Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME J ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959853

RESUMO

Effector proteins secreted by bacteria that infect mammalian and plant cells often subdue eukaryotic host cell defenses by simultaneously affecting multiple targets. However, instances when a bacterial effector injected in the competing bacteria sabotage more than a single target have not been reported. Here, we demonstrate that the effector protein, LtaE, translocated by the type IV secretion system (T4SS) from the soil bacterium Lysobacter enzymogenes into the competing bacterium, Pseudomonas protegens, affects several targets, thus disabling the antibacterial defenses of the competitor. One LtaE target is the transcription factor, LuxR1, that regulates biosynthesis of the antimicrobial compound, orfamide A. Another target is the sigma factor, PvdS, required for biosynthesis of another antimicrobial compound, pyoverdine. Deletion of the genes involved in orfamide A and pyoverdine biosynthesis disabled the antibacterial activity of P. protegens, whereas expression of LtaE in P. protegens resulted in the near-complete loss of the antibacterial activity against L. enzymogenes. Mechanistically, LtaE inhibits the assembly of the RNA polymerase complexes with each of these proteins. The ability of LtaE to bind to LuxR1 and PvdS homologs from several Pseudomonas species suggests that it can sabotage defenses of various competitors present in the soil or on plant matter. Our study thus reveals that the multi-target effectors have evolved to subdue cell defenses not only in eukaryotic hosts but also in bacterial competitors.

2.
Elife ; 132024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864853

RESUMO

Cohesin is a multi-subunit protein that plays a pivotal role in holding sister chromatids together during cell division. Sister chromatid cohesion 3 (SCC3), constituents of cohesin complex, is highly conserved from yeast to mammals. Since the deletion of individual cohesin subunit always causes lethality, it is difficult to dissect its biological function in both mitosis and meiosis. Here, we obtained scc3 weak mutants using CRISPR-Cas9 system to explore its function during rice mitosis and meiosis. The scc3 weak mutants displayed obvious vegetative defects and complete sterility, underscoring the essential roles of SCC3 in both mitosis and meiosis. SCC3 is localized on chromatin from interphase to prometaphase in mitosis. However, in meiosis, SCC3 acts as an axial element during early prophase I and subsequently situates onto centromeric regions following the disassembly of the synaptonemal complex. The loading of SCC3 onto meiotic chromosomes depends on REC8. scc3 shows severe defects in homologous pairing and synapsis. Consequently, SCC3 functions as an axial element that is essential for maintaining homologous chromosome pairing and synapsis during meiosis.


Assuntos
Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Pareamento Cromossômico , Meiose , Oryza , Meiose/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Oryza/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Coesinas , Mitose , Complexo Sinaptonêmico/metabolismo , Complexo Sinaptonêmico/genética , Sistemas CRISPR-Cas
3.
J Phys Chem Lett ; 15(23): 6108-6114, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38829304

RESUMO

Two-dimensional metal-organic networks (2D MONs) having heterogeneous coordination nodes (HCNs) could exhibit excellent performance in catalysis and optoelectronics because of the unbalanced electron distribution of the coordinating metals. Therefore, the design and construction of 2D MONs with HCNs are highly desirable but remain challenging. Here, we report the construction of 2D organometallic coordination networks with an organic Kagome lattice and a semiregular metal lattice on Au(111) via the in situ formation of HCNs. Using a bifunctional precursor 1,4-dibromo-2,5-diisocyanobenzene, the coordination of isocyano with Au adatom on a room-temperature Au(111) yielded metal-organic coordination chains with isocyano-Au-isocyano nodes. In contrast, on a high-temperature Au(111), a selective debromination/coordination cascade reaction occurred, affording 2D organometallic coordination networks with phenyl-Au-isocyano nodes. By combining scanning tunneling microscopy and density functional theory calculations, we determined the structures of coordination products and the nature of coordination nodes, demonstrating a thermodynamically favorable pathway for forming the phenyl-Au-isocyano nodes.

4.
Phytomedicine ; 128: 155403, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38564920

RESUMO

BACKGROUND: Cardiovascular disease is one of the main causes of global mortality, and there is an urgent need for effective treatment strategies. Gut microbiota-dependent metabolite trimethylamine-N-oxide (TMAO) promotes the development of cardiovascular diseases, and shizukaol C, a natural sesquiterpene isolated from Chloranthus multistachys with various biological activities, might exhibit beneficial role in preventing TMAO-induced vascular inflammation. PURPOSE: The purpose of this study was to investigate the anti-inflammatory effects and the underlying mechanisms of shizukaol C on TMAO-induced vascular inflammation. METHODS: The effect and underlying mechanism of shizukaol C on TMAO-induced adhesion molecules expression, bone marrow-derived macrophages (BMDM) adhesion to VSMC were evaluated by western blot, cell adhesion assay, co-immunoprecipitation, immunofluorescence assay, and quantitative Real-Time PCR, respectively. To verify the role of shizukaol C in vivo, TMAO-induced vascular inflammation model were established using guidewire-induced injury on mice carotid artery. Changes in the intima area and the expression of GSTpi, VCAM-1, CD68 were examined using haematoxylin-eosin staining, and immunofluorescence assay. RESULTS: Our data demonstrated that shizukaol C significantly suppressed TMAO-induced adhesion molecule expression and the bone marrow-derived macrophages (BMDM) adhesion in vascular smooth muscle cells (VSMC). Mechanically, shizukaol C inhibited TMAO-induced c-Jun N-terminal kinase (JNK)-nuclear factor-kappa B (NF-κB)/p65 activation, and the JNK inhibition was dependent on the shizukaol C-mediated glutathione-S-transferase pi (GSTpi) expression. By further molecular docking and protein-binding analysis, we demonstrated that shizukaol C directly binds to Keap1 to induce Nrf2 nuclear translocation and upregulated GSTpi expression. Consistently, our in vivo experiment showed that shizukaol C elevated the expression level of GSTpi in carotid arteries and alleviates TMAO-induced vascular inflammation. CONCLUSION: Shizukaol C exerts anti-inflammatory effects in TMAO-treated VSMC by targeting Keap1 and activating Nrf2-GSTpi signaling and resultantly inhibits the downstream JNK-NF-κB/p65 activation and VSMC adhesion, and alleviates TMAO-induced vascular inflammation in vivo, suggesting that shizukaol C may be a potential drug for treating TMAO-induced vascular diseases.


Assuntos
Inflamação , Músculo Liso Vascular , Sesquiterpenos , Animais , Masculino , Camundongos , Anti-Inflamatórios/farmacologia , Adesão Celular/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Proteína 1 Associada a ECH Semelhante a Kelch/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Metilaminas/farmacologia , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Sesquiterpenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Glutationa S-Transferase pi/efeitos dos fármacos , Glutationa S-Transferase pi/metabolismo
5.
Environ Sci Pollut Res Int ; 31(17): 26204-26216, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38498136

RESUMO

In this paper, we prepared three types of porous glasses (PGs) with specific surface areas of 311.60 m2/g, 277.60 m2/g, and 231.38 m2/g, respectively, via borosilicate glass phase separation. These glasses were further modified with amidoxime groups (AO) using the hydroxylamine method, yielding adsorbents named 1.5-PG-AO, 2-PG-AO, and 3-PG-AO. The adsorption performance of these adsorbents under various conditions was investigated, including sorption kinetics and adsorption mechanisms. The results reveal that the number of micropores and specific surface area of PG are significantly reduced after AO modification. All three adsorbents exhibit similar adsorption capabilities. Particularly, pH has a pronounced effect on U (VI) adsorption of PG-AO, with a maximum value at pH = 4.5. Equilibrium adsorption is achieved within 2 h, with a maximum adsorption capacity of 129 mg/g. Notably, a uranium removal rate of 99.94% is attained. Furthermore, the adsorbents show high selectivity in uranium solutions containing Na+ or K+. Moreover, the adsorbents demonstrate exceptional regeneration ability, with the removal rate remaining above 80% even after undergoing five adsorption-desorption cycles. The adsorption reaction of uranium on PG-AO involves a combination of multiple processes, with monolayer chemisorption being the dominant mechanism. Both the complex adsorption of AO and the ion exchange and physical adsorption of PG contribute to the adsorption of uranyl ions on the PG-AO adsorbents.


Assuntos
Oximas , Urânio , Urânio/análise , Adsorção , Porosidade , Íons
6.
Dev Comp Immunol ; 156: 105159, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38492902

RESUMO

Stress-induced immunosuppression (SIIS) is one of the common problems in intensive poultry production, which brings enormous economic losses to the poultry industry. Accumulating evidence has shown that microRNAs (miRNAs) were important regulators of gene expression in the immune system. However, the miRNA-mediated molecular mechanisms underlying SIIS in chickens are still poorly understood. This study aimed to investigate the biological functions and regulatory mechanism of miRNAs in chicken SIIS. A stress-induced immunosuppression model was successfully established via daily injection of dexamethasone and analyzed miRNA expression in spleen. Seventy-four differentially expressed miRNAs (DEMs) was identified, and 229 target genes of the DEMs were predicted. Functional enrichment analysis the target genes revealed pathways related to immunity, such as MAPK signaling pathway and FoxO signaling pathway. The candidate miRNA, gga-miR-146a-5p, was found to be significantly downregulated in the Dex-induced chicken spleen, and we found that Dex stimulation significantly inhibited the expression of gga-miR-146a-5p in Chicken macrophages (HD11). Flow cytometry, 5-ethynyl-2'-deoxyuridine (EdU), cell counting kit-8 (CCK-8) and other assays indicated that gga-miR-146a-5p can promote the proliferation and inhibit apoptosis of HD11 cells. A dual-luciferase reporter assay suggested that the Interleukin 1 receptor associated kinase 2 (IRAK2) gene, which encoded a transcriptional factor, was a direct target of gga-miR-146a-5p, gga-miR-146a-5p suppressed the post-transcriptional activity of IRAK2. These findings not only improve our understanding of the specific functions of miRNAs in avian stress but also provide potential targets for genetic improvement of stress resistance in poultry.


Assuntos
Galinhas , Dexametasona , Macrófagos , MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Galinhas/imunologia , Galinhas/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Dexametasona/farmacologia , Apoptose , Tolerância Imunológica , Regulação da Expressão Gênica , Terapia de Imunossupressão , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Baço/imunologia , Baço/metabolismo , Transdução de Sinais , Estresse Fisiológico/imunologia , Linhagem Celular , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Proliferação de Células
7.
Eur J Med Chem ; 267: 116208, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38325006

RESUMO

Dual-acting drugs that simultaneously inhibit fatty acid amide hydrolase (FAAH) and antagonize the transient receptor potential vanilloid 1 (TRPV1) is a promising stronger therapeutic approach for pain management without side effects associated with single-target agents. Here, several series of dual FAAH/TRPV1 blockers were designed and synthesized through rational molecular hybridization between the pharmacophore of classical TRPV1 antagonists and FAAH inhibitors. The studies resulted in compound 2r, which exhibited strong dual FAAH/TRPV1 inhibition/antagonism in vitro, exerted powerful analgesic effects in formalin-induced pain test (phase II, in mice), desirable anti-inflammatory activity in carrageenan-induced paw edema in rats, no TRPV1-related hyperthermia side effect, and favorable pharmacokinetic properties. Meanwhile, the contributions of TRPV1 and FAAH to its antinociceptive effects were verified by target engagement and molecular docking studies. Overall, compound 2r can serve as a new scaffold for developing FAAH/TRPV1 dual-activie ligands to counteract pain.


Assuntos
Antineoplásicos , Manejo da Dor , Ratos , Camundongos , Animais , Simulação de Acoplamento Molecular , Canais de Cátion TRPV , Ácidos Araquidônicos , Dor/tratamento farmacológico , Amidoidrolases/metabolismo , Antineoplásicos/uso terapêutico
8.
J Colloid Interface Sci ; 662: 377-390, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359502

RESUMO

Developing highly efficient photocatalysts based on conjugated microporous polymers (CMPs) are often impeded by the intrinsically large exciton binding energy and sluggish charge transfer kinetics that result from their vulnerable driving force. Herein, a family of pyrene-based nitrogen-implanted CMPs were constructed, where the nitrogen gradient was regulated. Accordingly, the built-in electric field endowed by the nitrogen gradient dramatically accelerates the dissociation of exciton into free carriers, thereby enhancing charge separation efficiency. As a result, PyCMP-3N generated by polymerization of 1,3,6,8-tetrakis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrene and 2,4,6-tris(4-bromophenyl)-1,3,5-triazine featured an optimized built-in electric field and exhibited the highest photocatalytic removal efficiency of uranium (VI) (99.5 %). Our proposed strategy not only provides inspiration for constructing the built-in electric field by controlling nitrogen concentration gradients, but also offers an in-depth understanding the crucial role of built-in electric field in exciton dissociation and charge transfer, efficiently promoting CMPs photocatalysis.

9.
Dev Comp Immunol ; 151: 105094, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37951325

RESUMO

In recent years, increasing interest has focused on natural components extracted from plants, among which plant polysaccharides as natural immunomodulators that can promote animal immunity. The present study was performed to investigate the effect of feed supplement Pseudostellaria Heterophylla Polysaccharide (PHP) on serum Immunoglobulins, T lymphocyte subpopulations, Cytokines and Lysozyme (LZM) activity in chicks. In addition, the influence of PHP on splenic gene expression was investigated by transcriptome sequencing. Four hundred 7-day-old Gushi cocks were randomly divided into four groups in a completely randomized design. The chicks were fed with a basal diet supplemented with 0 (CON-A), 100 (PHP-L), 200 (PHP-M) and 400 (PHP-H) mg/kg PHP. Blood and spleen samples were collected from 6 randomly selected chicks in each group at 14, 21, 28, and 35 days of age. The results showed that compared to the CON-A group, the PHP-M group exhibited significant increases in the levels of IgA, IgG, IgM, CD3, and LZM in the serum at 14, 21, 28, and 35 days (P < 0.05), and at 28 d, there was a significant quadratic relationship between the levels of dietary PHP and the levels of IgG, IgM, IFN-γ, IL-2, CD3, and LZM. Furthermore, a total of 470 differentially expressed genes (DEGs) were identified in spleen from PHP-M and CON-A at 28 d. These DEGs were significantly enriched in the Phagosome, Intestinal immune network for IgA production and Cytokine-cytokine receptor interaction pathways. The present investigation highlights the ameliorating effect of dietary PHP on immunological variables and spleen of chicks, the study suggests that PHP supplementation can enhance immunity and positively impact spleen mRNA expression in chicks.


Assuntos
Suplementos Nutricionais , Baço , Animais , Baço/metabolismo , Dieta , Citocinas/metabolismo , Polissacarídeos/metabolismo , Imunoglobulina G/metabolismo , RNA Mensageiro/metabolismo , Imunoglobulina A/metabolismo , Imunoglobulina M/metabolismo , Galinhas
10.
Plant Biotechnol J ; 22(4): 987-1000, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38018512

RESUMO

Drought is a deleterious abiotic stress factor that constrains crop growth and development. Post-translational modification of proteins mediated by the ubiquitin-proteasome system is an effective strategy for directing plant responses to stress, but the regulatory mechanisms in wheat remain unclear. In this study, we showed that TaSDIR1-4A is a positive modulator of the drought response. Overexpression of TaSDIR1-4A increased the hypersensitivity of stomata, root length and endogenous abscisic acid (ABA) content under drought conditions. TaSDIR1-4A encodes a C3H2C3-type RING finger protein with E3 ligase activity. Amino acid mutation in its conserved domain led to loss of activity and altered the subcellular localization. The membrane-bound transcription factor TaWRKY29 was identified by yeast two-hybrid screening, and it was confirmed as interacting with TaSDIR1-4A both in vivo and in vitro. TaSDIR1-4A mediated the polyubiquitination and proteolysis of the C-terminal amino acid of TaWRKY29, and its translocation from the plasma membrane to the nucleus. Activated TaWRKY29 bound to the TaABI5 promoter to stimulate its expression, thereby positively regulating the ABA signalling pathway and drought response. Our findings demonstrate the positive role of TaSDIR1-4A in drought tolerance and provide new insights into the involvement of UPS in the wheat stress response.


Assuntos
Arabidopsis , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Resistência à Seca , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Secas , Aminoácidos/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37931159

RESUMO

In this study, the effects of Pseudostellaria heterophylla polysaccharide (PHP) on the growth, development, and liver metabolism of chicks were investigated by feeding chicks diets. Four hundred 7-d-old Gushi roosters were selected and randomly divided into four groups, labeled A, B, C, and D. Group A was fed the basal diet, and Groups B, C, and D were fed 100, 200, and 400 mg PHP per kilogram of basal diet, respectively. At 14, 21, 28 and 35 d of age, five chicks were randomly selected from each group to collect samples for index detection. The results showed that compared with Group A, there were significant reduction in average daily feed intake (ADFI) and feed-to-weight ratio (F/G) at 14, 21, and 28 d (P < 0.05), significant increase in average daily gain (ADG) at 21, 28 d (P < 0.05), significantly increased levels of total protein (TP), albumin (ALB), insulin (INS), thyroxine (T3), growth hormone (GH) at 14, 28 d (P < 0.05), significantly decreased levels of glucose (GLU), total cholesterol (TC), glucagon (GC), and triglyceride (TG) at 28 d in Group C (P < 0.05). There were significantly increased levels of TP, ALB at 14, 21 d (P < 0.05), significantly increased level of TP at 35 d (P < 0.05), significantly increased level of GH at 28 d (P < 0.05), significantly decreased levels of GLU, GC at 28 d (P < 0.05), significant reduction in F/G at 14, 21 d in Groups B and D (P < 0.05). Based on the above results, the livers from chicks in Groups A and C at 28 d were selected for transcriptome sequencing. The sequencing results showed that significantly differentially expressed genes (SDEGs) were enriched in growth and development, oxidative phosphorylation, the PPAR signaling pathway and the lipid metabolism pathway. All these results revealed that the addition of 200 mg/kg PHP in the diet promoted the growth and development, lipid metabolism and energy metabolism of chicks, inhibit inflammation and tumor development, and improve the function of the liver.


In order to explore the possibility of Pseudostellaria heterophylla polysaccharide (PHP) as green and healthy feed additive, we evaluated the effects of PHP on the growth, development and liver metabolism of chicks by feeding chicks diets in this study. The results revealed that the addition of 200 mg/kg PHP in the diet promoted the growth and development, lipid metabolism and energy metabolism in chicks and improved liver function. PHP may be a potential natural and safe feed additive applied in poultry production.


Assuntos
Galinhas , Dieta , Animais , Masculino , Dieta/veterinária , Ingestão de Alimentos , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Fígado , Ração Animal/análise
12.
ISME J ; 17(12): 2232-2246, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37838821

RESUMO

Soil beneficial bacteria can effectively inhibit bacterial pathogens by assembling contact-dependent killing weapons, such as the type IVA secretion system (T4ASS). It's not clear whether these antibacterial weapons are involved in biotrophic microbial interactions in soil. Here we showed that an antifungal antibiotic 2,4-DAPG production of the soil bacterium, Pseudomonas protegens can be triggered by another soil bacterium, Lysobacter enzymogenes, via T4ASS by co-culturing on agar plates to mimic cell-to-cell contact. We demonstrated that the induced 2,4-DAPG production of P. protegens is achieved by intracellular detection of the T4ASS effector protein Le1519 translocated from L. enzymogenes. We defined Le1519 as LtaE (Lysobacter T4E triggering antifungal effects), which specifically stimulates the expression of 2,4-DAPG biosynthesis genes in P. protegens, thereby protecting soybean seedlings from infection by the fungus Rhizoctonia solani. We further found that LtaE directly bound to PhlF, a pathway-specific transcriptional repressor of the 2,4-DAPG biosynthesis, then activated the 2,4-DAPG production. Our results highlight a novel pattern of microbial interspecies and interkingdom interactions, providing a unique case for expanding the diversity of soil microbial interactions.


Assuntos
Antifúngicos , Floroglucinol , Humanos , Antifúngicos/farmacologia , Floroglucinol/metabolismo , Floroglucinol/farmacologia , Fungos/metabolismo , Interações Microbianas
14.
Plant J ; 116(3): 717-727, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37632767

RESUMO

Crossovers (COs) are necessary for generating genetic diversity that breeders can select, but there are conserved mechanisms that regulate their frequency and distribution. Increasing CO frequency may raise the efficiency of selection by increasing the chance of integrating more desirable traits. In this study, we characterize rice FANCM and explore its functions in meiotic CO control. FANCM mutations do not affect fertility in rice, but they cause a great boost in the overall frequency of COs in both inbred and hybrid rice, according to genetic analysis of the complete set of fancm zmm (hei10, ptd, shoc1, mer3, zip4, msh4, msh5, and heip1) mutants. Although the early homologous recombination events proceed normally in fancm, the meiotic extra COs are not marked with HEI10 and require MUS81 resolvase for resolution. FANCM depends on PAIR1, COM1, DMC1, and HUS1 to perform its functions. Simultaneous disruption of FANCM and MEICA1 synergistically increases CO frequency, but it is accompanied by nonhomologous chromosome associations and fragmentations. FANCM interacts with the MHF complex, and ablation of rice MHF1 or MHF2 could restore the formation of 12 bivalents in the absence of the ZMM gene ZIP4. Our data indicate that unleashing meiotic COs by mutating any member of the FANCM-MHF complex could be an effective procedure to accelerate the efficiency of rice breeding.


Assuntos
Oryza , Oryza/genética , DNA Helicases/genética , Melhoramento Vegetal , Meiose/genética , Recombinação Homóloga , Troca Genética
15.
New Phytol ; 240(2): 892-903, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37533136

RESUMO

The sex-determining-region (SDR) may offer the best prospects for studying sex-determining gene, recombination suppression, and chromosome heteromorphism. However, current progress of SDR identification and cloning showed following shortcomings: large near-isogenic lines need to be constructed, and a relatively large population is needed; the cost of whole-genome sequencing and assembly is high. Herein, the X/Y chromosomes of Spinacia oleracea L. subsp. turkestanica were successfully microdissected and assembled using single-chromosome sequencing. The assembly length of X and Y chromosome is c. 192.1 and 195.2 Mb, respectively. Three large inversions existed between X and Y chromosome. The SDR size of X and Y chromosome is c. 13.2 and 24.1 Mb, respectively. MSY region and six male-biased genes were identified. A Y-chromosome-specific marker in SDR was constructed and used to verify the chromosome assembly quality at cytological level via fluorescence in situ hybridization. Meanwhile, it was observed that the SDR located on long arm of Y chromosome and near the centromere. Overall, a technical system was successfully established for rapid cloning the SDR and it is also applicable to rapid assembly of specific chromosome in other plants. Furthermore, this study laid a foundation for studying the molecular mechanism of sex chromosome evolution in spinach.


Assuntos
Cromossomos de Plantas , Cromossomos Sexuais , Mapeamento Cromossômico/métodos , Hibridização in Situ Fluorescente , Cromossomos de Plantas/genética , Cromossomos Sexuais/genética , Centrômero
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 301: 122973, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37301028

RESUMO

Lipid droplets (LDs) are unique organelles that control the lipid metabolism in cells. It has been identified that the generations of LDs derive from endoplasmic reticulum (ER) and they have closely related with amount of cellular activities for maintaining homeostasis. To further explore the detail interactions between LDs and ER, we have developed a novel polarity-sensitive fluorescent probe LP with distinct D-π-A-π-D framework and applied it to imaging LDs and ER with dual colors at the same time. Probe LP showed well red-shifted emissions with the increase fraction of water in the 1,4- dioxane due to ICT process. In biological imaging, probe LP could visualize LDs and ER with green and red fluorescence separately. Besides, the dynamic behaviors of LDs and ER were achieved using LP during the oleic acids and starvation stimulations. Therefore, probe LP is a valuable molecular tool for investigating the relationships of LDs and ER in various cellular activities.


Assuntos
Corantes Fluorescentes , Gotículas Lipídicas , Gotículas Lipídicas/metabolismo , Corantes Fluorescentes/metabolismo , Cor , Retículo Endoplasmático/metabolismo , Metabolismo dos Lipídeos
17.
Front Nutr ; 10: 1195505, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37266134

RESUMO

High amylose wheat (HAW) has potential health benefits but its dough structure is usually inferior. Wheat dough is a complex mixture and its structure is influenced by the physicochemical properties of gluten and starch. In this study, we investigated the starch granule development, gluten structure, starch properties, pasting, and thermal properties of flour, as well as the rheological properties of dough in wheat variety Xinong 836 with high amylose content (33.57%) and its parents. The results showed that Xinong 836 wheat starch contained more small starch granules, which was consistent with the microstructural results of starch granules in grain filling stage. Moreover, Xinong 836 wheat starch showed highest swelling power and water solubility. Importantly, the flour of Xinong 836 wheat had the highest protein content and wet gluten content and Xinong 836 wheat gluten showed highest ß-sheets content and disulfide bond content than its parents Zhengmai 7698 and Xinong 979, which conferring to more compact microscopic networks of dough, thereby contributing to the higher peak viscosity (PV), final viscosity (FV), and setback viscosity (SB) in the flour of Xinong 836. Our finding elucidated that the stability of gluten and properties of starch synergistically affected the pasting and thermal properties of the flour paste, and the presence of more small starch granules contributed to dough with a rather dense structure in HAW Xinong 836. Thus, superior gluten structure and more small starch granules have synergistic effects on enhancing the gluten-starch interaction, thereby contributing to better dough quality.

18.
Plant Physiol ; 192(2): 1115-1131, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36943300

RESUMO

Stem cells are the ultimate source of cells for various tissues and organs and thus are essential for postembryonic plant growth and development. SCARECROW (SCR) is a plant-specific transcription regulator well known for its role in stem cell renewal in plant roots, but the mechanism by which SCR exerts this function remains unclear. To address this question, we carried out a genetic screen for mutants that no longer express SCR in the stem cell niche of Arabidopsis (Arabidopsis thaliana) roots and characterized 1 of these mutants. Molecular genetics methods allowed us to pinpoint the causal mutation in this mutant in TELOMERIC PATHWAYS IN ASSOCIATION WITH STN 1 (TEN1), encoding a factor that protects telomere ends. Interestingly, TEN1 expression was dramatically reduced in the scr mutant. Telomerase and STN1 and CONSERVED TELOMERE MAINTENANCE COMPONENT 1 (CTC1), components of the same protein complex as TEN1, were also dramatically downregulated in scr. Loss of STN1, CTC1, and telomerase caused defects in root stem cells. These results together suggest that SCR maintains root stem cells by promoting expression of genes that ensure genome integrity. Supporting this conclusion, we demonstrated that the scr mutant accumulates more DNA damage than wild-type Arabidopsis and that this problem is aggravated after exposure to zeocin, a DNA damage reagent. Finally, we identified 2 previously uncharacterized motifs in TEN1 and provide evidence that a conserved amino acid residue in 1 of the motifs is indispensable for TEN1 function. SCR thus provides a connection between genome integrity and stem cell maintenance in Arabidopsis roots.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Telomerase , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Nicho de Células-Tronco/genética , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo
19.
Plant Physiol ; 192(2): 1063-1079, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36905369

RESUMO

Centromeres consist of highly repetitive sequences that are challenging to map, clone, and sequence. Active genes exist in centromeric regions, but their biological functions are difficult to explore owing to extreme suppression of recombination in these regions. In this study, we used the CRISPR/Cas9 system to knock out the transcribed gene Mitochondrial Ribosomal Protein L15 (OsMRPL15), located in the centromeric region of rice (Oryza sativa) chromosome 8, resulting in gametophyte sterility. Osmrpl15 pollen was completely sterile, with abnormalities appearing at the tricellular stage including the absence of starch granules and disrupted mitochondrial structure. Loss of OsMRPL15 caused abnormal accumulation of mitoribosomal proteins and large subunit rRNA in pollen mitochondria. Moreover, the biosynthesis of several proteins in mitochondria was defective, and expression of mitochondrial genes was upregulated at the mRNA level. Osmrpl15 pollen contained smaller amounts of intermediates related to starch metabolism than wild-type pollen, while biosynthesis of several amino acids was upregulated, possibly to compensate for defective mitochondrial protein biosynthesis and initiate consumption of carbohydrates necessary for starch biosynthesis. These results provide further insight into how defects in mitoribosome development cause gametophyte male sterility.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Genes de Plantas , Amido/metabolismo , Pólen/genética , Pólen/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
20.
Biology (Basel) ; 12(3)2023 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-36979127

RESUMO

Global trade facilitates the introduction of invasive species that can cause irreversible damage to agriculture and the environment, as well as stored food products. The raisin moth (Cadra figulilella) is an invasive pest that poses a significant threat to fruits and dried foods. Climate change may exacerbate this threat by expanding moth's distribution to new areas. In this study, we used CLIMEX and MaxEnt niche modeling tools to assess the potential global distribution of the raisin moth under current and future climate change scenarios. Our models projected that the area of suitable distribution for the raisin moth could increase by up to 36.37% by the end of this century under high emission scenario. We also found that excessive precipitation decreased the probability of raisin moth establishment and that the optimum temperature range for the species during the wettest quarter of the year was 0-18 °C. These findings highlight the need for future research to utilize a combined modeling approach to predict the distribution of the raisin moth under current and future climate conditions more accurately. Our results could be used for environmental risk assessments, as well as to inform international trade decisions and negotiations on phytosanitary measures with regards to this invasive species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...