Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
ACS Appl Bio Mater ; 5(12): 5682-5692, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36368008

RESUMO

Recently, decellularized plant biomaterials have been explored for their use as tissue engineered substitutes. Herein, we expanded upon the investigation of the mechanical properties of these materials to explore their elasticity as many anatomical areas of the body require biomechanical dynamism. We first constructed a device to secure the scaffold and induce a strain within the physiological range of the normal human adult lung during breathing (12-20 movements/min; 10-20% elongation). Results showed that decellularized spinach leaves can support cyclic strain for 24 h and displayed heterogeneous local strain values (7.76-15.88%) as well as a Poisson's ratio (0.12) similar to that of mammalian lungs (10.67-19.67%; 0.01), as opposed to an incompressible homogeneous standard polymer (such as PDMS (10.85-12.71%; 0.4)). Imaging and mechanical testing showed that the vegetal scaffold exhibited strain hardening but maintained its structural architecture and water retention capacity, suggesting an unaltered porosity. Interestingly, we also showed that cells seeded on the scaffold can also sense the mechanical strain as demonstrated by a nuclear reorientation perpendicular to strain direction (63.3° compared to 41.2° for nonstretched cells), a nuclear location of YAP and increased expression of YAP target genes, a high cytoplasmic calcium level, and an elevated expression level of collagen genes (COL1A1, COL3A1, COL4A1, and COL6A) with an increased collagen secretion at the protein level. Taken together, these data demonstrated that decellularized plant leaf tissues have an inherent elastic property similar to that found in the mammalian system to which cells can sense and respond.


Assuntos
Materiais Biocompatíveis , Spinacia oleracea , Animais , Humanos , Spinacia oleracea/metabolismo , Colágeno/metabolismo , Elasticidade , Engenharia Tecidual , Mamíferos/metabolismo
2.
J Pharm Biomed Anal ; 220: 114977, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-35961214

RESUMO

Design of Experiments (DoE) is a well-established tool used for analytical methods robustness studies, because of its ability to assess the effect of a great number of factors in a minimal number of experiments. However, when assessing the robustness of an analytical method the analysis of the individual effect of each factor is not sufficient on its own. Some factors may not influence the robustness of the method, but their effect combined with the effects of other factors may have a significant contribution on the robustness of the method, which is not given by conventional analysis of DoE results. The aim of this work is to propose, in addition to the analysis of the individual effects of the factors, to estimate the joint effect of the factors by means of the matrix experimental results prediction interval. This prediction interval is the interval in which, with a given probability, should fall the next results, therefore it is an interesting tool to estimate the variation limits of the method results during routine use. We also propose the use of two other prediction intervals which can help to analyze the DoE results and give a conclusion on the method robustness. The first one is based on the DoE experimental error information, and it gives an estimation of the experimental error component impact on the factors joint effect. The second one is based on the factors non-significance limits, and it provides the information regarding the factors impact on the responses in the case where the conditions are, by definition, robust. We applied these proposals to the robustness study of a UHPLC method for the separation of phytocannabinoids and we could demonstrate that, in addition to the calculated effects values and robustness information, the use of the prediction intervals information provided additional information that allowed a better interpretation of the method performance parameters.


Assuntos
Canabinoides , Cromatografia Líquida de Alta Pressão/métodos , Projetos de Pesquisa
3.
J Chromatogr A ; 1676: 463282, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35785673

RESUMO

The aim of this study was to evaluate the potential of ultra-high performance supercritical fluid chromatography (UHPSFC) for peptide analysis by comparing its analytical performance to several chromatographic approaches based on reversed-phase liquid chromatography (RPLC), hydrophilic interaction liquid chromatography (HILIC) and mixed-mode liquid chromatography. First, the retention behavior of synthetic peptides with 3 to 30 amino acids and different isoelectric points (acid, neutral, and basic) was evaluated. For all the tested conditions (13 peptides in 8 conditions), only 4 results were not exploitable (not retained or not eluted), confirming that all the tested chromatographic conditions can be successfully applied when analyzing a wide range of diverse peptides. Average tailing factor were quite comparable across all chromatographic modes, while the best peak capacity values were obtained under mixed-mode LC conditions. Selectivity for each chromatographic mode was also evaluated for six closely related peptides having minor modifications on their structures. The LC-based chromatographic modes confirmed their superior selectivity over UHPSFC. By contrast, when analyzing short peptides (di- or tripetides), UHPSFC was the only technique allowing to simultaneously separate highly polar and less polar peptides within the same run confirming its unique versatility. In addition, the sensitivity of each chromatographic approach was accessed by for two representative peptides by both UV and MS detection. With UV detection, limit of detection (LOD) values were comparable among the different chromatographic modes, ranging from 0.5 to 2 µg mL-1. However, major differences were found when employing MS detection (LOD values ranged from 0.05 to 5 µg mL-1). The best results were obtained under HILIC conditions, followed by SFC, and finally mixed-mode LC and RPLC modes.


Assuntos
Cromatografia com Fluido Supercrítico , Cromatografia Líquida/métodos , Cromatografia de Fase Reversa , Cromatografia com Fluido Supercrítico/métodos , Interações Hidrofóbicas e Hidrofílicas , Peptídeos
4.
J Pharm Biomed Anal ; 203: 114206, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34146950

RESUMO

Modern supercritical fluid chromatography (SFC) is now a well-established technique, especially in the field of pharmaceutical analysis. We recently demonstrated the transferability and the reproducibility of a SFC-UV method for pharmaceutical impurities by means of an inter-laboratory study. However, as this study involved only one brand of SFC instrumentation (Waters®), the present study extends the purpose to multi-instrumentation evaluation. Specifically, three instrument types, namely Agilent®, Shimadzu®, and Waters®, were included through 21 laboratories (n = 7 for each instrument). First, method transfer was performed to assess the separation quality and to set up the specific instrument parameters of Agilent® and Shimadzu® instruments. Second, the inter-laboratory study was performed following a protocol defined by the sending lab. Analytical results were examined regarding consistencies within- and between-laboratories criteria. Afterwards, the method reproducibility was estimated taking into account variances in replicates, between-days and between-laboratories. Reproducibility variance was larger than that observed during the first study involving only one single type of instrumentation. Indeed, we clearly observed an 'instrument type' effect. Moreover, the reproducibility variance was larger when considering all instruments than each type separately which can be attributed to the variability induced by the instrument configuration. Nevertheless, repeatability and reproducibility variances were found to be similar than those described for LC methods; i.e. reproducibility as %RSD was around 15 %. These results highlighted the robustness and the power of modern analytical SFC technologies to deliver accurate results for pharmaceutical quality control analysis.


Assuntos
Cromatografia com Fluido Supercrítico , Preparações Farmacêuticas , Controle de Qualidade , Reprodutibilidade dos Testes
5.
J Pharm Biomed Anal ; 202: 114150, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34034047

RESUMO

The aim of the present study was to explore the feasibility of applying near-infrared (NIR) spectroscopy for the quantitative analysis of Δ9-tetrahydrocannabinol (THC) in cannabis products using handheld devices. A preliminary study was conducted on different physical forms (entire, ground and sieved) of cannabis inflorescences in order to evaluate the impact of sample homogeneity on THC content predictions. Since entire cannabis inflorescences represent the most common types of samples found in both the pharmaceutical and illicit markets, they have been considered priority analytical targets. Two handheld NIR spectrophotometers (a low-cost device and a mid-cost device) were used to perform the analyses and their predictive performance was compared. Six partial least square (PLS) models based on reference data obtained by UHPLC-UV were built. The importance of the technical features of the spectrophotometer for quantitative applications was highlighted. The mid-cost system outperformed the low-cost system in terms of predictive performance, especially when analyzing entire cannabis inflorescences. In contrast, for the more homogeneous forms, the results were comparable. The mid-cost system was selected as the best-suited spectrophotometer for this application. The number of cannabis inflorescence samples was augmented with new real samples, and a chemometric model based on machine learning ensemble algorithms was developed to predict the concentration of THC in those samples. Good predictive performance was obtained with a root mean squared error of prediction of 1.75 % (w/w). The Bland-Altman method was then used to compare the NIR predictions to the quantitative results obtained by UHPLC-UV and to evaluate the degree of accordance between the two analytical techniques. Each result fell within the established limits of agreement, demonstrating the feasibility of this chemometric model for analytical purposes. Finally, resin samples were investigated by both NIR devices. Two PLS models were built by using a sample set of 45 samples. When the analytical performances were compared, the mid-cost spectrophotometer significantly outperformed the low-cost device for prediction accuracy and reproducibility.


Assuntos
Cannabis , Alucinógenos , Dronabinol , Reprodutibilidade dos Testes , Espectroscopia de Luz Próxima ao Infravermelho
6.
J Chromatogr A ; 1642: 462048, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33744606

RESUMO

The aim of this work was to expand the applicability range of UHPSFC to series of synthetic and commercialized peptides. Initially, a screening of different column chemistries available for UHPSFC analysis was performed, in combination with additives of either basic or acidic nature. The combination of an acidic additive (13 mM TFA) with a basic stationary phase (Torus DEA and 2-PIC) was found to be the best for a series of six synthetic peptides possessing either acidic, neutral or basic isoelectric points. Secondly, methanesulfonic acid (MSA) was evaluated as a potential replacement for TFA. Due to its stronger acidity, MSA gave better performance than TFA at the same concentration level. Furthermore, the use of reduced percentages of MSA, such as 8 mM, yielded similar results to those observed with 15 mM of MSA. The optimized UHPSFC method was, then, used to compare the performance of UHPSFC against RP-UHPLC for peptides with different pI and with increasing peptide chain length. UHPSFC was found to give a slightly better separation of the peptides according to their pI values, in few cases orthogonal to that observed in UHPLC. On the other hand, UHPSFC produced a much better separation of peptides with an increased amino acidic chain compared to UHPLC. Subsequently, UHPSFC-MS was systematically compared to UHPLC-MS using a set of linear and cyclic peptides commercially available. The optimized UHPSFC method was able to generate at least similar, and in some cases even better performance to UHPLC with the advantage of providing complementary information to that given by UHPLC analysis. Finally, the analytical UHPSFC method was transferred to a semipreparative scale using a proprietary cyclic peptide, demonstrating excellent purity and high yield in less than 15 min.


Assuntos
Cromatografia com Fluido Supercrítico/métodos , Mesilatos/análise , Peptídeos/análise , Água/química , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão/métodos , Peptídeos/química , Peptídeos Cíclicos/análise , Espectrofotometria Ultravioleta , Ácido Trifluoracético/química
7.
Anal Chem ; 93(3): 1277-1284, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33332095

RESUMO

Due to the particular elution mechanism observed with large solutes (e.g., proteins) in liquid chromatography, column length has less impact in controlling their retention compared to small solutes. Moreover, long columns-in theory-just broaden the peaks of large solutes since a great part of the column only acts as void (extra) volume. Such a theory suggests that using very short columns should result in comparable separation quality versus using long columns and make it possible to perform faster (high-throughput) analyses. Therefore, the elution behavior of various therapeutic monoclonal antibodies and their fragments (25-150 kDa) has been investigated using modern instrumentation and column formats. The possibilities offered by narrow-bore columns packed with state-of-the-art 2.7 µm superficially porous particles with 5, 50, 100, and 150 mm lengths have been compared. In particular, the impact of gradient steepness and column length on separation efficiency was evaluated. Using 5 mm × 2.1 mm columns, it has become possible to separate antibody fragments and antibody-drug conjugate species in less than 30 s. Such fast methods can be very useful for high-throughput screening purposes in biopharmaceutical industries.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Imunoconjugados/isolamento & purificação , Anticorpos Monoclonais/química , Cromatografia Líquida de Alta Pressão , Humanos , Imunoconjugados/química , Software
8.
Anal Chem ; 93(3): 1285-1293, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33305942

RESUMO

In the first part of the series, it was demonstrated that very fast (<30 s) separations of therapeutic protein species are feasible using ultra-short (5 × 2.1 mm) columns. In the second part, our purpose was to find the appropriate column length; therefore, a systematic study was performed using various custom-made prototype reversed-phase liquid chromatography (RPLC) columns ranging from 2 to 50 mm lengths. It was found that on a low dispersion ultrahigh-pressure liquid chromatography instrument, columns between 10 and 20 mm were most effective when made with 2.1 mm i.d. tubing. However, with the same LC instrument, 3 mm i.d. columns as short as ∼5 to 10 mm could be effectively used. In both cases, it has been found to be best to keep injection volumes below 0.6 µL, which presents a potential limit to further decreasing column length, given the current capabilities of autosampler instrumentation. The additional volume of the column hardware outside of the packed bed (extra-bed volume) of very small columns is also a limiting factor to decrease the column length. For columns shorter than 10 mm, columns' extra-bed volume was seen to make considerable contributions to band broadening. However, the use of ultra-short columns seemed to be a very useful approach for RPLC of large proteins (>25 kDa) and could also work well for ∼12 kDa as the lowest limit of molecular mass. In summary, a renewed interest in the use of ultra-short columns is warranted, and additional method development will be to the benefit of the biopharmaceutical industry as there is an ever-increasing demand for faster, yet accurate assays (e.g., high-throughput screening) of proteins.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Citocromos c/isolamento & purificação , Anticorpos Monoclonais/química , Cromatografia Líquida , Cromatografia de Fase Reversa , Citocromos c/química , Humanos , Software
9.
Anal Sci Adv ; 2(1-2): 2-14, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38715738

RESUMO

The aim of this work was to develop a supercritical fluid chromatographic method to study the applicability of this emerging technique to cannabinoid analysis and showcase its advantages. During method development, the authors focused on nine phyto-cannabinoids to assess the selectivity needed to potentially perform the quantitation of each cannabinoid. After method development, robustness studies were carried out on this method to gain more information about its qualitative behavior (in terms of critical resolutions) when varying some crucial parameters (concentration of additive, column temperature, starting gradient conditions and column batch). Once the robustness was evaluated and the parameters most affecting the selected responses were individuated, the SFC method was applied for a simulated routine use to generate quantitative results concerning the concentrations of the main cannabinoids in real cannabis samples. The samples were also analyzed by means of an ultra-high-performance liquid chromatographic method currently used in the laboratory for the same objective. Finally, the results obtained with both analytical methods were compared to evaluate their accordance. The Bland-Altman method was applied as a statistical strategy to evaluate the degree of accordance between the results generated and display the data in a difference plot. The ultra-high performance supercritical fluid chromatography quantitative results were in accordance with the ultra-high performance liquid chromatography results, demonstrating the applicability of this technique for cannabinoid analysis.

10.
Anal Sci Adv ; 2(1-2): 68-75, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38715742

RESUMO

The aim of this study was to assess the interlaboratory reproducibility of ultra-high performance supercritical fluid chromatography coupled with tandem mass spectrometry method for routine antidoping analyses. To do so, a set of 21 doping agents, spiked in urine and analyzed after dilute and shoot treatment, was used to assess the variability of their retention times between four different laboratories, all equipped with the same chromatographic system and with the same ultra-high performance supercritical fluid chromatography stationary phase chemistry. The average relative standard deviations (RSD%) demonstrated a good reproducibility of the retention times for 19 out of 21 analytes, with RSD% values below 3.0%. Only for two substances, namely fenbutrazate and niketamide, the retention was not repeatable between laboratories, with RSD% of approximately 15% in both cases. This behaviour was associated with (a) the low organic modifier percentage (around 2-4%) in the mobile phase at the corresponding retention times, and (b) the influence of the system volume on poorly retained analytes. An analysis on seven "blind" urines was subsequently carried out in the same four laboratories. In these blind samples, either one, two, or none of the 21 doping agents previously analyzed were present at an unknown concentration. Each laboratory had to perform the identification of the compounds in the samples and estimate their concentrations. All laboratories assigned all target analytes correctly in all blind urine samples and provide a comparable estimation of their concentrations.

11.
Anal Chim Acta ; 1134: 84-95, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33059869

RESUMO

The use of unorthodox temperatures, ranging from -5 °C up to 80 °C, have been thoroughly investigated in supercritical fluid chromatography. To this purpose, an initial evaluation of the kinetic and thermodynamic performance has been made with a set of 4 analytes eluting at different percentages of organic co-solvent in the mobile phase (3%-10% - 45%-80%). The van Deemter plots have demonstrated how, at low organic modifier presence, the use of low temperatures did not necessarily translate into worse performance, while high temperatures could pose more issues due to the poor handling of the super/subcritical mobile phase by the chromatographic system. With important percentages of co-solvent, however, high temperatures were fundamental in ensuring better profiles of the van Deemter plots, compared to low temperatures. Pressure plots have demonstrated that gradients reaching elevated percentages of organic modifiers can also be used on stationary phases packed with sub 2 µm silica particles if high temperatures are employed. The thermodynamic evaluation, made via the analysis of van't Hoff plots, indicates the presence of three retention behaviors happening in UHPSFC when switching from high to low temperatures, depending on the co-solvent percentage needed to elute one analyte. Finally, an assessment of the stationary phase stability at high temperatures was performed: the retention times variabilities recorded were minimal (RSD < 2.5%), as well as the peak widths and inlet column pressures were somewhat constant throughout the analyses. In the second part of this study, a focus on potential applications benefiting from such unconventional temperatures has been made. A series of challenging analytes have experienced better chromatographic resolution at either high or low temperatures, providing therefore a potentially interesting tool to analysts during the chromatographic method development process. In conclusion, the UV sensitivity at different temperatures was also taken into consideration, with no significant impact on the quality of the UV signal under any condition.

12.
J Chromatogr A ; 1620: 461021, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32178859

RESUMO

In this work, the impact of biological matrices, such as plasma and urine, was evaluated under SFCHRMS in the field of metabolomics. For this purpose, a representative set of 49 metabolites were selected. The assessment of the matrix effects (ME), the impact of biological fluids on the quality of MS/MS spectra and the robustness of the SFCHRMS method were each taken into consideration. The results have highlighted a limited presence of ME in both plasma and urine, with 30% of the metabolites suffering from ME in plasma and 25% in urine, demonstrating a limited sensitivity loss in the presence of matrices. Subsequently, the MS/MS spectra evaluation was performed for further peak annotation. Their analyses have highlighted three different scenarios: 63% of the tested metabolites did not suffer from any interference regardless of the matrix; 21% were negatively impacted in only one matrix and the remaining 16% showed the presence of matrix-belonging compounds interfering in both urine and plasma. Finally, the assessment of retention times stability in the biological samples, has brought into evidence a remarkable robustness of the SFCHRMS method. Average RSD (%) values of retention times for spiked metabolites were equal or below 0.5%, in the two biological fluids over a period of three weeks. In the second part of the work, the evaluation of the Sigma Mass Spectrometry Metabolite Library of Standards containing 597 metabolites, under SFCHRMS conditions was performed. A total detectability of the commercial library up to 66% was reached. Among the families of detected metabolites, large percentages were met for some of them. Highly polar metabolites such as amino acids (87%), nucleosides (85%) and carbohydrates (71%) have demonstrated important success rates, equally for hydrophobic analytes such as steroids (78%) and lipids (71%). On the negative side, very poor performance was found for phosphorylated metabolites, namely phosphate-containing compounds (14%) and nucleotides (31%).


Assuntos
Cromatografia com Fluido Supercrítico/métodos , Metaboloma , Metabolômica , Espectrometria de Massas em Tandem/métodos , Adenosina/sangue , Adenosina/urina , Humanos , Interações Hidrofóbicas e Hidrofílicas , Xanturenatos/sangue
13.
J Pharm Biomed Anal ; 185: 113207, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32143115

RESUMO

The hyphenation of non-denaturing liquid chromatographic (LC) modes (ion exchange (IEX), size exclusion (SEC) and hydrophobic interaction chromatography (HIC)) with mass spectrometry (MS) has attracted significant attention in the last few years. The inherent problem of these couplings is that non-denaturing LC separations have tended to use non-volatile mobile phase additives. Indeed, classical methods have not been directly compatible with MS. Therefore two approaches can be used to address this challenge: (1) finding innovative volatile mobile phases or (2) adding a desalting step prior to MS detection via the use of multidimensional LC. These two possibilities have been applied to the characterization of charge-, size- and hydrophobic variants of various monoclonal antibodies (mAbs) and related products and have been reviewed in this paper.


Assuntos
Anticorpos Monoclonais/análise , Química Farmacêutica/métodos , Espectrometria de Massas/métodos , Anticorpos Monoclonais/química , Soluções Tampão , Cromatografia em Gel/métodos , Cromatografia por Troca Iônica/métodos , Interações Hidrofóbicas e Hidrofílicas , Proteólise , Compostos Orgânicos Voláteis/química
14.
Expert Opin Drug Deliv ; 17(4): 589-602, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32067504

RESUMO

Background: Cetuximab (CTX) is a glycosylated anti-EGFR monoclonal antibody of great interest in the treatment of non-melanoma skin cancers. Its intravenous administration is associated with severe side effects. This is the first report on the noninvasive iontophoretic-targeted topical delivery of CTX to skin.Methods: Iontophoretic transport of CTX (0.5 mA/cm2) was studied as a function of formulation pH (4, 5.5 and 7) and duration of current application (2, 4 and 8 h). CTX cutaneous biodistribution was determined; electrotransport mechanisms and penetration pathways were investigated.Results: Electrophoretic mobility measurements of CTX isoforms and co-iontophoresis of acetaminophen at each pH demonstrated that CTX electrotransport was due to electroosmosis: despite an ~8-fold reduction in charge, CTX skin deposition was greater at pH 7 than pH 4 (8.974 ± 1.952 and 0.482 ± 0.165 µg/mm3) - consistent with the increased electroosmotic flow at pH 7. Iontophoresis of an Alex488-CTX conjugate showed that skin penetration occurred by the intercellular and follicular routes. Therapeutic concentrations of CTX in the viable epidermis, upper dermis and lower dermis were achieved following iontophoresis for 2, 4 and 8 h, respectively.Conclusion: The results demonstrate the topical delivery of a 152 kDa monoclonal antibody into skin in a targeted, controlled and entirely noninvasive manner.


Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Cetuximab/administração & dosagem , Pele/metabolismo , Acetaminofen/administração & dosagem , Administração Cutânea , Analgésicos não Narcóticos/administração & dosagem , Animais , Eletro-Osmose , Iontoforese , Absorção Cutânea , Suínos , Distribuição Tecidual
16.
J Chromatogr A ; 1618: 460901, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31992473

RESUMO

A novel column-coupling approach is suggested to improve both the selectivity and efficiency of protein separations in liquid chromatography. Protein separations often suffer from limited selectivity or not appropriate resolving power. For a new biopharmaceutical product, the identification of the main and minor variant species is required. For that purpose, often offline collection fractioning is applied which is time consuming and regularly dilute the samples to an unacceptable extent. By serially coupling columns in the order of their increasing retentivity and applying "multi-isocratic" elution mode, indeed any (arbitrary) selectivity can be attained. Moreover, if a protein peak is trapped at the inlet of a later column segment - of a coupled system -, its band will be refocused and elute in unprecedented sharp peak. Furthermore, it becomes possible to perform online on-column fractioning of protein species within a very short analysis time (∼ 1 min) and without sample dilution. Two-, three- or multiple column systems can be developed and applied for complex sample separations (such as antibody mixtures). This new methodology can be particularly useful to improve the analysis (and therefore, safety and quality) of therapeutic mAbs and related products and offers benefits compared to offline fractionating. It is also demonstrated in this proof of concept study, that methyl (C1) modified RP phase has a great potential for protein separations despite it is not commercially available in state-of-the-art wide pore superficially porous particle format..


Assuntos
Química Farmacêutica/métodos , Cromatografia Líquida , Anticorpos Monoclonais , Preparações Farmacêuticas/análise
17.
J Chromatogr A ; 1616: 460780, 2020 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31862111

RESUMO

The aim of this study was to estimate the retention time variability under reproducible conditions of an SFC-MS analytical method for routine anti-doping analyses. For this purpose, a set of 51 doping agents, as neat standards and spiked in diluted urine, was used to assess their retention times variability over a period of four months, as well as the column inter-batch reproducibility. Three UHPSFC stationary phases have been employed, the Acquity UPC2 Torus 2-Picolylamine (2-PIC), UPC2 Viridis BEH and Acquity UPLC HSS C18 SB. Four columns, per column chemistry, have been purchased to represent three different production lots, with a total of twelve columns employed in this study. The two columns from the same lot were applied to the first part of the study (repeatability), whereas the representative of three different lots were employed in the second part (robustness). In terms of organic modifier, a mixture of 98% MeOH and 2% water containing 20 mM ammonium formate was selected in order to limit the formation of methyl-silyl ethers on the surface of the silica particles, thus potentially improving the repeatability of retention times. A comparison with an UHPLC reference analytical method was made with the same set of analytes. The average relative standard deviations (RSD%), represented in split violin plots, illustrate how two of the UHPSFC columns assessed in this study were able to generate an excellent repeatability of retention times, with results that are in a similar range of those generated by UHPLC. Moreover, the Torus 2-PIC has proven to be the best of the three stationary phases, with an impressive RSD% of 0.5% in diluted urine relative to the inter-month variability. Finally, the inter-batch reproducibility assessment has highlighted a good reproducibility of the same stationary phase belonging to different production lots for all three column chemistries assessed, with the Viridis BEH silica generating an RSD% of 0.7% in diluted urine. Higher values of RSD (%) were found for Torus 2-PIC and HSS C18 SB, respectively of 1.0% and 1.6%.


Assuntos
Cromatografia com Fluido Supercrítico , Dopagem Esportivo/prevenção & controle , Espectrometria de Massas , Substâncias para Melhoria do Desempenho/urina , Detecção do Abuso de Substâncias/métodos , Urinálise/métodos , Humanos , Reprodutibilidade dos Testes , Dióxido de Silício/química , Detecção do Abuso de Substâncias/instrumentação , Urinálise/instrumentação , Água/química
18.
Anal Chim Acta ; 1089: 1-18, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31627805

RESUMO

Over the past few years, loss of patent protection for blockbuster monoclonal antibody (mAb) drugs has caused a significant shift in the pharmaceutical industry towards the development of biosimilar products. As a result, multiple biosimilar mAbs are becoming available for a single originator drug. As opposed to small-molecular drugs, protein biopharmaceuticals do not have fully defined and reproducible structures, making it impossible to create identical copies. Therefore, regulators demand biosimilar sponsors to demonstrate similarity with the reference product to prevent safety and efficacy issues with the proposed product. Protein glycosylation is considered a crucially important quality attribute, because of its major role in immunogenicity and clinical efficacy of therapeutic proteins. However, the intrinsic biological variability of glycan structures creates a significant challenge for the current analytical platforms. In this review, we discuss the importance of glycan characterization on therapeutic proteins, with a particular focus on the analytical techniques applied for glycan profiling of biosimilar mAb products. In addition, we present a case study on infliximab biosimilars to illustrate the potential clinical implications of differences in glycan profile between originator and biosimilar mAb products.


Assuntos
Anticorpos Monoclonais/análise , Medicamentos Biossimilares/análise , Glicoproteínas/análise , Polissacarídeos/análise , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Medicamentos Biossimilares/química , Medicamentos Biossimilares/metabolismo , Cromatografia Líquida , Glicoproteínas/química , Glicosilação , Humanos , Imunoglobulina G/análise , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Infliximab/análise , Infliximab/química , Infliximab/metabolismo , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem
19.
Anal Chem ; 91(20): 12954-12961, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31514494

RESUMO

Reversed phase liquid chromatography (RPLC) is a widely used technique for the analytical characterization of proteins biopharmaceuticals, due to its inherent compatibility with mass spectrometry (MS). However, this chromatographic mode suffers from limited selectivity when analyzing large molecules. Due to the on/off mechanism observed with large solutes in RPLC (S values were higher than 100 for intact proteins), we have developed a new analytical strategy based on the use of multi-isocratic elution mode, to achieve arbitrary selectivity for protein variants. In this work, it has been demonstrated that the combination of multi-isocratic steps and very short steep gradient segments at solute elution allows one to set the selectivity as desired, while maintaining sharp peaks due to significant band compression effects. The strategy was successfully applied to the analysis of intact and subunits of monoclonal antibodies (mAbs) as well as antibody-drug conjugates (ADCs), illustrating the possibility to achieve a uniform peak distribution (equidistant band spacing) and much higher resolution than in the case of common linear, multilinear, or nonlinear gradients.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Cromatografia de Fase Reversa/métodos , Imunoconjugados/isolamento & purificação , Espectrometria de Massas/métodos , Humanos , Estudo de Prova de Conceito
20.
J Chromatogr A ; 1603: 208-215, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31266645

RESUMO

In this paper, the benefits of using columns packed with particles of decreasing size (particle size gradient) in liquid chromatography was investigated from a theoretical point of view. It is indeed well known that such columns may be useful in gradient elution, since the decrease of particle size along the chromatographic column can provide extra peak focusing effect. In the present contribution, several parameters (i.e., mobile phase gradient steepness, retention times and operating pressures) were considered and the kinetic performance of various types of columns packed with particle size gradient were evaluated. In the best case, about 15-20% gain in efficiency can be expected at a given retention time when utilizing a particle size gradient, compared to constant particle size. Conversely, when fixing efficiency, the analysis time can be decreased by about 15% with an optimal particle size gradient. However, it is also important to keep in mind that a too large a particle size gradient can result in lower efficiencies than a column packed with monodisperse packing. We have introduced the gd value, which is a dimensionless measure of the particle size gradient steepness that measures the relative variation of particle diameter throughout the column with respect to the average. We finally observed that gd=0.3-0.4 provides the highest gain under practically useful conditions.


Assuntos
Cromatografia Líquida/métodos , Tamanho da Partícula , Cinética , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...