Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Genet Couns ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38562053

RESUMO

Ultra rare disorders are being diagnosed at an unprecedented rate, due to genomic sequencing. These diagnoses are often a new gene association, for which little is known, and few share the diagnosis. For these diagnoses, we use the term emerging-ultrarare disorder (E-URD), defined as <100 diagnosed individuals. We contacted 20 parents of children diagnosed with an E-URD through the Duke University Research Sequencing Clinic. Seventeen completed semi-structured interviews exploring parental perspectives (7/17 had children in publications describing the phenotype; 4/17 had children in the first publication establishing a new disorder). Data were analyzed using a directed content approach informed by an empowerment framework. Parents reported a range of responses, including benefits of a diagnosis and challenges of facing the unknown, some described feeling lost and confused, while others expressed empowerment. Empowerment characteristics were hope for the future, positive emotions, engagement, and confidence/self-efficacy to connect with similar others, partner with healthcare providers, and seek new knowledge. We identified a subset of parents who proactively engaged researchers, supported research and publications, and created patient advocacy and support organizations to connect with and bolster similarly diagnosed families. Other parents reported challenges of low social support, low tolerance for uncertainty, limited knowledge about their child's disorder, as well as difficulty partnering with HCPs and connecting to an E-URD community. An overarching classification was developed to describe parental actions taken after an E-URD diagnosis: adjusting, managing, and pioneering. These classifications may help genetic counselors identify and facilitate positive steps with parents of a child with an E-URD.

2.
Clin Genet ; 105(1): 62-71, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37853563

RESUMO

Genomic medicine has been transformed by next-generation sequencing (NGS), inclusive of exome sequencing (ES) and genome sequencing (GS). Currently, ES is offered widely in clinical settings, with a less prevalent alternative model consisting of hybrid programs that incorporate research ES along with clinical patient workflows. We were among the earliest to implement a hybrid ES clinic, have provided diagnoses to 45% of probands, and have identified several novel candidate genes. Our program is enabled by a cost-effective investment by the health system and is unique in encompassing all the processes that have been variably included in other hybrid/clinical programs. These include careful patient selection, utilization of a phenotype-agnostic bioinformatics pipeline followed by manual curation of variants and phenotype integration by clinicians, close collaborations between the clinicians and the bioinformatician, pursuit of interesting variants, communication of results to patients in categories that are predicated upon the certainty of a diagnosis, and tracking changes in results over time and the underlying mechanisms for such changes. Due to its effectiveness, scalability to GS and its resource efficiency, specific elements of our paradigm can be incorporated into existing clinical settings, or the entire hybrid model can be implemented within health systems that have genomic medicine programs, to provide NGS in a scientifically rigorous, yet pragmatic setting.


Assuntos
Biologia Computacional , Exoma , Humanos , Exoma/genética , Fenótipo , Sequenciamento do Exoma , Sequenciamento de Nucleotídeos em Larga Escala
3.
Eur J Hum Genet ; 32(2): 224-231, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38097767

RESUMO

Alternating hemiplegia of childhood (AHC) is a rare neurodevelopment disorder that is typically characterized by debilitating episodic attacks of hemiplegia, seizures, and intellectual disability. Over 85% of individuals with AHC have a de novo missense variant in ATP1A3 encoding the catalytic α3 subunit of neuronal Na+/K+ ATPases. The remainder of the patients are genetically unexplained. Here, we used next-generation sequencing to search for the genetic cause of 26 ATP1A3-negative index patients with a clinical presentation of AHC or an AHC-like phenotype. Three patients had affected siblings. Using targeted sequencing of exonic, intronic, and flanking regions of ATP1A3 in 22 of the 26 index patients, we found no ultra-rare variants. Using exome sequencing, we identified the likely genetic diagnosis in 9 probands (35%) in five genes, including RHOBTB2 (n = 3), ATP1A2 (n = 3), ANK3 (n = 1), SCN2A (n = 1), and CHD2 (n = 1). In follow-up investigations, two additional ATP1A3-negative individuals were found to have rare missense SCN2A variants, including one de novo likely pathogenic variant and one likely pathogenic variant for which inheritance could not be determined. Functional evaluation of the variants identified in SCN2A and ATP1A2 supports the pathogenicity of the identified variants. Our data show that genetic variants in various neurodevelopmental genes, including SCN2A, lead to AHC or AHC-like presentation. Still, the majority of ATP1A3-negative AHC or AHC-like patients remain unexplained, suggesting that other mutational mechanisms may account for the phenotype or that cases may be explained by oligo- or polygenic risk factors.


Assuntos
Hemiplegia , Mutação de Sentido Incorreto , Humanos , Hemiplegia/diagnóstico , Hemiplegia/genética , Sequenciamento do Exoma , Mutação , ATPase Trocadora de Sódio-Potássio/genética , Proteínas de Ligação ao GTP/genética , Proteínas Supressoras de Tumor/genética , Canal de Sódio Disparado por Voltagem NAV1.2/genética
4.
Orphanet J Rare Dis ; 18(1): 269, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667351

RESUMO

BACKGROUND: A recurrent de novo variant (c.892C>T) in NACC1 causes a neurodevelopmental disorder with epilepsy, cataracts, feeding difficulties, and delayed brain myelination (NECFM). An unusual and consistently reported feature is episodic extreme irritability and inconsolability. We now characterize these episodes, their impact on the family, and ascertain treatments that may be effective. Parents of 14 affected individuals provided narratives describing the irritability episodes, including triggers, behavioral and physiological changes, and treatments. Simultaneously, parents of 15 children completed the Non-communicating Children's Pain Checklist-Revised (NCCPC-R), a measure to assess pain in non-verbal children. RESULTS: The episodes of extreme irritability include a prodromal, peak, and resolving phase, with normal periods in between. The children were rated to have extreme pain-related behaviors on the NCCPC-R scale, although it is unknown whether the physiologic changes described by parents are caused by pain. Attempted treatments included various classes of medications, with psychotropic and sedative medications being most effective (7/15). Nearly all families (13/14) describe how the episodes have a profound impact on their lives. CONCLUSIONS: NECFM caused by the recurrent variant c.892C>T is associated with a universal feature of incapacitating episodic irritability of unclear etiology. Further understanding of the pathophysiology can lead to more effective therapeutic strategies.


Assuntos
Encéfalo , Catarata , Criança , Humanos , Hipnóticos e Sedativos , Dor/genética , Pais , Doenças Raras , Proteínas de Neoplasias , Proteínas Repressoras
5.
J Genet Couns ; 32(5): 993-1008, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37005744

RESUMO

Although genomic research offering next-generation sequencing (NGS) has increased the diagnoses of rare/ultra-rare disorders, populations experiencing health disparities infrequently participate in these studies. The factors underlying non-participation would most reliably be ascertained from individuals who have had the opportunity to participate, but decline. We thus enrolled parents of children and adult probands with undiagnosed disorders who had declined genomic research offering NGS with return of results with undiagnosed disorders (Decliners, n = 21) and compared their data to those who participated (Participants, n = 31). We assessed: (1) practical barriers and facilitators, (2) sociocultural factors-genomic knowledge and distrust, and (3) the value placed upon a diagnosis by those who declined participation. The primary findings were that residence in rural and medically underserved areas (MUA) and higher number of barriers were significantly associated with declining participation in the study. Exploratory analyses revealed multiple co-occurring practical barriers, greater emotional exhaustion and research hesitancy in the parents in the Decliner group compared to the Participants, with both groups identifying a similar number of facilitators. The parents in the Decliner group also had lower genomic knowledge, but distrust of clinical research was not different between the groups. Importantly, despite their non-participation, those in the Decliner group indicated an interest in obtaining a diagnosis and expressed confidence in being able to emotionally manage the ensuing results. Study findings support the concept that some families who decline participation in diagnostic genomic research may be experiencing pile-up with exhaustion of family resources - making participation in the genomic research difficult. This study highlights the complexity of the factors that underlie non-participation in clinically relevant NGS research. Thus, approaches to mitigating barriers to NGS research participation by populations experiencing health disparities need to be multi-pronged and tailored so that they can benefit from state-of -the art genomic technologies.


Assuntos
Genômica , Pais , Adulto , Criança , Humanos , Pais/psicologia
6.
Hum Mutat ; 43(12): 1816-1823, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36317458

RESUMO

Advanced bioinformatics algorithms allow detection of multiple-exon copy-number variations (CNVs) from exome sequencing (ES) data, while detection of single-exon CNVs remains challenging. A retrospective review of Baylor Genetics' clinical ES patient cohort identified four individuals with homozygous single-exon deletions of TBCK (exon 23, NM_001163435.2), a gene associated with an autosomal recessive neurodevelopmental phenotype. To evaluate the prevalence of this deletion and its contribution to disease, we retrospectively analyzed single nucleotide polymorphism (SNP) array data for 8194 individuals undergoing ES, followed by PCR confirmation and RT-PCR on individuals carrying homozygous or heterozygous exon 23 TBCK deletions. A fifth individual was diagnosed with the TBCK-related disorder due to a heterozygous exon 23 deletion in trans with a c.1860+1G>A (NM_001163435.2) pathogenic variant, and three additional heterozygous carriers were identified. Affected individuals and carriers were from diverse ethnicities including European Caucasian, South Asian, Middle Eastern, Hispanic American and African American, with only one family reporting consanguinity. RT-PCR revealed two out-of-frame transcripts related to the exon 23 deletion. Our results highlight the importance of identifying single-exon deletions in clinical ES, especially for genes carrying recurrent deletions. For patients with early-onset hypotonia and psychomotor delay, this single-exon TBCK deletion might be under-recognized due to technical limitations of ES.


Assuntos
Hipotonia Muscular , Doenças Musculares , Proteínas Serina-Treonina Quinases , Humanos , Variações do Número de Cópias de DNA , Exoma , Sequenciamento do Exoma , Éxons/genética , Hipotonia Muscular/genética , Doenças Musculares/genética , Proteínas Serina-Treonina Quinases/genética , Estudos Retrospectivos , Lactente
7.
Brain ; 145(8): 2704-2720, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-35441233

RESUMO

Post-zygotically acquired genetic variants, or somatic variants, that arise during cortical development have emerged as important causes of focal epilepsies, particularly those due to malformations of cortical development. Pathogenic somatic variants have been identified in many genes within the PI3K-AKT-mTOR-signalling pathway in individuals with hemimegalencephaly and focal cortical dysplasia (type II), and more recently in SLC35A2 in individuals with focal cortical dysplasia (type I) or non-dysplastic epileptic cortex. Given the expanding role of somatic variants across different brain malformations, we sought to delineate the landscape of somatic variants in a large cohort of patients who underwent epilepsy surgery with hemimegalencephaly or focal cortical dysplasia. We evaluated samples from 123 children with hemimegalencephaly (n = 16), focal cortical dysplasia type I and related phenotypes (n = 48), focal cortical dysplasia type II (n = 44), or focal cortical dysplasia type III (n = 15). We performed high-depth exome sequencing in brain tissue-derived DNA from each case and identified somatic single nucleotide, indel and large copy number variants. In 75% of individuals with hemimegalencephaly and 29% with focal cortical dysplasia type II, we identified pathogenic variants in PI3K-AKT-mTOR pathway genes. Four of 48 cases with focal cortical dysplasia type I (8%) had a likely pathogenic variant in SLC35A2. While no other gene had multiple disease-causing somatic variants across the focal cortical dysplasia type I cohort, four individuals in this group had a single pathogenic or likely pathogenic somatic variant in CASK, KRAS, NF1 and NIPBL, genes previously associated with neurodevelopmental disorders. No rare pathogenic or likely pathogenic somatic variants in any neurological disease genes like those identified in the focal cortical dysplasia type I cohort were found in 63 neurologically normal controls (P = 0.017), suggesting a role for these novel variants. We also identified a somatic loss-of-function variant in the known epilepsy gene, PCDH19, present in a small number of alleles in the dysplastic tissue from a female patient with focal cortical dysplasia IIIa with hippocampal sclerosis. In contrast to focal cortical dysplasia type II, neither focal cortical dysplasia type I nor III had somatic variants in genes that converge on a unifying biological pathway, suggesting greater genetic heterogeneity compared to type II. Importantly, we demonstrate that focal cortical dysplasia types I, II and III are associated with somatic gene variants across a broad range of genes, many associated with epilepsy in clinical syndromes caused by germline variants, as well as including some not previously associated with radiographically evident cortical brain malformations.


Assuntos
Epilepsia , Hemimegalencefalia , Malformações do Desenvolvimento Cortical , Caderinas , Proteínas de Ciclo Celular , Feminino , Humanos , Malformações do Desenvolvimento Cortical do Grupo I , Mutação , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Protocaderinas , Serina-Treonina Quinases TOR
8.
Mol Genet Genomic Med ; 9(7): e1665, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33955715

RESUMO

BACKGROUND: Currently available structural variant (SV) detection methods do not span the complete spectrum of disease-causing SVs. Optical genome mapping (OGM), an emerging technology with the potential to resolve diagnostic dilemmas, was performed to investigate clinically-relevant SVs in a 4-year-old male with an epileptic encephalopathy of undiagnosed molecular origin. METHODS: OGM was utilized to image long, megabase-size DNA molecules, fluorescently labeled at specific sequence motifs throughout the genome with high sensitivity for detection of SVs greater than 500 bp in size. OGM results were confirmed in a CLIA-certified laboratory via mate-pair sequencing. RESULTS: OGM identified a mosaic, de novo 90 kb deletion and inversion on the X chromosome disrupting the CDKL5 gene. Detection of the mosaic deletion, which had been previously undetected by chromosomal microarray, an infantile epilepsy panel including exon-level microarray for CDKL5, exome sequencing as well as genome sequencing, resulted in a diagnosis of X-linked dominant early infantile epileptic encephalopathy-2. CONCLUSION: OGM affords an effective technology for the detection of SVs, especially those that are mosaic, since these remain difficult to detect with current NGS technologies and with conventional chromosomal microarrays. Further research in undiagnosed populations with OGM is warranted.


Assuntos
Síndromes Epilépticas/genética , Testes Genéticos/métodos , Proteínas Serina-Treonina Quinases/genética , Análise de Sequência de DNA/métodos , Espasmos Infantis/genética , Pré-Escolar , Síndromes Epilépticas/diagnóstico , Deleção de Genes , Humanos , Masculino , Mosaicismo , Inversão de Sequência , Espasmos Infantis/diagnóstico
9.
Genet Med ; 23(2): 259-271, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33093671

RESUMO

PURPOSE: The NIH Undiagnosed Diseases Network (UDN) evaluates participants with disorders that have defied diagnosis, applying personalized clinical and genomic evaluations and innovative research. The clinical sites of the UDN are essential to advancing the UDN mission; this study assesses their contributions relative to standard clinical practices. METHODS: We analyzed retrospective data from four UDN clinical sites, from July 2015 to September 2019, for diagnoses, new disease gene discoveries and the underlying investigative methods. RESULTS: Of 791 evaluated individuals, 231 received 240 diagnoses and 17 new disease-gene associations were recognized. Straightforward diagnoses on UDN exome and genome sequencing occurred in 35% (84/240). We considered these tractable in standard clinical practice, although genome sequencing is not yet widely available clinically. The majority (156/240, 65%) required additional UDN-driven investigations, including 90 diagnoses that occurred after prior nondiagnostic exome sequencing and 45 diagnoses (19%) that were nongenetic. The UDN-driven investigations included complementary/supplementary phenotyping, innovative analyses of genomic variants, and collaborative science for functional assays and animal modeling. CONCLUSION: Investigations driven by the clinical sites identified diagnostic and research paradigms that surpass standard diagnostic processes. The new diagnoses, disease gene discoveries, and delineation of novel disorders represent a model for genomic medicine and science.


Assuntos
Doenças não Diagnosticadas , Animais , Genômica , Humanos , Doenças Raras/diagnóstico , Doenças Raras/genética , Estudos Retrospectivos , Sequenciamento do Exoma
10.
Neurol Genet ; 6(5): e466, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32802951

RESUMO

OBJECTIVE: To describe a phenotype caused by ATP1A3 mutations, which manifests as dystonia, dysmorphism of the face, encephalopathy with developmental delay, brain MRI abnormalities always including cerebellar hypoplasia, no hemiplegia (Ø) (D-DEMØ), and neonatal onset. METHODS: Review and analysis of clinical and genetic data. RESULTS: Patients shared the above traits and had whole-exome sequencing that showed de novo variants of the ATP1A3 gene, predicted to be disease causing and occurring in regions of the protein critical for pump function. Patient 1 (c.1079C>G, p.Thr360Arg), an 8-year-old girl, presented on day 1 of life with episodic dystonia, complex partial seizures, and facial dysmorphism. MRI of the brain revealed cerebellar hypoplasia. Patient 2 (c.420G>T, p.Gln140His), an 18-year-old man, presented on day 1 of life with hypotonia, tremor, and facial dysmorphism. He later developed dystonia. MRI of the brain revealed cerebellar hypoplasia and, later, further cerebellar volume loss (atrophy). Patient 3 (c.974G>A, Gly325Asp), a 13-year-old girl, presented on day 1 of life with tremor, episodic dystonia, and facial dysmorphism. MRI of the brain showed severe cerebellar hypoplasia. Patient 4 (c.971A>G, p.Glu324Gly), a 14-year-old boy, presented on day 1 of life with tremor, hypotonia, dystonia, nystagmus, facial dysmorphism, and later seizures. MRI of the brain revealed moderate cerebellar hypoplasia. CONCLUSIONS: D-DEMØ represents an ATP1A3-related phenotype, the observation of which should trigger investigation for ATP1A3 mutations. Our findings, and the presence of multiple distinct ATP1A3-related phenotypes, support the possibility that there are differences in the underlying mechanisms.

11.
Epilepsia Open ; 4(4): 563-571, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31819912

RESUMO

OBJECTIVE: Clinical and genetic predictors of response to antiepileptic drugs (AEDs) are largely unknown. We examined predictors of lacosamide response in a real-world clinical setting. METHODS: We tested the association of clinical predictors with treatment response using regression modeling in a cohort of people with refractory epilepsy. Genetic assessment for lacosamide response was conducted via genome-wide association studies and exome studies, comprising 281 candidate genes. RESULTS: Most patients (479/483) were treated with LCM in addition to other AEDs. Our results corroborate previous findings that patients with refractory genetic generalized epilepsy (GGE) may respond to treatment with LCM. No clear clinical predictors were identified. We then compared 73 lacosamide responders, defined as those experiencing greater than 75% seizure reduction or seizure freedom, to 495 nonresponders (<25% seizure reduction). No variants reached the genome-wide significance threshold in our case-control analysis. SIGNIFICANCE: No genetic predictor of lacosamide response was identified. Patients with refractory GGE might benefit from treatment with lacosamide.

12.
Clin Genet ; 96(6): 521-531, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31448412

RESUMO

While genomic sequencing (ES/GS) has the potential to diagnose children with difficult to diagnose phenotypes, the goal should be not only a diagnosis, but also to empower parents to seek next steps for their children and to emotionally manage the outcome, whether or not a diagnosis is secured. To help achieve this goal, objective measures are needed to assess the process of parental empowerment related to genome sequencing. We present the validity and reliability of the Genome Empowerment Scale (GEmS), developed using a healthcare empowerment theoretical model. To evaluate its psychometric properties, 158 parents of 117 children with an undiagnosed condition undergoing genomic sequencing completed the GEmS, measures for criterion validity and for depression and anxiety. Factor analysis resulted in a four factor solution: (a) meaning of a diagnosis; (b) emotional management of the process; (c) seeking information and support and (d) implications and planning. Reliability and validity analyses show that the GEmS has good psychometric properties. The inter-relationships among the factors revealed a profile that may identify parents at risk for a poorer outcome who may benefit from targeted genetic counseling. The GEmS, an objective measure of parental genomic empowerment, can be utilized for future research and translational applications.


Assuntos
Empoderamento , Genoma Humano , Pais/psicologia , Doenças não Diagnosticadas/genética , Doenças não Diagnosticadas/psicologia , Adulto , Família , Feminino , Humanos , Masculino , Modelos Genéticos , Reprodutibilidade dos Testes , Fatores de Tempo
13.
Genet Med ; 21(1): 161-172, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29907797

RESUMO

PURPOSE: Sixty to seventy-five percent of individuals with rare and undiagnosed phenotypes remain undiagnosed after exome sequencing (ES). With standard ES reanalysis resolving 10-15% of the ES negatives, further approaches are necessary to maximize diagnoses in these individuals. METHODS: In 38 ES negative patients an individualized genomic-phenotypic approach was employed utilizing (1) phenotyping; (2) reanalyses of FASTQ files, with innovative bioinformatics; (3) targeted molecular testing; (4) genome sequencing (GS); and (5) conferring of clinical diagnoses when pathognomonic clinical findings occurred. RESULTS: Certain and highly likely diagnoses were made in 18/38 (47%) individuals, including identifying two new developmental disorders. The majority of diagnoses (>70%) were due to our bioinformatics, phenotyping, and targeted testing identifying variants that were undetected or not prioritized on prior ES. GS diagnosed 3/18 individuals with structural variants not amenable to ES. Additionally, tentative diagnoses were made in 3 (8%), and in 5 individuals (13%) candidate genes were identified. Overall, diagnoses/potential leads were identified in 26/38 (68%). CONCLUSIONS: Our comprehensive approach to ES negatives maximizes the ES and clinical data for both diagnoses and candidate gene identification, without GS in the majority. This iterative approach is cost-effective and is pertinent to the current conundrum of ES negatives.


Assuntos
Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Exoma/genética , Predisposição Genética para Doença , Criança , Deficiências do Desenvolvimento/epidemiologia , Feminino , Genômica , Humanos , Masculino , Fenótipo , Análise de Sequência de DNA , Sequenciamento do Exoma/métodos , Sequenciamento Completo do Genoma
14.
N Engl J Med ; 379(22): 2131-2139, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30304647

RESUMO

BACKGROUND: Many patients remain without a diagnosis despite extensive medical evaluation. The Undiagnosed Diseases Network (UDN) was established to apply a multidisciplinary model in the evaluation of the most challenging cases and to identify the biologic characteristics of newly discovered diseases. The UDN, which is funded by the National Institutes of Health, was formed in 2014 as a network of seven clinical sites, two sequencing cores, and a coordinating center. Later, a central biorepository, a metabolomics core, and a model organisms screening center were added. METHODS: We evaluated patients who were referred to the UDN over a period of 20 months. The patients were required to have an undiagnosed condition despite thorough evaluation by a health care provider. We determined the rate of diagnosis among patients who subsequently had a complete evaluation, and we observed the effect of diagnosis on medical care. RESULTS: A total of 1519 patients (53% female) were referred to the UDN, of whom 601 (40%) were accepted for evaluation. Of the accepted patients, 192 (32%) had previously undergone exome sequencing. Symptoms were neurologic in 40% of the applicants, musculoskeletal in 10%, immunologic in 7%, gastrointestinal in 7%, and rheumatologic in 6%. Of the 382 patients who had a complete evaluation, 132 received a diagnosis, yielding a rate of diagnosis of 35%. A total of 15 diagnoses (11%) were made by clinical review alone, and 98 (74%) were made by exome or genome sequencing. Of the diagnoses, 21% led to recommendations regarding changes in therapy, 37% led to changes in diagnostic testing, and 36% led to variant-specific genetic counseling. We defined 31 new syndromes. CONCLUSIONS: The UDN established a diagnosis in 132 of the 382 patients who had a complete evaluation, yielding a rate of diagnosis of 35%. (Funded by the National Institutes of Health Common Fund.).


Assuntos
Testes Genéticos , Doenças Raras/genética , Análise de Sequência de DNA , Adulto , Animais , Criança , Diagnóstico Diferencial , Drosophila , Exoma , Feminino , Testes Genéticos/economia , Custos de Cuidados de Saúde/estatística & dados numéricos , Humanos , Masculino , Modelos Animais , National Institutes of Health (U.S.) , Doenças Raras/diagnóstico , Síndrome , Estados Unidos
15.
BMC Health Serv Res ; 18(1): 652, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30134969

RESUMO

BACKGROUND: The majority of undiagnosed diseases manifest with objective findings that warrant further investigation. The Undiagnosed Diseases Network (UDN) receives applications from patients whose symptoms and signs have been intractable to diagnosis; however, many UDN applicants are affected primarily by subjective symptoms such as pain and fatigue. We sought to characterize presenting symptoms, referral sources, and demographic factors of applicants to the UDN to identify factors that may determine application outcome and potentially differentiate between those with undiagnosed diseases (with more objective findings) and those who are less likely to have an undiagnosed disease (more subjective symptoms). METHODS: We used a systematic retrospective review of 151 consecutive Not Accepted and 50 randomly selected Accepted UDN applications. The primary outcome was whether an applicant was Accepted, or Not Accepted, and, if accepted, whether or not a diagnosis was made. Objective and subjective symptoms and information on prior specialty consultations were collected from provider referral letters. Demographic data and decision data on network acceptance were gathered from the UDN online portal. RESULTS: Fewer objective findings and more subjective symptoms were found in the Not Accepted applications. Not Accepted referrals also were from older individuals, reported a shorter period of illness, and were referred to the UDN by their primary care physicians. All of these differences reached statistical significance in comparison with Accepted applications. The frequency of subspecialty consults for diagnostic purposes prior to UDN application was similar in both groups. CONCLUSIONS: The preponderance of subjective and lack of objective findings in the Not Accepted applications distinguish these from applicants that are accepted for evaluation and diagnostic efforts through the UDN. Not Accepted applicants are referred primarily by their primary care providers after multiple specialist consultations fail to yield answers. Distinguishing between patients with undiagnosed diseases with objective findings and those with primarily subjective findings can delineate patients who would benefit from further diagnostic processes from those who may have functional disorders and need alternative pathways for management of their symptoms. TRIAL REGISTRATION: clinicaltrials.gov NCT02450851 , posted May 21st 2015.


Assuntos
Gerenciamento Clínico , Doenças Raras/diagnóstico , Encaminhamento e Consulta/organização & administração , Adolescente , Adulto , Tomada de Decisões , Feminino , Programas Governamentais , Humanos , Masculino , Pessoa de Meia-Idade , National Institutes of Health (U.S.) , Estudos Retrospectivos , Estados Unidos , Adulto Jovem
16.
Artigo em Inglês | MEDLINE | ID: mdl-29970384

RESUMO

Recent evidence has implicated EFL1 in a phenotype overlapping Shwachman-Diamond syndrome (SDS), with the functional interplay between EFL1 and the previously known causative gene SBDS accounting for the similarity in clinical features. Relatively little is known about the phenotypes associated with pathogenic variants in the EFL1 gene, but the initial indication was that phenotypes may be more severe, when compared with SDS. We report a pediatric patient who presented with a metaphyseal dysplasia and was found to have biallelic variants in EFL1 on reanalysis of trio whole-exome sequencing data. The variant had not been initially reported because of the research laboratory's focus on de novo variants. Subsequent phenotyping revealed variability in her manifestations. Although her metaphyseal abnormalities were more severe than in the original reported cohort with EFL1 variants, the bone marrow abnormalities were generally mild, and there was equivocal evidence for pancreatic insufficiency. Despite the limited number of reported patients, variants in EFL1 appear to cause a broader spectrum of symptoms that overlap with those seen in SDS. Our report adds to the evidence of EFL1 being associated with an SDS-like phenotype and provides information adding to our understanding of the phenotypic variability of this disorder. Our report also highlights the value of exome data reanalysis when a diagnosis is not initially apparent.


Assuntos
Doenças da Medula Óssea/genética , Insuficiência Pancreática Exócrina/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/fisiologia , Lipomatose/genética , Adolescente , Doenças da Medula Óssea/diagnóstico , Insuficiência Pancreática Exócrina/diagnóstico , Feminino , Variação Genética/genética , Humanos , Lipomatose/diagnóstico , Mutação , Osteocondrodisplasias/genética , Osteocondrodisplasias/fisiopatologia , Fatores de Alongamento de Peptídeos , Fenótipo , Proteínas/genética , Ribonucleoproteína Nuclear Pequena U5 , Síndrome de Shwachman-Diamond , Sequenciamento do Exoma
17.
Genet Med ; 20(4): 464-469, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28914269

RESUMO

PurposeTo describe examples of missed pathogenic variants on whole-exome sequencing (WES) and the importance of deep phenotyping for further diagnostic testing.MethodsGuided by phenotypic information, three children with negative WES underwent targeted single-gene testing.ResultsIndividual 1 had a clinical diagnosis consistent with infantile systemic hyalinosis, although WES and a next-generation sequencing (NGS)-based ANTXR2 test were negative. Sanger sequencing of ANTXR2 revealed a homozygous single base pair insertion, previously missed by the WES variant caller software. Individual 2 had neurodevelopmental regression and cerebellar atrophy, with no diagnosis on WES. New clinical findings prompted Sanger sequencing and copy number testing of PLA2G6. A novel homozygous deletion of the noncoding exon 1 (not included in the WES capture kit) was detected, with extension into the promoter, confirming the clinical suspicion of infantile neuroaxonal dystrophy. Individual 3 had progressive ataxia, spasticity, and magnetic resonance image changes of vanishing white matter leukoencephalopathy. An NGS leukodystrophy gene panel and WES showed a heterozygous pathogenic variant in EIF2B5; no deletions/duplications were detected. Sanger sequencing of EIF2B5 showed a frameshift indel, probably missed owing to failure of alignment.ConclusionThese cases illustrate potential pitfalls of WES/NGS testing and the importance of phenotype-guided molecular testing in yielding diagnoses.


Assuntos
Exoma , Estudos de Associação Genética , Predisposição Genética para Doença , Técnicas de Diagnóstico Molecular , Alelos , Biópsia , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética/métodos , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Genótipo , Humanos , Lactente , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Fenótipo , Polimorfismo de Nucleotídeo Único , Doenças Raras/diagnóstico , Doenças Raras/genética , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
18.
Artigo em Inglês | MEDLINE | ID: mdl-28864461

RESUMO

Hemimegalencephaly (HME) is a heterogeneous cortical malformation characterized by enlargement of one cerebral hemisphere. Somatic variants in mammalian target of rapamycin (mTOR) regulatory genes have been implicated in some HME cases; however, ∼70% have no identified genetic etiology. Here, we screened two HME patients to identify disease-causing somatic variants. DNA from leukocytes, buccal swabs, and surgically resected brain tissue from two HME patients were screened for somatic variants using genome-wide genotyping arrays or sequencing of the protein-coding regions of the genome. Functional studies were performed to evaluate the molecular consequences of candidate disease-causing variants. Both HME patients evaluated were found to have likely disease-causing variants in DNA extracted from brain tissue but not in buccal swab or leukocyte DNA, consistent with a somatic mutational mechanism. In the first case, a previously identified disease-causing somatic single nucleotide in MTOR was identified. In the second case, we detected an overrepresentation of the alleles inherited from the mother on Chromosome 16 in brain tissue DNA only, indicative of somatic uniparental disomy (UPD) of the p-arm of Chromosome 16. Using methylation analyses, an imprinted locus on 16p spanning ZNF597 was identified, which results in increased expression of ZNF597 mRNA and protein in the brain tissue of the second case. Enhanced mTOR signaling was observed in tissue specimens from both patients. We speculate that overexpression of maternally expressed ZNF597 led to aberrant hemispheric development in the patient with somatic UPD of Chromosome 16p possibly through modulation of mTOR signaling.


Assuntos
Hemimegalencefalia/genética , Alelos , Encéfalo/citologia , Pré-Escolar , Cromossomos/genética , Cromossomos Humanos Par 16/genética , DNA/genética , Metilação de DNA/genética , Feminino , Impressão Genômica , Genótipo , Humanos , Lactente , Dissomia Uniparental/genética
19.
Orphanet J Rare Dis ; 12(1): 71, 2017 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-28416019

RESUMO

BACKGROUND: Patients' stories of their illnesses help bridge the divide between patients and providers, facilitating more humane medical care. Illness narratives have been classified into three types: restitution (expectation of recovery), chaos (suffering and loss), and quest (unexpected positive effect from illness). Undiagnosed patients have unique illness experiences and obtaining their narratives would provide insights into the medical and emotional impact of living with an undiagnosed illness. Adults and children with undiagnosed diseases apply to be evaluated by the Undiagnosed Diseases Network (UDN). Written illness narratives from 40 UDN applicants, including 20 adult probands who applied for themselves and 20 parents who applied for their children, were analyzed for: 1) narrative content and 2) narrative type. RESULTS: Narrative content: could be grouped into three themes: 1) Expectations of the UDN: the majority felt they had no further healthcare options and hoped the UDN would provide them with a diagnosis, with the adults expecting to return to their previously healthy life and the parents wanting information to manage their child's healthcare. 2) Personal medical information: the narratives reported worsening of symptoms and some offered opinions regarding the cause of their illness. The proband narratives had few objective findings, while parental narratives had detailed objective information. 3) Experiences related to living with their undiagnosed illness: frustration at being undiagnosed was expressed. The adults felt they had to provide validation of their symptoms to providers, given the lack of objective findings. The parents worried that something relevant to their child's management was being overlooked. Narrative type: All the narratives were of the chaos type, but for different reasons, with the probands describing loss and suffering and the parents expressing fear for their child's future. The parental narratives also had elements of restitution and quest, with acceptance of "a new normal", and an emphasis on the positive aspects of their child's illness which was absent from the probands. CONCLUSIONS: These narratives illustrate the chaos that coexists with being undiagnosed. The differences between the proband and parental narratives suggest that these two groups have different needs that need to be considered during their evaluation and management.


Assuntos
Doenças Raras/diagnóstico , Feminino , Humanos , Masculino , Pesquisa Qualitativa , Doenças Raras/patologia
20.
Am J Hum Genet ; 100(2): 343-351, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28132692

RESUMO

Whole-exome sequencing (WES) has increasingly enabled new pathogenic gene variant identification for undiagnosed neurodevelopmental disorders and provided insights into both gene function and disease biology. Here, we describe seven children with a neurodevelopmental disorder characterized by microcephaly, profound developmental delays and/or intellectual disability, cataracts, severe epilepsy including infantile spasms, irritability, failure to thrive, and stereotypic hand movements. Brain imaging in these individuals reveals delay in myelination and cerebral atrophy. We observe an identical recurrent de novo heterozygous c.892C>T (p.Arg298Trp) variant in the nucleus accumbens associated 1 (NACC1) gene in seven affected individuals. One of the seven individuals is mosaic for this variant. NACC1 encodes a transcriptional repressor implicated in gene expression and has not previously been associated with germline disorders. The probability of finding the same missense NACC1 variant by chance in 7 out of 17,228 individuals who underwent WES for diagnoses of neurodevelopmental phenotypes is extremely small and achieves genome-wide significance (p = 1.25 × 10-14). Selective constraint against missense variants in NACC1 makes this excess of an identical missense variant in all seven individuals more remarkable. Our findings are consistent with a germline recurrent mutational hotspot associated with an allele-specific neurodevelopmental phenotype in NACC1.


Assuntos
Catarata/genética , Variação Genética , Deficiência Intelectual/genética , Proteínas de Neoplasias/genética , Proteínas Repressoras/genética , Espasmos Infantis/genética , Alelos , Sequência de Aminoácidos , Encéfalo/diagnóstico por imagem , Catarata/diagnóstico por imagem , Criança , Pré-Escolar , Feminino , Estudo de Associação Genômica Ampla , Humanos , Lactente , Deficiência Intelectual/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Microcefalia/genética , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Espasmos Infantis/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...