Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 93(22): 7808-7814, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34038090

RESUMO

Integration of multiomics at the single-cell level allows the unambiguous dissecting of phenotypic heterogeneity at different states such as health, disease, and biomedical response. Imaging mass spectrometry holds the promise of being able to measure multiple types of biomolecules in parallel in the same cell. We have explored the possibility of using water gas cluster ion beam secondary ion mass spectrometry [(H2O)n-GCIB-SIMS] as an analytical tool for multiomics assay. (H2O)n-GCIB has been hailed as an ideal ionization source for biological sampling owing to the enhanced chemical sensitivity and reduced matrix effect. Taking advantage of 1 µm spatial resolution by using a high-energy beam system, we have clearly shown the enhancement of multiple intact biomolecules up to a few hundredfold in single cells. Coupled with the cryogenic sample preparation/measurement, the lipids and metabolites were imaged simultaneously within the cellular region, uncovering the pristine chemistry for integrated omics in the same sample. We have demonstrated that double-charged myelin protein fragments and single-charged multiple lipids and metabolites can be localized in the same cells/tissue with a single acquisition. Our exploration has also been extended to the capability of (H2O)n-GCIB in the generation of multiple charged peptides on protein standards. Frozen hydration combined with (H2O)n-GCIB provides the possibility of universal enhancement for the ionization of multiple bio-molecules, including peptides/proteins which has allowed "omics" to become feasible in the same sample using SIMS.


Assuntos
Espectrometria de Massa de Íon Secundário , Água , Lipídeos , Fenômenos Físicos , Proteínas
2.
Anal Chem ; 91(14): 9058-9068, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31136149

RESUMO

Previous studies have shown that the use of a 20 keV water cluster beam as a primary beam for the analysis of organic and bio-organic systems resulted in a 10-100 times increase in positive molecular ion yield for a range of typical analytes compared to C60 and argon cluster beams. This resulted in increased sensitivity to important lipid molecules in the bioimaging of rat brain. Building on these studies, the present work compares 40 and 70 keV water cluster beams with cluster beams composed of pure argon, argon and 10%CO2, and pure CO2. First, as previously, we show that for E/nucleon about 0.3 eV/nucleon water and nonwater containing cluster beams generate very similar ion yields, but below this value, the water beams yields of BOTH negative and positive "molecular" ions increase, in many cases reaching a maximum in the <0.2 region, with yield increases of ∼10-100. Ion fragment yields in general decrease quite dramatically in this region. Second, for water cluster beams at a constant E/nucleon, "molecular" ion yield increases with beam energy and hence cluster size due to increased sputter yield (ionization probability is constant). Third, as a consequence of the increased ion yield and the improved focusability using high-energy cluster beams, imaging in the 1 µm spatial resolution region is demonstrated on HeLa cells and rat brain tissue, monitoring molecules that were previously difficult to detect with other primary beams. Finally, the suggestion that the secondary ion emission zone has quasi-aqueous character seems to be sustained.


Assuntos
Íons/química , Espectrometria de Massa de Íon Secundário/métodos , Água/química , Angiotensinas/análise , Animais , Encéfalo , Cardiolipinas/análise , Células HeLa , Humanos , Fosfatidilcolinas/análise , Ratos , Trealose/análise
3.
Rapid Commun Mass Spectrom ; 32(22): 1962-1970, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30133034

RESUMO

RATIONALE: The application of mass spectrometry imaging techniques to determine two- (2D) and three- (3D) dimensional chemical distribution ideally provides uniform, high sensitivity to multiple components and reliable quantification. These criteria are typically not met due to variations in sensitivity due to the chemistry of the analyte and surrounding surface chemistry. Here we explore the influence of projectile beam chemistry and sample chemistry in time-of-flight secondary ion mass spectrometry (TOF-SIMS). To the authors' knowledge this is the first time the combined effects of projectile chemistry and sample environment on the quantitative determination of mixed samples have been systematically studied. METHODS: Secondary ion yields of lipid and amino acid mixtures were measured under 20 keV C60 , Arn , and (H2 O)n cluster ion bombardment (n = 2000 or 4000) using TOF-SIMS. Ion suppression/enhancement effects were studied in dry sample films and in trehalose and water ice matrices. RESULTS: The extent of the matrix effects and the secondary ion yield were found to depend on the chemistry of the primary ion beam and (for C60 , Arn ) on the nature of the sample matrix. Under (H2 O)n bombardment the sample matrix had negligible effect on the analysis. CONCLUSIONS: Compared with C60 and Arn , water-containing cluster projectiles enhanced the sensitivity of TOF-SIMS determination of the chosen analytes and reduced the effect of signal suppression/enhancement in multicomponent samples and in different sample matrices. One possible explanation for this is that the (H2 O)4000 projectile initiates on impact a nanoscale matrix environment that is very similar to that in frozen-hydrated samples in terms of the resulting ionisation effects. The competition between analytes for protons and the effect of the sample matrix are reduced with water-containing cluster projectiles. These chemically reactive projectile beams have improved characteristics for quantitative chemical imaging by TOF-SIMS compared with their non-reactive counterparts.

4.
Anal Chem ; 88(7): 3592-7, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26916620

RESUMO

Peptide or protein structural analysis is crucial for the evaluation of biochips and biodevices, therefore an analytical technique with the ability to detect and identify protein and peptide species directly from surfaces with high lateral resolution is required. In this report, the efficacy of ToF-SIMS to analyze and identify proteins directly from surfaces is evaluated. Although the physics governing the SIMS bombardment process precludes the ability for researchers to detect intact protein or larger peptides of greater than a few thousand mass unit directly, it is possible to obtain information on the partial structures of peptides or proteins using low energy per atom argon cluster ion beams. Large cluster ion beams, such as Ar clusters and C60 ion beams, produce spectra similar to those generated by tandem MS. The SIMS bombardment process also produces peptide fragment ions not detected by conventional MS/MS techniques. In order to clarify appropriate measurement conditions for peptide structural analysis, peptide fragmentation dependency on the energy of a primary ion beam and ToF-SIMS specific fragment ions are evaluated. It was found that the energy range approximately 6 ≤ E/n ≤ 10 eV/atom is most effective for peptide analysis based on peptide fragments and [M + H] ions. We also observed the cleaving of side chain moieties at extremely low-energy E/n ≤ 4 eV/atom.


Assuntos
Argônio/química , Fulerenos/química , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Espectrometria de Massa de Íon Secundário , Íons/química , Conformação Proteica , Propriedades de Superfície , Espectrometria de Massas em Tandem
5.
Biointerphases ; 11(2): 02A317, 2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-26825287

RESUMO

The influence of the matrix effect on secondary ion yield presents a very significant challenge in quantitative secondary ion mass spectrometry (SIMS) analysis, for example, in determining the relative concentrations of metabolites that characterize normal biological activities or disease progression. Not only the sample itself but also the choice of primary ion beam may influence the extent of ionization suppression/enhancement due to the local chemical environment. In this study, an assessment of ionization matrix effects was carried out on model systems using C60 (+), Arn (+), and (H2O)n (+) cluster ion beams. The analytes are pure and binary mixtures of amino acids arginine and histidine biological standards. Ion beams of 20 keV were compared with a range of cluster sizes n = 1000-10 000. The component secondary ion yields were assessed for matrix effects using different primary ion beams and sample composition. The presence of water in the cluster beam is associated with a reduction in the observed matrix effects, suggesting that chemically reactive ion beams may provide a route to more quantitative SIMS analysis of complex biological systems.


Assuntos
Aminoácidos/análise , Manejo de Espécimes/métodos , Espectrometria de Massa de Íon Secundário/métodos , Argônio , Carbono , Água
6.
Biointerphases ; 11(2): 02A307, 2016 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-26746166

RESUMO

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) provides detailed chemical structure information and high spatial resolution images. Therefore, ToF-SIMS is useful for studying biological phenomena such as ischemia. In this study, in order to evaluate cerebral microinfarction, the distribution of biomolecules generated by ischemia was measured with ToF-SIMS. ToF-SIMS data sets were analyzed by means of multivariate analysis for interpreting complex samples containing unknown information and to obtain biomolecular mapping indicated by fragment ions from the target biomolecules. Using conventional ToF-SIMS (primary ion source: Bi cluster ion), it is difficult to detect secondary ions beyond approximately 1000 u. Moreover, the intensity of secondary ions related to biomolecules is not always high enough for imaging because of low concentration even if the masses are lower than 1000 u. However, for the observation of biomolecular distributions in tissues, it is important to detect low amounts of biological molecules from a particular area of tissue. Rat brain tissue samples were measured with ToF-SIMS (J105, Ionoptika, Ltd., Chandlers Ford, UK), using a continuous beam of Ar clusters as a primary ion source. ToF-SIMS with Ar clusters efficiently detects secondary ions related to biomolecules and larger molecules. Molecules detected by ToF-SIMS were examined by analyzing ToF-SIMS data using multivariate analysis. Microspheres (45 µm diameter) were injected into the rat unilateral internal carotid artery (MS rat) to cause cerebral microinfarction. The rat brain was sliced and then measured with ToF-SIMS. The brain samples of a normal rat and the MS rat were examined to find specific secondary ions related to important biomolecules, and then the difference between them was investigated. Finally, specific secondary ions were found around vessels incorporating microspheres in the MS rat. The results suggest that important biomolecules related to cerebral microinfarction can be detected by ToF-SIMS.


Assuntos
Química Encefálica , Isquemia Encefálica/patologia , Espectrometria de Massa de Íon Secundário/métodos , Animais , Argônio , Modelos Animais de Doenças , Ratos
7.
Rapid Commun Mass Spectrom ; 29(20): 1851-62, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26411506

RESUMO

RATIONALE: To discover the degree to which water-containing cluster beams increase secondary ion yield and reduce the matrix effect in time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging of biological tissue. METHODS: The positive SIMS ion yields from model compounds, mouse brain lipid extract and mouse brain tissue together with mouse brain images were compared using 20 keV C60(+), Ar2000(+), water-doped Ar2000(+) and pure (H2O)6000(+) primary beams. RESULTS: Water-containing cluster beams where the beam energy per nucleon (E/nucleon) ≈ 0.2 eV are optimum for enhancing ion yields dependent on protonation. Ion yield enhancements over those observed using Ar2000(+) lie in the range 10 to >100 using the (H2 O)6000 (+) beam, while with water-doped (H2O)Ar2000(+) they lie in the 4 to 10 range. The two water-containing beams appear to be optimum for tissue imaging and show strong evidence of increasing yields from molecules that experience matrix suppression under other primary beams. CONCLUSIONS: The application of water-containing primary beams is suggested for biological SIMS imaging applications, particularly if the beam energy can be raised to 40 keV or higher to further increase ion yield and enhance spatial resolution to ≤1 µm.


Assuntos
Química Encefálica , Espectrometria de Massa de Íon Secundário/métodos , Animais , Argônio/química , Camundongos , Espectrometria de Massa de Íon Secundário/instrumentação
8.
Anal Chem ; 87(4): 2367-74, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25588151

RESUMO

Following from our previous Letter on this topic, this Article reports a detailed study of time-of-flight-secondary ion mass spectrometry (TOF-SIMS) positive ion spectra generated from a set of model biocompounds (arginine, trehalose, DPPC, and angiotensin II) by water cluster primary ion beams in comparison to argon cluster beams over a range of cluster sizes and energies. Sputter yield studies using argon and water beams on arginine and Irganox 1010 have confirmed that the sputter yields using water cluster beams lie on the same universal sputtering curve derived by Seah for argon cluster beams. Thus, increased ion yield using water cluster beams must arise from increased ionization. The spectra and positive ion signals observed using cluster beams in the size range from 1,000 to 10,000 and the energy range 5-20 keV are reported. It is confirmed that water cluster beams enhance proton related ionization over against argon beams to a significant degree such that enhanced detection sensitivities from 1 µm(2) in the region of 100 to 1,000 times relative to static SIMS analysis with Ar2000 cluster beams appear to be accessible. These new studies show that there is an unexpected complexity in the ionization enhancement phenomenon. Whereas optimum ion yields under argon cluster bombardment occur in the region of E/n ≥ 10 eV (where E is the beam energy and n the number of argon atoms in the cluster) and fall rapidly when E/n < 10 eV; for water cluster beams, ion yields increase significantly in this E/n regime (where n is the number of water molecules in the cluster) and peak for 20 keV beams at a cluster size of 7,000 or E/n ∼3 eV. This important result is explored further using D2O cluster beams that confirm that in this low E/n regime protonation does originate to a large extent from the water molecules. The results, encouraging in themselves, suggest that for both argon and water cluster beams, higher energy beams, e.g., 40 and 80 keV, would enable larger cluster sizes to be exploited with significant benefit for ion yield and hence analytical capability.


Assuntos
Argônio/química , Espectrometria de Massa de Íon Secundário , Água/química , 1,2-Dipalmitoilfosfatidilcolina/análise , Angiotensina II/análise , Arginina/análise , Íons/química , Tamanho da Partícula , Fatores de Tempo , Trealose/análise
9.
J Lipid Res ; 55(9): 1970-80, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24852167

RESUMO

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging has been used for the direct analysis of single intact Xenopus laevis embryo surfaces, locating multiple lipids during fertilization and the early embryo development stages with subcellular lateral resolution (∼4 µm). The method avoids the complicated sample preparation for lipid analysis of the embryos, which requires selective chemical extraction of a pool of samples and chromatographic separation, while preserving the spatial distribution of biological species. The results show ToF-SIMS is capable of profiling multiple components (e.g., glycerophosphocholine, SM, cholesterol, vitamin E, diacylglycerol, and triacylglycerol) in a single X. laevis embryo. We observe lipid remodeling during fertilization and early embryo development via time course sampling. The study also reveals the lipid distribution on the gamete fusion site. The methodology used in the study opens the possibility of studying developmental biology using high resolution imaging MS and of understanding the functional role of the biological molecules.


Assuntos
Metabolismo dos Lipídeos , Xenopus laevis/metabolismo , Animais , Desenvolvimento Embrionário , Feminino , Imageamento Tridimensional , Masculino , Espectrometria de Massas , Xenopus laevis/embriologia , Zigoto/metabolismo
10.
Anal Bioanal Chem ; 405(21): 6621-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23836082

RESUMO

A novel application of time-of-flight secondary ion mass spectrometry (ToF-SIMS) with continuous Ar cluster beams to peptide analysis was investigated. In order to evaluate peptide structures, it is necessary to detect fragment ions related to multiple neighbouring amino acid residues. It is, however, difficult to detect these using conventional ToF-SIMS primary ion beams such as Bi cluster beams. Recently, C60 and Ar cluster ion beams have been introduced to ToF-SIMS as primary ion beams and are expected to generate larger secondary ions than conventional ones. In this study, two sets of model peptides have been studied: (des-Tyr)-Leu-enkephalin and (des-Tyr)-Met-enkephalin (molecular weights are approximately 400 Da), and [Asn(1) Val(5)]-angiotensin II and [Val(5)]-angiotensin I (molecular weights are approximately 1,000 Da) in order to evaluate the usefulness of the large cluster ion beams for peptide structural analysis. As a result, by using the Ar cluster beams, peptide molecular ions and large fragment ions, which are not easily detected using conventional ToF-SIMS primary ion beams such as Bi3 (+), are clearly detected. Since the large fragment ions indicating amino acid sequences of the peptides are detected by the large cluster beams, it is suggested that the Ar cluster and C60 ion beams are useful for peptide structural analysis.


Assuntos
Aminoácidos/análise , Aminoácidos/química , Argônio/química , Fulerenos/química , Peptídeos/análise , Peptídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Sequência de Aminoácidos , Aminoácidos/efeitos da radiação , Íons Pesados , Dados de Sequência Molecular , Peptídeos/efeitos da radiação
11.
Anal Chem ; 85(12): 5654-8, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23718847

RESUMO

Low secondary ion yields from organic and biological molecules are the principal limitation on the future exploitation of time of flight-secondary ion mass spectrometry (TOF-SIMS) as a surface and materials analysis technique. On the basis of the hypothesis that increasing the density of water related fragments in the ion impact zone would enhance proton mediated reactions, a prototype water cluster ion beam has been developed using supersonic jet expansion methodologies that enable ion yields using a 10 keV (H2O)1000(+) beam to be compared with those obtained using a 10 keV Ar1000(+) beam. The ion yields from four standard compounds, arginine, haloperidol, DPPC, and angiotensin II, have been measured under static+ and high ion dose conditions. Ion yield enhancements relative to the argon beam on the order of 10 or more have been observed for all the compounds such that the molecular ion yield per a 1 µm pixel can be as high as 20, relative to 0.05 under an argon beam. The water beam has also been shown to partially lift the matrix effect in a 1:10 mixture of haloperidol and dipalmitoylphosphatidylcholine (DPPC) that suppresses the haloperidol signal. These results provide encouragement that further developments of the water cluster beam to higher energies and larger cluster sizes will provide the ion yield enhancements necessary for the future development of TOF-SIMS.


Assuntos
Eletrodos Seletivos de Íons , Espectrometria de Massa de Íon Secundário/métodos , Água/análise , Espectrometria de Massas por Ionização por Electrospray/métodos
13.
Curr Opin Chem Biol ; 15(5): 733-40, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21664172

RESUMO

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) provides a method for the detection of native and exogenous compounds in biological samples on a cellular scale. Through the development of novel ion beams the amount of molecular signal available from the sample surface has been increased. Through the introduction of polyatomic ion beams, particularly C(60), ToF-SIMS can now be used to monitor molecular signals as a function of depth as the sample is eroded thus proving the ability to generate 3D molecular images. Here we describe how this new capability has led to the development of novel instrumentation for 3D molecular imaging while also highlighting the importance of sample preparation and discuss the challenges that still need to be overcome to maximise the impact of the technique.


Assuntos
Aminoácidos/análise , Membrana Celular/química , Imageamento Tridimensional/métodos , Imagem Molecular/métodos , Fosfolipídeos/análise , Espectrometria de Massa de Íon Secundário/métodos , Animais , Células HeLa , Humanos , Imageamento Tridimensional/instrumentação , Íons/química , Imagem Molecular/instrumentação , Análise de Componente Principal , Software , Espectrometria de Massa de Íon Secundário/instrumentação , Xenopus laevis
14.
Analyst ; 136(11): 2199-217, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21461433

RESUMO

The possibility of exploiting the analytical power of mass spectrometry to image the chemistry of biological and similarly complex materials without the use of tags and with good spatial resolution is seductive. The status, strengths, weaknesses and complementarity of the three main techniques are briefly reviewed and assessed.


Assuntos
Espectrometria de Massas/métodos , Imagem Molecular/métodos , Animais , Encéfalo/anatomia & histologia , Masculino , Compostos Orgânicos/química , Próstata/anatomia & histologia , Proteínas/química , Proteínas/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massa de Íon Secundário/métodos
15.
Anal Chem ; 83(10): 3793-800, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21462969

RESUMO

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is an established technique for the characterization of solid sample surfaces. The introduction of polyatomic ion beams, such as C(60), has provided the associated ability to perform molecular depth-profiling and 3D molecular imaging. However, not all samples perform equally under C(60) bombardment, and it is probably naïve to think that there will be an ion beam that will be applicable in all situations. It is therefore important to explore the potential of other candidates. A systematic study of the suitability of argon gas cluster ion beams (Ar-GCIBs) of general composition Ar(n)(+), where n = 60-3000, as primary particles in TOF-SIMS analysis has been performed. We have assessed the potential of the Ar-GCIBs for molecular depth-profiling in terms of damage accumulation and sputter rate and also as analysis beams where spectral quality and secondary ion yields are considered. We present results with direct comparison with C(60) ions on the same sample in the same instrument on polymer, polymer additive, and biomolecular samples, including lipids and small peptides. Large argon clusters show reduced damage accumulation compared with C(60) with an approximately constant sputter rate as a function of Ar cluster size. Further, on some samples, large argon clusters produce changes in the mass spectra indicative of a more gentle ejection mechanism. However, there also appears to be a reduction in the ionization of secondary species as the size of the Ar cluster increases.


Assuntos
Argônio/química , Fulerenos/química , Lasers de Gás , Espectrometria de Massa de Íon Secundário/métodos , Angiotensina III/química , Íons/química , Espectrometria de Massa de Íon Secundário/instrumentação
16.
Rapid Commun Mass Spectrom ; 25(7): 925-32, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21416529

RESUMO

Time-of-flight secondary ion mass spectrometry (ToFSIMS) is being applied increasingly to the study of biological systems where the chemical specificity of mass spectrometry and the high lateral resolution imaging capabilities can be exploited. Here we report a comparison of two cell sample preparation methods and demonstrate how they influence the outcome of the ToFSIMS analysis for three-dimensional (3D) imaging of biological cells using our novel buncher-ToF instrument (J105 3D Chemical Imager) equipped with a C(60) primary ion beam. Cells were analysed fixed and freeze-dried and non-fixed, frozen-hydrated. It is concluded that maintaining the cells in a non-fixed frozen-hydrated state during the analysis helps reduce chemical redistribution, producing cleaner spectra and improved chemical contrast in both 2D and 3D imaging. Insights into data interpretation are included and we present methods for 3D reconstruction of the data using multivariate analysis techniques.


Assuntos
Técnicas Citológicas/métodos , Imageamento Tridimensional/métodos , Espectrometria de Massas/métodos , Imagem Molecular/métodos , Adenina/química , Técnicas Citológicas/instrumentação , Técnica de Fratura por Congelamento , Células HeLa , Humanos , Análise Multivariada , Fosforilcolina/química , Análise de Componente Principal
17.
Mass Spectrom Rev ; 30(1): 142-74, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20077559

RESUMO

In principle mass spectral imaging has enormous potential for discovery applications in biology. The chemical specificity of mass spectrometry combined with spatial analysis capabilities of liquid metal cluster beams and the high yields of polyatomic ion beams should present unprecedented ability to spatially locate molecular chemistry in the 100 nm range. However, although metal cluster ion beams have greatly increased yields in the m/z range up to 1000, they still have to be operated under the static limit and even in most favorable cases maximum yields for molecular species from 1 µm pixels are frequently below 20 counts. However, some very impressive molecular imaging analysis has been accomplished under these conditions. Nevertheless although molecular ions of lipids have been detected and correlation with biology is obtained, signal levels are such that lateral resolution must be sacrificed to provide a sufficient signal to image. To obtain useful spatial resolution detection below 1 µm is almost impossible. Too few ions are generated! The review shows that the application of polyatomic primary ions with their low damage cross-sections offers hope of a new approach to molecular SIMS imaging by accessing voxels rather than pixels to thereby increase the dynamic signal range in 2D imaging and to extend the analysis to depth profiling and 3D imaging. Recent data on cells and tissue analysis suggest that there is, in consequence, the prospect that a wider chemistry might be accessible within a sub-micron area and as a function of depth. However, these advances are compromised by the pulsed nature of current ToF-SIMS instruments. The duty cycle is very low and results in excessive analysis times, and maximum mass resolution is incompatible with maximum spatial resolution. New instrumental directions are described that enable a dc primary beam to be used that promises to be able to take full advantage of all the capabilities of the polyatomic ion beam. Some new data are presented that suggest that the aspirations for these new instruments will be realized. However, although prospects are good, the review highlights the continuing challenges presented by the low ionization efficiency and the complications that arise from matrix effects.


Assuntos
Imageamento Tridimensional/métodos , Imagem Molecular/métodos , Espectrometria de Massa de Íon Secundário/instrumentação , Espectrometria de Massa de Íon Secundário/métodos , Animais , Humanos , Imageamento Tridimensional/instrumentação , Imagem Molecular/instrumentação
18.
Anal Chem ; 82(19): 8291-9, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20836508

RESUMO

Although the benefits of decreased sample temperature for the molecular profiling of organic materials with time-of-flight secondary ion mass spectrometry (TOF-SIMS) have been established, the mechanism behind spectral changes observed at low temperature, particularly increased protonated molecular ion (M + H)(+) yields, have not been examined in detail. We have developed a procedure to investigate these effects by monitoring secondary ion yields under sustained primary ion bombardment as the sample temperature is cooled from room temperature down to 80 K. Examination of biomaterials such as an amino acid (arginine), a polypeptide (Gly-Gly-Tyr-Arg), a lipid (1,2 dipalmitoyl-sn-glycero-3 phosphatidylcholine), and a drug molecule (cyclosporine A) each provide evidence of ion yield enhancement at 80 K under either 20 keV C(60)(+) or 20 keV Au(3)(+) bombardment. For example, arginine shows a 2-fold increase in the steady-state intensity for the (M + H)(+) ion at 80 K compared to the steady state at 300 K. It is shown that there is a correlation between the yield enhancement and a reduction in the damage cross section, which for arginine under 20 keV Au(3)(+) bombardment decreases from 5.0 ± 0.4 × 10(-14) cm(2) at 300 K to 2.0 ± 0.3 × 10(-14) cm(2) at 80 K. The role of water as the facilitator for this reduction is explored through the use of H(2)O and D(2)O dosing experiments at 80 K.


Assuntos
Espectrometria de Massa de Íon Secundário/métodos , 1,2-Dipalmitoilfosfatidilcolina/química , Arginina/química , Ciclosporina/química , Óxido de Deutério/química , Oligopeptídeos/química , Temperatura
19.
Anal Chem ; 82(15): 6652-9, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20593800

RESUMO

An in situ freeze fracture device featuring a spring-loaded trap system has been designed and characterized for time of flight secondary ion mass spectrometry (TOF SIMS) analysis of single cells. The device employs the sandwich assembly, which is typically used in freeze fracture TOF SIMS experiments to prepare frozen, hydrated cells for high-resolution SIMS imaging. The addition of the spring-loaded trap system to the sandwich assembly offers two advances to this sample preparation method. First, mechanizing the fracture by adding a spring standardizes each fracture by removing the need to manually remove the top of the sandwich assembly with a cryogenically cooled knife. A second advance is brought about because the top of the sandwich is not discarded after the sandwich assembly has been fractured. This results in two imaging surfaces effectively doubling the sample size and providing the unique ability to image both sections of a cell bifurcated by the fracture. Here, we report TOF SIMS analysis of freeze fractured rat pheochromocytoma (PC12) cells using a Bi cluster ion source. This work exhibits the ability to obtain single cell chemical images with subcellular lateral resolution from cells preserved in an ice matrix. In addition to preserving the cells, the signal from lipid fragment ions rarely identified in single cells are better observed in the freeze-fractured samples for these experiments. Furthermore, using the accepted argument that K(+) signal indicates a cell that has been fractured though the cytoplasm, we have also identified different fracture planes of cells over the surface. Coupling a mechanized freeze fracture device to high-resolution cluster SIMS imaging will provide the sensitivity and resolution as well as the number of trials required to carry out biologically relevant SIMS experiments.


Assuntos
Técnica de Fratura por Congelamento/métodos , Espectrometria de Massa de Íon Secundário/métodos , Animais , Células PC12 , Fosfatidiletanolaminas/química , Fosforilcolina/química , Potássio/química , Ratos , Espectrometria de Massa de Íon Secundário/instrumentação
20.
Anal Chem ; 82(3): 801-7, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20043656

RESUMO

Buckminsterfullerene (C(60)) as a primary ion for secondary ion mass spectrometry (SIMS) has shown many benefits over classical SIMS sources in the analysis of large organic molecules including many of biological significance. One constraint has been the limited focusing capabilities of the C(60)(+) beam. Although this could be circumvented by using beam size limiting apertures at the cost of beam current, high-resolution imaging using conventional time-of-flight (TOF) instruments has been challenging and time-consuming. We present a method in which we combine the use of an unfocused C(60)(+) beam with an ion optical microscope. A delay line detector is used to obtain fully resolved hyperspectral data sets that contain both the full mass spectral and the localization information. The obtained image resolving power is 4 microm at a pixel size of 250 nm. Microscope mode C(60)(+) imaging was shown to resolve micrometer-scale features in a combined polymer-tissue sample. Our new approach demonstrates high-quality SIMS imaging using the full C(60)(+) beam current. This results in equal or better resolving power at reduced acquisition speed.


Assuntos
Fulerenos/química , Espectrometria de Massa de Íon Secundário/métodos , Algoritmos , Animais , Imageamento Tridimensional , Rim/patologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...