Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Technol Health Care ; 32(S1): 465-475, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38759069

RESUMO

BACKGROUND: Oral cancer is a malignant tumor that usually occurs within the tissues of the mouth. This type of cancer mainly includes tumors in the lining of the mouth, tongue, lips, buccal mucosa and gums. Oral cancer is on the rise globally, especially in some specific risk groups. The early stage of oral cancer is usually asymptomatic, while the late stage may present with ulcers, lumps, bleeding, etc. OBJECTIVE: The objective of this paper is to propose an effective and accurate method for the identification and classification of oral cancer. METHODS: We applied two deep learning methods, CNN and Transformers. First, we propose a new CANet classification model for oral cancer, which uses attention mechanisms combined with neglected location information to explore the complex combination of attention mechanisms and deep networks, and fully tap the potential of attention mechanisms. Secondly, we design a classification model based on Swim transform. The image is segmented into a series of two-dimensional image blocks, which are then processed by multiple layers of conversion blocks. RESULTS: The proposed classification model was trained and predicted on Kaggle Oral Cancer Images Dataset, and satisfactory results were obtained. The average accuracy, sensitivity, specificity and F1-Socre of Swin transformer architecture are 94.95%, 95.37%, 95.52% and 94.66%, respectively. The average accuracy, sensitivity, specificity and F1-Score of CANet model were 97.00%, 97.82%, 97.82% and 96.61%, respectively. CONCLUSIONS: We studied different deep learning algorithms for oral cancer classification, including convolutional neural networks, converters, etc. Our Attention module in CANet leverages the benefits of channel attention to model the relationships between channels while encoding precise location information that captures the long-term dependencies of the network. The model achieves a high classification effect with an accuracy of 97.00%, which can be used in the automatic recognition and classification of oral cancer.


Assuntos
Aprendizado Profundo , Neoplasias Bucais , Neoplasias Bucais/diagnóstico por imagem , Neoplasias Bucais/classificação , Neoplasias Bucais/patologia , Neoplasias Bucais/diagnóstico , Humanos , Redes Neurais de Computação , Sensibilidade e Especificidade , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos
2.
Genes Genomics ; 46(4): 423-436, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38324226

RESUMO

BACKGROUND: Rubisco activase (RCA) is a pivotal enzyme that can catalyse the activation of Rubisco in carbon assimilation pathway. Many studies have shown that RCA may be a potential target for genetic manipulation aimed at enhancing photosynthetic efficiency and crop yield. OBJECTIVE: To understand the biological function of the GhRCAß2 gene in upland cotton, we cloned the coding sequence (CDS) of the GhRCAß2 gene and investigated its sequence features, evolutionary relationship, subcellular localization, promoter sequence and expression pattern. METHODS: The bioinformatics tools were used to analyze the sequence features of GhRCAß2 protein. Transient transformation of Arabidopsis mesophyll protoplasts was performed to determine the subcellular localization of the GhRCAß2 protein. The expression pattern of the GhRCAß2 gene was examined by analyzing transcriptome data and using the quantitative real-time PCR (qRT-PCR). RESULTS: The full-length CDS of GhRCAß2 was 1317 bp, and it encoded a protein with a chloroplast transit peptide. The GhRCAß2 had two conserved ATP-binding domains, and did not have the C-terminal extension (CTE) domain that was unique to the RCA α-isoform in plants. Evolutionarily, GhRCAß2 was clustered in Group A, and had a close evolutionary relationship with the soybean RCA. Western blot analysis demonstrated that GhRCAß2 was immunoreactive to the RCA antibody displaying a molecular weight similar to that of the RCA ß-isoform. The GhRCAß2 protein was found in chloroplast, aligning with its role as a vital enzyme in the process of photosynthesis. The GhRCAß2 gene had a leaf tissue-specific expression pattern, and the yellow-green leaf mutant exhibited a decreased expression of GhRCAß2 in comparison to the wild-type cotton plants. The GhRCAß2 promoter contained several cis-acting elements that respond to light, phytohormones and stress, suggesting that the expression of GhRCAß2 may be regulated by these factors. An additional examination of stress response indicated that GhRCAß2 expression was influenced by cold, heat, salt, and drought stress. Notably, diverse expression pattern was observed across different stress conditions. Additionally, low phosphorus and low potassium stress may result in a notable reduction in the expression of GhRCAß2 gene. CONCLUSION: Our findings will establish a basis for further understanding the function of the GhRCAß2 gene, as well as providing valuable genetic knowledge to improve cotton photosynthetic efficiency and yield under challenging environmental circumstances.


Assuntos
Arabidopsis , Gossypium , Gossypium/genética , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Ativador de Plasminogênio Tecidual , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas , Arabidopsis/metabolismo
3.
Diabetol Metab Syndr ; 16(1): 38, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326870

RESUMO

Diabetic nephropathy (DN), one of the more prevalent microvascular complications in patients diagnosed with diabetes mellitus, is attributed as the main cause of end-stage renal disease (ESRD). Lipotoxicity in podocytes caused by hyperglycemia has been recognised as a significant pathology change, resulting in the deterioration of the glomerular filtration barrier. Research has demonstrated how dapagliflozin, a kind of SGLT2i, exhibits a multifaceted and powerful protective effect in DN, entirely independent of the hypoglycemic effect, with the specific mechanism verified. In this present study, we found that dapagliflozin has the potential to alleviate apoptosis and restore cytoskeleton triggered by high glucose (HG) in vivo and in vitro. We also discovered that dapagliflozin could mitigate podocyte cholesterol accumulation by restoring the expression of ABCA1, which is the key pathway for cholesterol outflows. This research also mechanistically demonstrates that the protective effect of dapagliflozin can be mediated by KLF-5, which is the upstream transcription factor of ABCA1. Taken together, our data suggest that dapagliflozin offers significant potential in alleviating podocyte injury and cholesterol accumulation triggered by high glucose. In terms of the mechanism, we herein reveal that dapagliflozin could accelerate cholesterol efflux by restoring the expression of ABCA1, which is directly regulated by KLF-5.

4.
Food Chem ; 443: 138617, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309022

RESUMO

In this study, the effect of pre-drying and post-frying holding treatments on the oil absorption and the quality of the fried batter-coated peanuts were explored. The results showed that hot air drying and microwave drying induced the gelatinization of starch in the batter before frying. The thermodynamic properties of starch in the batter after frying indicated that pre-drying could protect the orderliness of the starch. CLSM images showed that the pre-drying treatment reduced the number of large oil spots on the surface of batter of fried batter-coated peanuts. SEM observation revealed that the structure of the batter treated with pre-drying was denser and the number of large pores was reduced after frying. The post-frying holding treatment improved the color and texture of the batter-coated peanuts. In conclusion, the pre-drying and post-frying holding treatment can reduce the oil content and improve the fracturability of the fried batter-coated peanuts.


Assuntos
Arachis , Culinária , Culinária/métodos , Fenômenos Químicos , Amido/química , Dessecação
5.
Int Immunopharmacol ; 128: 111427, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38181673

RESUMO

Podocyte inflammatory injury has been indicated to play a pivotal role in the occurrence and development of diabetic nephropathy (DN). However, the pathogenesis of inflammation remains unclear. Recent researches have shown that GDF-15, a member of the transforming growth factor-ß superfamily, were elevated under pathological conditions, such as myocardial ischemia, cancer, as well as inflammation. Here, we demonstrated that GDF-15 could alleviate podocyte inflammatory injury by modulating the NF-κB pathway. GDF-15 and other pro-inflammatory factors, such as TNF-α, IL-1ß, and IL-6 were upregulated in the serum of HFD/STZ rat models. GDF-15 was also elevated in diabetic glomeruli and hyperglycemic stimuli treated-podocytes. The silence of GDF-15 in HG-stimulated podocytes further augmented inflammation and podocyte injury, while overexpression of GDF-15 significantly reduced the inflammatory response in podocytes. Mechanistically, we demonstrated that GDF-15 could inhibit the nuclear translocation of NF-κB through IKK and IκBα by interaction with ubiquitin ligase NEDD4L. Taken together, our data suggested a protective mechanism of elevated GDF-15 in DN through obstruction of ubiquitin degradation of IKK by inhibiting NEDD4L expression, thus decreasing the activation of NF-κB and relieving the inflammation. GDF-15 could serve as a potential therapeutic target for DN.


Assuntos
Nefropatias Diabéticas , Fator 15 de Diferenciação de Crescimento , Podócitos , Animais , Ratos , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Inflamação/metabolismo , NF-kappa B/metabolismo , Podócitos/metabolismo , Ubiquitinas/metabolismo , Ubiquitinas/uso terapêutico
6.
Food Chem ; 438: 137992, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37983996

RESUMO

The batter compositions can affect the oil uptake and texture of fried batter-coated nuts. In this study, the oil uptake and quality of fried batter-coated peanuts and sunflower seeds added with resistant starch and protein were investigated. The results demonstrated that the addition of resistant starch increased the batter hardness and fracturability of the fried batter-coated peanuts by 34.36 % and 33.73 %, respectively. The oil content of fried batter-coated peanuts and sunflower seeds were decreased by 17.98 % and 15.69 %, respectively, with the addition of protein. The microstructure and roughness of the batter revealed that the batter added with protein became denser and uniform. Furthermore, the protein in the batter added with 6 % soy protein isolate had a high surface hydrophobicity. In summary, the addition of resistant starch and protein in batter will be a promising strategy for reducing the oil content and improving the quality of fried batter-coated nuts.


Assuntos
Culinária , Amido Resistente , Culinária/métodos , Nozes
7.
Funct Integr Genomics ; 23(4): 331, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940771

RESUMO

High yield has always been an essential target in almost all of the cotton breeding programs. Boll weight (BW) is a key component of cotton yield. Numerous linkage mapping and genome-wide association studies (GWAS) have been performed to understand the genetic mechanism of BW, but information on the markers/genes controlling BW remains limited. In this study, we conducted a GWAS for BW using 51,268 high-quality single-nucleotide polymorphisms (SNPs) and 189 Gossypium hirsutum accessions across five different environments. A total of 55 SNPs significantly associated with BW were detected, of which 29 and 26 were distributed in the A and D subgenomes, respectively. Five SNPs were simultaneously detected in two environments. For TM5655, TM8662, TM36371, and TM50258, the BW grouped by alleles of each SNP was significantly different. The ± 550 kb regions around these four key SNPs contained 262 genes. Of them, Gh_A02G1473, Gh_A10G1765, and Gh_A02G1442 were expressed highly at 0 to 1 days post-anthesis (dpa), - 3 to 0 dpa, and - 3 to 0 dpa in ovule of TM-1, respectively. They were presumed as the candidate genes for fiber cell differentiation, initiation, or elongation based on gene annotation of their homologs. Overall, these results supplemented valuable information for dissecting the genetic architecture of BW and might help to improve cotton yield through molecular marker-assisted selection breeding and molecular design breeding.


Assuntos
Estudo de Associação Genômica Ampla , Gossypium , Gossypium/genética , Estudo de Associação Genômica Ampla/métodos , Locos de Características Quantitativas , Fenótipo , Genótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único
8.
Theor Appl Genet ; 136(9): 205, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37668671

RESUMO

KEY MESSAGE: In total, 17 QTLs for lint percentage in short-season cotton, including three stable QTLs, were detected. Twenty-eight differentially expressed genes located within the stable QTLs were identified, and two genes were validated by qRT-PCR. The breeding and use of short-season cotton have significant values in addressing the question of occupying farmlands with either cotton or cereals. However, the fiber yields of short-season cotton varieties are significantly lower than those of middle- and late-maturing varieties. How to effectively improve the fiber yield of short-season cotton has become a focus of cotton research. Here, a high-density genetic map was constructed using genome resequencing and an RIL population generated from the hybridization of two short-season cotton accessions, Dong3 and Dong4. The map contained 4960 bin markers across the 26 cotton chromosomes and spanned 3971.08 cM, with an average distance of 0.80 cM between adjacent markers. Based on the genetic map, quantitative trait locus (QTL) mapping for lint percentage (LP, %), an important yield component trait, was performed. In total, 17 QTLs for LP, including three stable QTLs, qLP-A02, qLP-D04, and qLP-D12, were detected. Three out of 11 non-redundant QTLs overlapped with previously reported QTLs, whereas the other eight were novel QTLs. A total of 28 differentially expressed genes associated with the three stable QTLs were identified using RNA-seq of ovules and fibers at different seed developmental stages from the parental materials. The two genes, Ghir_A02G017640 and Ghir_A02G018500, may be related to LP as determined by further qRT-PCR validation. This study provides useful information for the genetic dissection of LP and promotes the molecular breeding of short-season cotton.


Assuntos
Gossypium , Melhoramento Vegetal , RNA-Seq , Estações do Ano , Mapeamento Cromossômico , Gossypium/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-37594169

RESUMO

The article has been withdrawn at the request of the authors of the journal Recent Patents on Nanotechnology.Bentham Science apologizes to the readers of the journal for any inconvenience this may caused.The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.com/editorial-policiesmain.php BENTHAM SCIENCE DISCLAIMER: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript, the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.

10.
Ren Fail ; 45(1): 2227728, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37417222

RESUMO

Acute kidney injury (AKI) is a syndrome characterized by an accelerating decrease in renal function in a short time. Thymol is one of the main components of thyme species and has a variety of pharmacological effects. Here, we investigated whether thymol could ameliorate rhabdomyolysis (RM)-induced AKI and its related mechanism. Glycerol was used to induce RM-associated AKI in rats. Rats received thymol (20 mg/kg/day or 40 mg/kg/day) gavage 24 h before glycerol injection until 72 h after injection daily. Kidney injury was identified by measuring serum creatinine (Scr) and urea levels and by H&E and PAS staining and immunohistochemistry (the expression of proliferating cell nuclear antigen (PCNA)). Renal superoxide dismutase (SOD), malondialdehyde (MDA), and oxidative stress-related Nrf2/HO-1 signaling pathways were measured. The expression of the inflammatory markers TNF-α, IL-6, MCP-1, and NF-κB was assessed by ELISA and western blotting. Finally, the expression of the PI3K/Akt signaling pathway was detected by western blotting. Glycerol administration induced obvious renal histologic damage and increased Scr, urea, and PCNA expression. Notably, thymol treatment attenuated these structural and functional changes and prevented renal oxidative stress, inflammatory damage and PI3K/Akt pathway downregulation associated with glycerol-induced AKI. In conclusion, thymol might have potential applications in the amelioration of AKI via its antioxidant and anti-inflammatory effects and upregulation of the PI3K/Akt signaling pathway.


Assuntos
Injúria Renal Aguda , Rabdomiólise , Ratos , Animais , Glicerol/toxicidade , Antígeno Nuclear de Célula em Proliferação/metabolismo , Timol/farmacologia , Timol/uso terapêutico , Timol/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Estresse Oxidativo , Rim/patologia , Rabdomiólise/complicações , Ureia
11.
Int J Mol Sci ; 24(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37373552

RESUMO

Lint percentage is one of the most essential yield components and an important economic index for cotton planting. Improving lint percentage is an effective way to achieve high-yield in cotton breeding worldwide, especially upland cotton (Gossypium hirsutum L.). However, the genetic basis controlling lint percentage has not yet been systematically understood. Here, we performed a genome-wide association mapping for lint percentage using a natural population consisting of 189 G. hirsutum accessions (188 accessions of G. hirsutum races and one cultivar TM-1). The results showed that 274 single-nucleotide polymorphisms (SNPs) significantly associated with lint percentage were detected, and they were distributed on 24 chromosomes. Forty-five SNPs were detected at least by two models or at least in two environments, and their 5 Mb up- and downstream regions included 584 makers related to lint percentage identified in previous studies. In total, 11 out of 45 SNPs were detected at least in two environments, and their 550 Kb up- and downstream region contained 335 genes. Through RNA sequencing, gene annotation, qRT-PCR, protein-protein interaction analysis, the cis-elements of the promotor region, and related miRNA prediction, Gh_D12G0934 and Gh_A08G0526 were selected as key candidate genes for fiber initiation and elongation, respectively. These excavated SNPs and candidate genes could supplement marker and gene information for deciphering the genetic basis of lint percentage and facilitate high-yield breeding programs of G. hirsutum ultimately.


Assuntos
Estudo de Associação Genômica Ampla , Gossypium , Gossypium/genética , Fibra de Algodão , Locos de Características Quantitativas , Fenótipo , Melhoramento Vegetal
12.
Int J Mol Sci ; 24(7)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37047620

RESUMO

Sedoheptulose-1,7-bisphosphatase (SBPase, EC 3.1.3.37) is a key enzyme in the plant Calvin cycle and one of the main rate-limiting enzymes in the plant photosynthesis pathway. Many studies have demonstrated that the SBPase gene plays an important role in plant photosynthetic efficiency, yield, and stress responses; however, few studies have been conducted on the function and expression of the GhSBPase gene in upland cotton. In this study, our results showed that the coding sequence (CDS) of GhSBPase gene was 1182 bp, encoding a protein with 393 amino acids. The GhSBPase protein had adenosine monophosphate (AMP) binding site and a FIG (FBPase/IMPase/glpX) domain, and had six Cys residues and a CGGT(A/Q)C motif that were involved in redox regulation in plants. Evolutionarily, the GhSBPase protein clustered into the dicotyledon subgroup and was most closely related to the tomato SlSBPase protein. Western-blot analysis further indicated that the GhSBPase gene was indeed the gene encoding the SBPase protein in upland cotton. The GhSBPase protein was localized in chloroplast, which was consistent with its function as a key enzyme in photosynthesis. The GhSBPase gene was specifically highly expressed in leaves, and its expression level was significantly lower in a yellow-green leaf mutant than in the wild type. Moreover, the GhSBPase expression was in response to drought, salt, high- and low-temperature stress, and exhibits different expression patterns. The GhSBPase promoter had the cis-acting elements in response to abiotic stress, phytohormone, and light. In addition, the GhSBPase expression was positively correlated with the chlorophyll fluorescence parameters, suggesting that changes in the expression of the GhSBPase had potential applicability in breeding for enhanced cotton photosynthetic efficiency. These results will help to understand the function of the GhSBPase gene in photosynthesis and the adaptability of plants to external stress and provide important gene information for the high-yield breeding of crops in the future.


Assuntos
Gossypium , Melhoramento Vegetal , Gossypium/genética , Gossypium/metabolismo , Fotossíntese/genética , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Regulação da Expressão Gênica de Plantas
13.
Ren Fail ; 45(1): 2149411, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36724065

RESUMO

BACKGROUND: Peritoneal fibrosis caused by long-term peritoneal dialysis (PD) is the main reason why patients withdraw from PD treatment. Lipid accumulation in the peritoneum was shown to participate in fibrosis, and klotho is a molecule involved in lipid metabolism. GSK343 (enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) inhibitor) has been verified to inhibit epithelial mesenchymal transdifferentiation (EMT) and peritoneal fibrosis, but its related mechanism remains unclear. This study aimed to investigate whether lipid accumulation was involved in the effect of GSK343 and its related mechanism. MATERIALS AND METHODS: First, the expression of EZH2, klotho and EMT indices in human peritoneal mesothelial cells (HMrSV5) incubated with high glucose (HG) levels was detected. After EZH2 was inhibited by GSK343, Western blot (WB), wound healing and Transwell assays were used to explore the effect of GSK343. EZH2 and klotho expression was also detected. Oil red O and Nile red staining and triglyceride (TG) detection kits were used to detect lipid accumulation. A rescue experiment with small interfering RNA specific for klotho (si-klotho) on the basis of GSK343 was also conducted to verify that GSK343 exerted its effect via klotho. In in vivo experiments, rats were administered GSK343, and the related index was assessed. RESULTS: In our study, we revealed that the expression of EZH2 was significantly upregulated and klotho was significantly downregulated in HMrSV5 cells induced by high glucose. With the aid of GSK343, we found that lipid deposition caused by HG was significantly decreased. In addition, EMT and fibrosis were also significantly alleviated. Moreover, GSK343 could also restore the downregulation of klotho. To further verify whether klotho mediated the effect of EZH2, a rescue experiment with si-klotho was also conducted. The results showed that si-klotho could counteract the protective effect of GSK343 on high glucose-induced lipid accumulation and fibrosis. In vivo experiments also revealed that GSK343 could relieve peritoneal fibrosis, lipid deposition and EMT by mitigating EZH2 and restoring klotho expression. CONCLUSIONS: Combining these findings, we found that EZH2 regulated lipid deposition, peritoneal fibrosis, and EMT mediated by klotho. To our knowledge, this is the first study to demonstrate the effect of the EZH2-klotho interaction on peritoneal fibrosis. Hence, EZH2 and klotho could act as potential targets for the treatment of peritoneal fibrosis.


Assuntos
Diálise Peritoneal , Fibrose Peritoneal , Animais , Humanos , Ratos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/farmacologia , Transição Epitelial-Mesenquimal , Glucose/farmacologia , Glucose/metabolismo , Lipídeos , Diálise Peritoneal/efeitos adversos , Fibrose Peritoneal/etiologia , Fibrose Peritoneal/prevenção & controle , Fibrose Peritoneal/metabolismo , Peritônio/metabolismo , Proteínas Klotho/metabolismo
14.
Oral Dis ; 29(2): 672-685, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34582069

RESUMO

OBJECTIVES: Oral squamous cell carcinoma (OSCC) is one of the most aggressive head and neck cancers with high incidence. Multiple studies have revealed that long non-coding RNAs (lncRNAs) play pivotal roles in tumorigenesis. However, the role of long intergenic non-protein coding RNA 664 (LINC00664) on the progression of OSCC was still unclear. SUBJECTS AND METHODS: In this study, the expression of LINC00664 in OSCC tissues and cell lines was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The functional role of LINC0664 was estimated by cell counting kit-8 (CCK-8), transwell assays, Western blot in vitro, and xenograft tumor model in vivo. The regulatory mechanism was investigated by RNA-binding protein immunoprecipitation (RIP), chromatin immunoprecipitation (ChIP), and luciferase reporter assays. RESULTS: LINC00664 was found to be upregulated in OSCC tissues and cell lines and was associated with poor prognosis of OSCC patients. LINC00664 knockdown suppressed OSCC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). Moreover, Kruppel like factor 9 (KLF9) enhanced LINC00664 expression at transcription level. Interestingly, LINC00664 upregulated KLF9 expression by sponging miR-411-5p. In addition, knockdown of LINC00664 restrained tumor growth of OSCC in vivo. CONCLUSION: Our study identified the oncogenic roles of LINC00664 in OSCC tumorigenesis and EMT via KLF9/LINC00664/miR-411-5p/KLF9 feedback loop, which provides new perspectives of the potential therapeutic target for OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , MicroRNAs , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Bucais/patologia , Retroalimentação , Linhagem Celular Tumoral , Apoptose/genética , Neoplasias de Cabeça e Pescoço/genética , Carcinogênese/genética , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo
15.
Int J Biol Macromol ; 226: 1248-1260, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36442570

RESUMO

Cotton is one of the most important economic and fiber crops in the world. KNOX is one class of universal transcription factors, which plays important roles in plant growth and development as well as response to different stresses. Although there are many researches on KNOXs in other plant species, there are few reports on cotton. In this study, we systematically and comprehensively identified all KNOX genes in upland cotton and its two ancestral species; we also studied their functions by employing RNA-seq analysis and virus-induced gene silence (VIGS). A total of 89 KNOX genes were identified from three cotton species. Among them, 44 were from upland cotton, 22 and 23 were found in its ancestral species G. raimondii and G. arboreum, respectively. Plant polyploidization and domestication play a selective force driving KNOX gene evolution. Phylogenetic analysis displayed that KNOX genes were evolved into three Classes. The intron length and exon number differed in each Class. Transcriptome data showed that KNOX genes of Class II were widely expressed in multiple tissues, including fiber. The majority of KNOX genes were induced by different abiotic stresses. Additionally, we found multiple cis-elements related to stress in the promoter region of KNOX genes. VIGS silence of GhKNOX4-A and GhKNOX22-D genes showed significant growth and development effect in cotton seedlings under salt and drought treatments. Both GhKNOX4-A and GhKNOX22-D regulated plant tolerance; silencing both genes induced oxidative stresses, evidenced by reduced SOD activity and induced leave cell death, and also enhanced stomatal open and water loss. Thus, GhKNOX4-A and GhKNOX22-D may contribute to drought response by regulating stomata opening and oxidative stresses.


Assuntos
Secas , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma , Estresse Fisiológico/genética , Cloreto de Sódio/metabolismo , Gossypium/genética , Gossypium/metabolismo , Regulação da Expressão Gênica de Plantas
16.
Mol Biol Rep ; 50(2): 1089-1099, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36399242

RESUMO

BACKGROUND: Auxin response factors (ARFs) are a class of transcription factors that regulate the expression of auxin-responsive genes and play important functions in plant growth and development. To understand the biological functions of the auxin response factor GhARF2 gene in upland cotton, the coding sequence (CDS) of GhARF2 gene was cloned, and its protein sequence, evolutionary relationship, subcellular localization and expression pattern were analysed. METHODS: The CDS sequence of GhARF2 gene was cloned from upland cotton variety Baimian No.1, and its protein sequence was analyzed by bioinformatics method. The subcellular localization of GhARF2 protein was detected by tobacco epidermal transient transformation system, and the tissue expression and stress expression pattern of GhARF2 were analyzed by quantitative Real­Time PCR (qRT-PCR). RESULTS: The full-length CDS of GhARF2 gene was 2583 bp, encoded 860 amino acids, and had a molecular weight and an isoelectric point of 95.46 KDa and 6.02, respectively. The GhARF2 protein had multiple phosphorylation sites, no transmembrane domain, and secondary structures dominated by random coils and alpha helix. The GhARF2 protein had 3 conserved typical domains of ARF gene family members, including the B3 DNA binding domain, the Auxin_resp domain, and the Aux/IAA domain. Phylogenetic analysis revealed that ARF2 proteins in different species were clustered in the Group A subgroup, in which GhARF2 was closely related to TcARF2 of Theobroma cacao L. (Malvaceae). The subcellular localization results showed that the GhARF2 protein was localized in the nucleus. Analysis of tissue expression pattern showed that the GhARF2 gene was expressed in all tested tissues, with the highest expression levels in sepal, followed by leaf, and the lowest expression levels in fiber. Further stress expression analysis showed that the GhARF2 gene was induced by drought, high-temperature, low-temperature and salt stress, and had different expression patterns under different stress conditions. CONCLUSION: These results established a foundation for understanding the functions of GhARF2 and breeding varieties with high-stress tolerance in cotton.


Assuntos
Genoma de Planta , Gossypium , Gossypium/genética , Filogenia , Ácidos Indolacéticos , Família Multigênica , Melhoramento Vegetal , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética
17.
Int J Mol Sci ; 23(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36233340

RESUMO

CIPK (calcineurin B-like-interacting protein kinase) is a kind of serine/threonine protein kinase widely existing in plants, and it plays an important role in plant growth and development and stress response. To better understand the biological functions of the GhCIPK23 gene in upland cotton, the coding sequence (CDS) of the GhCIPK23 gene was cloned in upland cotton, and its protein sequence, evolutionary relationship, subcellular localization, expression pattern and cis-acting elements in the promoter region were analyzed. Our results showed that the full-length CDS of GhCIPK23 was 1368 bp, encoding a protein with 455 amino acids. The molecular weight and isoelectric point of this protein were 50.83 KDa and 8.94, respectively. The GhCIPK23 protein contained a conserved N-terminal protein kinase domain and C-terminal regulatory domain of the CIPK gene family member. Phylogenetic tree analysis demonstrated that GhCIPK23 had a close relationship with AtCIPK23, followed by OsCIPK23, and belonged to Group A with AtCIPK23 and OsCIPK23. The subcellular localization experiment indicated that GhCIPK23 was located in the plasma membrane. Tissue expression analysis showed that GhCIPK23 had the highest expression in petals, followed by sepals, and the lowest in fibers. Stress expression analysis showed that the expression of the GhCIPK23 gene was in response to drought, salt, low-temperature and exogenous abscisic acid (ABA) treatment, and had different expression patterns under different stress conditions. Further cis-acting elements analysis showed that the GhCIPK23 promoter region had cis-acting elements in response to abiotic stress, phytohormones and light. These results established a foundation for understanding the function of GhCIPK23 and breeding varieties with high-stress tolerance in cotton.


Assuntos
Gossypium , Reguladores de Crescimento de Plantas , Ácido Abscísico , Aminoácidos/metabolismo , Calcineurina/metabolismo , Regulação da Expressão Gênica de Plantas , Gossypium/fisiologia , Filogenia , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Serina/metabolismo , Estresse Fisiológico/genética , Treonina/metabolismo
18.
Proc Natl Acad Sci U S A ; 119(39): e2208496119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122204

RESUMO

Allotetraploid cotton (Gossypium) species represents a model system for the study of plant polyploidy, molecular evolution, and domestication. Here, chromosome-scale genome sequences were obtained and assembled for two recently described wild species of tetraploid cotton, Gossypium ekmanianum [(AD)6, Ge] and Gossypium stephensii [(AD)7, Gs], and one early form of domesticated Gossypium hirsutum, race punctatum [(AD)1, Ghp]. Based on phylogenomic analysis, we provide a dated whole-genome level perspective for the evolution of the tetraploid Gossypium clade and resolved the evolutionary relationships of Gs, Ge, and domesticated G. hirsutum. We describe genomic structural variation that arose during Gossypium evolution and describe its correlates-including phenotypic differentiation, genetic isolation, and genetic convergence-that contributed to cotton biodiversity and cotton domestication. Presence/absence variation is prominent in causing cotton genomic structural variations. A presence/absence variation-derived gene encoding a phosphopeptide-binding protein is implicated in increasing fiber length during cotton domestication. The relatively unimproved Ghp offers the potential for gene discovery related to adaptation to environmental challenges. Expanded gene families enoyl-CoA δ isomerase 3 and RAP2-7 may have contributed to abiotic stress tolerance, possibly by targeting plant hormone-associated biochemical pathways. Our results generate a genomic context for a better understanding of cotton evolution and for agriculture.


Assuntos
Evolução Molecular , Genoma de Planta , Gossypium , Fibra de Algodão , Variação Genética/genética , Genoma de Planta/genética , Gossypium/classificação , Gossypium/genética , Isomerases/genética , Isomerases/metabolismo , Tetraploidia
19.
J Mol Med (Berl) ; 100(10): 1373-1386, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36040515

RESUMO

Diabetic nephropathy (DN), an important complication of diabetic microvascular disease, is one of the leading causes of end-stage renal disease (ESRD), which brings heavy burdens to the whole society. Podocytes are terminally differentiated glomerular cells, which act as a pivotal component of glomerular filtration barrier. When podocytes are injured, glomerular filtration barrier is damaged, and proteinuria would occur. Dysfunction of podocytes contributes to DN. And degrees of podocyte injury influence prognosis of DN. Growing evidences have shown that epigenetics does a lot in the evolvement of podocyte injury. Epigenetics includes DNA methylation, histone modification, and non-coding RNA. Among them, histone modification plays an indelible role. Histone modification includes histone methylation, histone acetylation, and other modifications such as histone phosphorylation, histone ubiquitination, histone ADP-ribosylation, histone crotonylation, and histone ß-hydroxybutyrylation. It can affect chromatin structure and regulate gene transcription to exert its function. This review is to summarize documents about pathogenesis of podocyte injury, most importantly, histone modification of podocyte injury in DN recently to provide new ideas for further molecular research, diagnosis, and treatment.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Podócitos , Diabetes Mellitus/patologia , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/patologia , Código das Histonas , Histonas/metabolismo , Humanos , Podócitos/metabolismo , Proteinúria/patologia
20.
Blood Purif ; 51(11): 932-942, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35287130

RESUMO

BACKGROUND: Radiocephalic arteriovenous fistula (RCAVF) is the best access modality to be considered initially when planning arteriovenous fistula (AVF) for maintenance hemodialysis. Considering the higher incidence of RCAVF failed maturation (M), it is important to perform proper preoperative evaluation and identification of high-risk patients. There has been no study on the influence of preoperative cardiac function on the M and patency of AVFs. The purpose of this investigation is to determine whether preoperative cardiac index (CI) is a predictor of M and primary patency of RCAVF. METHOD: A total of 365 end-stage renal disease patients undergoing RCAVF surgery were consecutively enrolled with a median follow-up time of 20 months in this prospective cohort study. Demographics, vascular diameters measured by duplex ultrasound examination, and CI measured by echocardiography, were analyzed for effect on RCAVF primary functional M and primary patency. RESULT: Patients in the group achieving primary RCAVF functional M had a significantly larger mean CI than the group with early RCAVF failure (2.93 ± 0.77 vs. 3.57 ± 0.76 L/min/m2, p < 0.001). The receiver operating characteristic curve was plotted and demonstrated that preoperative vein diameter and CI can predict failure of RCAVF M. The AUC of CI was higher (0.745 vs. 0.666). Multivariate regression analysis, adjusted for age, sex, diabetes, preoperative dialysis status and vessel diameters, showed that decreased CI remained associated with increased risk of failure of M (FM) and worse primary unassisted patency. The Kaplan-Meier survival analysis suggested that patients with CI <3 L/min/m2 had a worse primary unassisted patency rate at all time points compared with patients with CI ≥3 L/min/m2. CONCLUSION: This study demonstrated that preoperative CI was associated with RCAVF M and long-term patency. A decreased CI may be a possible predictor of an increased risk of FM and a shorter primary patency time.


Assuntos
Fístula Arteriovenosa , Derivação Arteriovenosa Cirúrgica , Humanos , Grau de Desobstrução Vascular , Estudos Prospectivos , Artéria Radial/cirurgia , Fatores de Risco , Estudos Retrospectivos , Resultado do Tratamento , Derivação Arteriovenosa Cirúrgica/efeitos adversos , Diálise Renal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...