common variants may be important for follow-up studies that aim to identify alternative causal factors. Using genome-wide imputed genetic data, we aimed to classify 158,951 unrelated individuals from the UK Biobank as either concordant or deviating from two well-measured phenotypes. We first applied our methods to standing height: our primary analysis classified 244 individuals (0.15%) as misaligned to their genetically predicted height. We show that these individuals are enriched for self-reporting being shorter or taller than average at age 10, diagnosed congenital malformations, and rare loss-of-function variants in genes previously catalogued as causal for growth disorders. Secondly, we apply our methods to LDL cholesterol (LDL-C). We classified 156 (0.12%) individuals as misaligned to their genetically predicted LDL-C and show that these individuals were enriched for both clinically actionable cardiovascular risk factors and rare genetic variants in genes previously shown to be involved in metabolic processes. Individuals whose LDL-C was higher than expected based on the genetic predictor were also at higher risk of developing coronary artery disease and type-two diabetes, even after adjustment for measured LDL-C, BMI and age, suggesting upward deviation from genetically predicted LDL-C is indicative of generally poor health. Our results remained broadly consistent when performing sensitivity analysis based on a variety of parametric and non-parametric methods to define individuals deviating from polygenic expectation. Our analyses demonstrate the potential importance of quantitatively identifying individuals for further follow-up based on deviation from genetic predictions.


Assuntos
Doença da Artéria Coronariana , Estudo de Associação Genômica Ampla , Humanos , Criança , LDL-Colesterol/genética , Fenótipo , Doença da Artéria Coronariana/genética , Seguimentos , Análise da Randomização Mendeliana , Fatores de Risco , Polimorfismo de Nucleotídeo Único
2.
bioRxiv ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37292977

RESUMO

Human height can be divided into sitting height and leg length, reflecting growth of different parts of the skeleton whose relative proportions are captured by the ratio of sitting to total height (as sitting height ratio, SHR). Height is a highly heritable trait, and its genetic basis has been well-studied. However, the genetic determinants of skeletal proportion are much less well-characterized. Expanding substantially on past work, we performed a genome-wide association study (GWAS) of SHR in ∼450,000 individuals with European ancestry and ∼100,000 individuals with East Asian ancestry from the UK and China Kadoorie Biobanks. We identified 565 loci independently associated with SHR, including all genomic regions implicated in prior GWAS in these ancestries. While SHR loci largely overlap height-associated loci (P < 0.001), the fine-mapped SHR signals were often distinct from height. We additionally used fine-mapped signals to identify 36 credible sets with heterogeneous effects across ancestries. Lastly, we used SHR, sitting height, and leg length to identify genetic variation acting on specific body regions rather than on overall human height.

3.
Cell Genom ; 3(5): 100299, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37228756

RESUMO

Alterations in the growth and maturation of chondrocytes can lead to variation in human height, including monogenic disorders of skeletal growth. We aimed to identify genes and pathways relevant to human growth by pairing human height genome-wide association studies (GWASs) with genome-wide knockout (KO) screens of growth-plate chondrocyte proliferation and maturation in vitro. We identified 145 genes that alter chondrocyte proliferation and maturation at early and/or late time points in culture, with 90% of genes validating in secondary screening. These genes are enriched in monogenic growth disorder genes and in KEGG pathways critical for skeletal growth and endochondral ossification. Further, common variants near these genes capture height heritability independent of genes computationally prioritized from GWASs. Our study emphasizes the value of functional studies in biologically relevant tissues as orthogonal datasets to refine likely causal genes from GWASs and implicates new genetic regulators of chondrocyte proliferation and maturation.

5.
bioRxiv ; 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36798175

RESUMO

Findings from genome-wide association studies have facilitated the generation of genetic predictors for many common human phenotypes. Stratifying individuals misaligned to a genetic predictor based on common variants may be important for follow-up studies that aim to identify alternative causal factors. Using genome-wide imputed genetic data, we aimed to classify 158,951 unrelated individuals from the UK Biobank as either concordant or deviating from two well-measured phenotypes. We first applied our methods to standing height: our primary analysis classified 244 individuals (0.15%) as misaligned to their genetically predicted height. We show that these individuals are enriched for self-reporting being shorter or taller than average at age 10, diagnosed congenital malformations, and rare loss-of-function variants in genes previously catalogued as causal for growth disorders. Secondly, we apply our methods to LDL cholesterol. We classified 156 (0.12%) individuals as misaligned to their genetically predicted LDL cholesterol and show that these individuals were enriched for both clinically actionable cardiovascular risk factors and rare genetic variants in genes previously shown to be involved in metabolic processes. Individuals whose LDL-C was higher than expected based on the genetic predictor were also at higher risk of developing coronary artery disease and type-two diabetes, even after adjustment for measured LDL-C, BMI and age, suggesting upward deviation from genetically predicted LDL-C is indicative of generally poor health. Our results remained broadly consistent when performing sensitivity analysis based on a variety of parametric and non-parametric methods to define individuals deviating from polygenic expectation. Our analyses demonstrate the potential importance of quantitatively identifying individuals for further follow-up based on deviation from genetic predictions. Author Summary: Human genetics is becoming increasingly useful to help predict human traits across a population owing to findings from large-scale genetic association studies and advances in the power of genetic predictors. This provides an opportunity to potentially identify individuals that deviate from genetic predictions for a common phenotype under investigation. For example, an individual may be genetically predicted to be tall, but be shorter than expected. It is potentially important to identify individuals who deviate from genetic predictions as this can facilitate further follow-up to assess likely causes. Using 158,951 unrelated individuals from the UK Biobank, with height and LDL cholesterol, as exemplar traits, we demonstrate that approximately 0.15% & 0.12% of individuals deviate from their genetically predicted phenotypes respectively. We observed these individuals to be enriched for a range of rare clinical diagnoses, as well as rare genetic factors that may be causal. Our analyses also demonstrate several methods for detecting individuals who deviate from genetic predictions that can be applied to a range of continuous human phenotypes.

6.
Genome Biol ; 23(1): 268, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575460

RESUMO

BACKGROUND: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. RESULTS: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. CONCLUSIONS: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Caracteres Sexuais , Fenótipo , Lipídeos/genética , Polimorfismo de Nucleotídeo Único , Pleiotropia Genética
7.
Nature ; 610(7933): 704-712, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36224396

RESUMO

Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.


Assuntos
Estatura , Mapeamento Cromossômico , Polimorfismo de Nucleotídeo Único , Humanos , Estatura/genética , Frequência do Gene/genética , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Haplótipos/genética , Desequilíbrio de Ligação/genética , Polimorfismo de Nucleotídeo Único/genética , Europa (Continente)/etnologia , Tamanho da Amostra , Fenótipo
8.
Am J Hum Genet ; 109(8): 1366-1387, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35931049

RESUMO

A major challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional datasets supporting their roles in lipid biology.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Cromatina/genética , Genômica , Humanos , Lipídeos/genética , Polimorfismo de Nucleotídeo Único/genética
9.
Nature ; 600(7890): 675-679, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34887591

RESUMO

Increased blood lipid levels are heritable risk factors of cardiovascular disease with varied prevalence worldwide owing to different dietary patterns and medication use1. Despite advances in prevention and treatment, in particular through reducing low-density lipoprotein cholesterol levels2, heart disease remains the leading cause of death worldwide3. Genome-wideassociation studies (GWAS) of blood lipid levels have led to important biological and clinical insights, as well as new drug targets, for cardiovascular disease. However, most previous GWAS4-23 have been conducted in European ancestry populations and may have missed genetic variants that contribute to lipid-level variation in other ancestry groups. These include differences in allele frequencies, effect sizes and linkage-disequilibrium patterns24. Here we conduct a multi-ancestry, genome-wide genetic discovery meta-analysis of lipid levels in approximately 1.65 million individuals, including 350,000 of non-European ancestries. We quantify the gain in studying non-European ancestries and provide evidence to support the expansion of recruitment of additional ancestries, even with relatively small sample sizes. We find that increasing diversity rather than studying additional individuals of European ancestry results in substantial improvements in fine-mapping functional variants and portability of polygenic prediction (evaluated in approximately 295,000 individuals from 7 ancestry groupings). Modest gains in the number of discovered loci and ancestry-specific variants were also achieved. As GWAS expand emphasis beyond the identification of genes and fundamental biology towards the use of genetic variants for preventive and precision medicine25, we anticipate that increased diversity of participants will lead to more accurate and equitable26 application of polygenic scores in clinical practice.


Assuntos
Doenças Cardiovasculares , Estudo de Associação Genômica Ampla , Doenças Cardiovasculares/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Desequilíbrio de Ligação , Herança Multifatorial , Polimorfismo de Nucleotídeo Único/genética , Grupos Populacionais
11.
J Clin Endocrinol Metab ; 105(10)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32652002

RESUMO

CONTEXT: Individual patients vary in their response to growth hormone (GH). No large-scale genome-wide studies have looked for genetic predictors of GH responsiveness. OBJECTIVE: To identify genetic variants associated with GH responsiveness. DESIGN: Genome-wide association study (GWAS). SETTING: Cohorts from multiple academic centers and a clinical trial. PATIENTS: A total of 614 individuals from 5 short stature cohorts receiving GH: 297 with idiopathic short stature, 276 with isolated GH deficiency, and 65 born small for gestational age. INTERVENTION: Association of more than 2 million variants was tested. MAIN OUTCOME MEASURES: Primary analysis: individual single nucleotide polymorphism (SNP) association with first-year change in height standard deviation scores. Secondary analyses: SNP associations in clinical subgroups adjusted for clinical variables; association of polygenic score calculated from 697 genome-wide significant height SNPs with GH responsiveness. RESULTS: No common variant associations reached genome-wide significance in the primary analysis. The strongest suggestive signals were found near the B4GALT4 and TBCE genes. After meta-analysis including replication data, signals at several loci reached or retained genome-wide significance in secondary analyses, including variants near ST3GAL6. There was no significant association with variants previously reported to be associated with GH response nor with a polygenic predicted height score. CONCLUSIONS: We performed the largest GWAS of GH responsiveness to date. We identified 2 loci with a suggestive effect on GH responsiveness in our primary analysis and several genome-wide significant associations in secondary analyses that require further replication. Our results are consistent with a polygenic component to GH responsiveness, likely distinct from the genetic regulators of adult height.


Assuntos
Estatura/efeitos dos fármacos , Nanismo Hipofisário/tratamento farmacológico , Loci Gênicos , Hormônio do Crescimento Humano/uso terapêutico , Estatura/genética , Criança , Estudos de Coortes , Nanismo Hipofisário/genética , Feminino , Galactosiltransferases/genética , Estudo de Associação Genômica Ampla , Humanos , Recém-Nascido Pequeno para a Idade Gestacional , Masculino , Chaperonas Moleculares/genética , Testes Farmacogenômicos/estatística & dados numéricos , Polimorfismo de Nucleotídeo Único , Sialiltransferases/genética , Resultado do Tratamento
12.
Hum Mol Genet ; 29(15): 2625-2636, 2020 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-32484228

RESUMO

The growth hormone and insulin-like growth factor (IGF) system is integral to human growth. Genome-wide association studies (GWAS) have identified variants associated with height and located near the genes in this pathway. However, mechanisms underlying these genetic associations are not understood. To investigate the regulation of the genes in this pathway and mechanisms by which regulation could affect growth, we performed GWAS of measured serum protein levels of IGF-I, IGF binding protein-3 (IGFBP-3), pregnancy-associated plasma protein A (PAPP-A2), IGF-II and IGFBP-5 in 838 children (3-18 years) from the Cincinnati Genomic Control Cohort. We identified variants associated with protein levels near IGFBP3 and IGFBP5 genes, which contain multiple signals of association with height and other skeletal growth phenotypes. Surprisingly, variants that associate with protein levels at these two loci do not colocalize with height associations, confirmed through conditional analysis. Rather, the IGFBP3 signal (associated with total IGFBP-3 and IGF-II levels) colocalizes with an association with sitting height ratio (SHR); the IGFBP5 signal (associated with IGFBP-5 levels) colocalizes with birth weight. Indeed, height-associated single nucleotide polymorphisms near genes encoding other proteins in this pathway are not associated with serum levels, possibly excluding PAPP-A2. Mendelian randomization supports a stronger causal relationship of measured serum levels with SHR (for IGFBP-3) and birth weight (for IGFBP-5) than with height. In conclusion, we begin to characterize the genetic regulation of serum levels of IGF-related proteins in childhood. Furthermore, our data strongly suggest the existence of growth-regulating mechanisms acting through IGF-related genes in ways that are not reflected in measured serum levels of the corresponding proteins.


Assuntos
Estatura/genética , Hormônio do Crescimento/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Fator de Crescimento Insulin-Like I/genética , Adolescente , Peso ao Nascer/genética , Criança , Pré-Escolar , Feminino , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Fator de Crescimento Insulin-Like II/genética , Masculino , Análise da Randomização Mendeliana , Proteína Plasmática A Associada à Gravidez/genética , Postura Sentada
13.
Int J Obes (Lond) ; 44(7): 1596-1606, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32467615

RESUMO

BACKGROUND: Obesity and its associated diseases are major health problems characterized by extensive metabolic disturbances. Understanding the causal connections between these phenotypes and variation in metabolite levels can uncover relevant biology and inform novel intervention strategies. Recent studies have combined metabolite profiling with genetic instrumental variable (IV) analysis (Mendelian randomization) to infer the direction of causality between metabolites and obesity, but often omitted a large portion of untargeted profiling data consisting of unknown, unidentified metabolite signals. METHODS: We expanded upon previous research by identifying body mass index (BMI)-associated metabolites in multiple untargeted metabolomics datasets, and then performing bidirectional IV analysis to classify metabolites based on their inferred causal relationships with BMI. Meta-analysis and pathway analysis of both known and unknown metabolites across datasets were enabled by our recently developed bioinformatics suite, PAIRUP-MS. RESULTS: We identified ten known metabolites that are more likely to be causes (e.g., alpha-hydroxybutyrate) or effects (e.g., valine) of BMI, or may have more complex bidirectional cause-effect relationships with BMI (e.g., glycine). Importantly, we also identified about five times more unknown than known metabolites in each of these three categories. Pathway analysis incorporating both known and unknown metabolites prioritized 40 enriched (p < 0.05) metabolite sets for the cause versus effect groups, providing further support that these two metabolite groups are linked to obesity via distinct biological mechanisms. CONCLUSIONS: These findings demonstrate the potential utility of our approach to uncover causal connections with obesity from untargeted metabolomics datasets. Combining genetically informed causal inference with the ability to map unknown metabolites across datasets provides a path to jointly analyze many untargeted datasets with obesity or other phenotypes. This approach, applied to larger datasets with genotype and untargeted metabolite data, should generate sufficient power for robust discovery and replication of causal biological connections between metabolites and various human diseases.


Assuntos
Metaboloma , Obesidade/metabolismo , Índice de Massa Corporal , Causalidade , Biologia Computacional , Humanos , Metabolômica , Obesidade/genética
15.
Nat Genet ; 51(3): 452-469, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30778226

RESUMO

Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF ≥5%) and nine low-frequency or rare (MAF <5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants.


Assuntos
Predisposição Genética para Doença/genética , Variação Genética/genética , Homeostase/genética , Lipídeos/genética , Proteínas/genética , Animais , Distribuição da Gordura Corporal/métodos , Índice de Massa Corporal , Estudos de Casos e Controles , Drosophila/genética , Exoma/genética , Feminino , Frequência do Gene/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Fatores de Risco , Relação Cintura-Quadril/métodos
17.
Nat Genet ; 50(5): 766-767, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29549330

RESUMO

In the version of this article originally published, one of the two authors with the name Wei Zhao was omitted from the author list and the affiliations for both authors were assigned to the single Wei Zhao in the author list. In addition, the ORCID for Wei Zhao (Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA) was incorrectly assigned to author Wei Zhou. The errors have been corrected in the HTML and PDF versions of the article.

18.
Clin Chem ; 64(1): 192-200, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29295838

RESUMO

BACKGROUND: A fundamental precept of the carbohydrate-insulin model of obesity is that insulin secretion drives weight gain. However, fasting hyperinsulinemia can also be driven by obesity-induced insulin resistance. We used genetic variation to isolate and estimate the potentially causal effect of insulin secretion on body weight. METHODS: Genetic instruments of variation of insulin secretion [assessed as insulin concentration 30 min after oral glucose (insulin-30)] were used to estimate the causal relationship between increased insulin secretion and body mass index (BMI), using bidirectional Mendelian randomization analysis of genome-wide association studies. Data sources included summary results from the largest published metaanalyses of predominantly European ancestry for insulin secretion (n = 26037) and BMI (n = 322154), as well as individual-level data from the UK Biobank (n = 138541). Data from the Cardiology and Metabolic Patient Cohort study at Massachusetts General Hospital (n = 1675) were used to validate genetic associations with insulin secretion and to test the observational association of insulin secretion and BMI. RESULTS: Higher genetically determined insulin-30 was strongly associated with higher BMI (ß = 0.098, P = 2.2 × 10-21), consistent with a causal role in obesity. Similar positive associations were noted in sensitivity analyses using other genetic variants as instrumental variables. By contrast, higher genetically determined BMI was not associated with insulin-30. CONCLUSIONS: Mendelian randomization analyses provide evidence for a causal relationship of glucose-stimulated insulin secretion on body weight, consistent with the carbohydrate-insulin model of obesity.


Assuntos
Carboidratos da Dieta/administração & dosagem , Secreção de Insulina/genética , Análise da Randomização Mendeliana , Obesidade/genética , Obesidade/metabolismo , Índice de Massa Corporal , Estudos de Coortes , Jejum , Estudo de Associação Genômica Ampla , Glucose/administração & dosagem , Humanos , Resistência à Insulina , Modelos Biológicos , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes
19.
Nat Genet ; 50(1): 26-41, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29273807

RESUMO

Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are ~10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed ~7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.


Assuntos
Índice de Massa Corporal , Ingestão de Energia/genética , Metabolismo Energético/genética , Variação Genética , Obesidade/genética , Adulto , Animais , Drosophila/genética , Feminino , Frequência do Gene , Humanos , Masculino , Proteínas/genética , Síndrome
20.
PLoS Genet ; 13(4): e1006719, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28430825

RESUMO

Genome-wide association studies (GWAS) have identified >300 loci associated with measures of adiposity including body mass index (BMI) and waist-to-hip ratio (adjusted for BMI, WHRadjBMI), but few have been identified through screening of the African ancestry genomes. We performed large scale meta-analyses and replications in up to 52,895 individuals for BMI and up to 23,095 individuals for WHRadjBMI from the African Ancestry Anthropometry Genetics Consortium (AAAGC) using 1000 Genomes phase 1 imputed GWAS to improve coverage of both common and low frequency variants in the low linkage disequilibrium African ancestry genomes. In the sex-combined analyses, we identified one novel locus (TCF7L2/HABP2) for WHRadjBMI and eight previously established loci at P < 5×10-8: seven for BMI, and one for WHRadjBMI in African ancestry individuals. An additional novel locus (SPRYD7/DLEU2) was identified for WHRadjBMI when combined with European GWAS. In the sex-stratified analyses, we identified three novel loci for BMI (INTS10/LPL and MLC1 in men, IRX4/IRX2 in women) and four for WHRadjBMI (SSX2IP, CASC8, PDE3B and ZDHHC1/HSD11B2 in women) in individuals of African ancestry or both African and European ancestry. For four of the novel variants, the minor allele frequency was low (<5%). In the trans-ethnic fine mapping of 47 BMI loci and 27 WHRadjBMI loci that were locus-wide significant (P < 0.05 adjusted for effective number of variants per locus) from the African ancestry sex-combined and sex-stratified analyses, 26 BMI loci and 17 WHRadjBMI loci contained ≤ 20 variants in the credible sets that jointly account for 99% posterior probability of driving the associations. The lead variants in 13 of these loci had a high probability of being causal. As compared to our previous HapMap imputed GWAS for BMI and WHRadjBMI including up to 71,412 and 27,350 African ancestry individuals, respectively, our results suggest that 1000 Genomes imputation showed modest improvement in identifying GWAS loci including low frequency variants. Trans-ethnic meta-analyses further improved fine mapping of putative causal variants in loci shared between the African and European ancestry populations.


Assuntos
Adiposidade/genética , Obesidade/genética , Serina Endopeptidases/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Antropometria , População Negra/genética , Índice de Massa Corporal , Mapeamento Cromossômico , Feminino , Frequência do Gene , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação , Masculino , Obesidade/patologia , Polimorfismo de Nucleotídeo Único , Relação Cintura-Quadril , População Branca/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...