Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 34(17)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36696686

RESUMO

In this work, staggered bottom-gate structure amorphous In-Ga-Zn-O (a-IGZO) thin film transistors (TFTs) with high-k ZrO2gate dielectric were fabricated using low-cost atmospheric pressure-plasma enhanced chemical vapor deposition (AP-PECVD) within situhydrogenation to modulate the carrier concentration and improve interface quality. Subsequently, a neutral oxygen beam irradiation (NOBI) technique is applied, demonstrating that a suitable NOBI treatment could successfully enhance electrical characteristics by reducing native defect states and minimize the trap density in the back channel. A reverse retrograde channel (RRGC) with ultra-high/low carrier concentration is also formed to prevent undesired off-state leakage current and achieve a very low subthreshold swing. The resulting a-IGZO TFTs exhibit excellent electrical characteristics, including a low subthreshold swing of 72 mV dec-1and high field-effect mobility of 35 cm2V-1s-1, due to conduction path passivation and stronger carrier confinement in the RRGC. The UV-vis spectroscopy shows optical transmittance above 90% in the visible range of the electromagnetic spectrum. The study confirms the H2plasma with NOBI-treated a-IGZO/ZrO2TFT is a promising candidate for transparent electronic device applications.

2.
J Nanosci Nanotechnol ; 18(3): 1917-1921, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29448683

RESUMO

Atmospheric pressure plasma-enhanced chemical vapor deposition (AP-PECVD) technique and KrF excimer laser annealing (ELA) were employed for the fabrication of indium gallium zinc oxide thin-film transistors (IGZO-TFTs). Device with a 150 mJ/cm2 laser annealing densities demonstrated excellent electrical characteristics with improved on/off current ratio of 4.7×107, high channel mobility of 10 cm2/V-s, and low subthreshold swing of 0.15 V/dec. The improvements are attributed to the adjustment of oxygen vacancies in the IGZO channel to an appropriate range of around 28.3% and the reduction of traps at the high-k/IGZO interface.

3.
J Nanosci Nanotechnol ; 18(3): 2054-2057, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29448711

RESUMO

Atmospheric pressure plasma-enhanced chemical vapor deposition (AP-PECVD) was employed for the fabrication of indium gallium zinc oxide thin-film transistors (IGZO TFTs) with high transparent gallium zinc oxide (GZO) source/drain electrodes. The influence of post-deposition annealing (PDA) temperature on GZO source/drain and device performance was studied. Device with a 300 °C annealing demonstrated excellent electrical characteristics with on/off current ratio of 2.13 × 108, saturation mobility of 10 cm2/V-s, and low subthreshold swing of 0.2 V/dec. The gate stacked LaAlO3/ZrO2 of AP-IGZO TFTs with highly transparent and conductive AP-GZO source/drain electrode show excellent gate control ability at a low operating voltage.

4.
J Nanosci Nanotechnol ; 16(6): 6044-8, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27427669

RESUMO

The aim of this paper is to illustrate the N2 plasma treatment for high-κ ZrO2 gate dielectric stack (30 nm) with indium-gallium-zinc-oxide (IGZO) thin-film transistors (TFTs). Experimental results reveal that a suitable incorporation of nitrogen atoms could enhance the device performance by eliminating the oxygen vacancies and provide an amorphous surface with better surface roughness. With N2 plasma treated ZrO2 gate, IGZO channel is fabricated by atmospheric pressure plasma-enhanced chemical vapor deposition (AP-PECVD) technique. The best performance of the AP-PECVD IGZO TFTs are obtained with 20 W-90 sec N2 plasma treatment with field-effect mobility (µ(FET)) of 22.5 cm2/V-s, subthreshold swing (SS) of 155 mV/dec, and on/off current ratio (I(on)/I(off)) of 1.49 x 10(7).

5.
J Nanosci Nanotechnol ; 12(7): 5625-30, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22966622

RESUMO

The influence of the thermal annealing on the amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) under different ambient gases has been systematically addressed. The chemical bonding states and transfer characteristics of a-IGZO TFTs show evident dependence on the annealing ambient gas. For the a-IGZO TFTs in the oxygen ambient annealing at 250 degrees C for 30 mins exhibited a maximum field effect mobility (max muFE) of 9.36 cm2/V x s, on/off current ratio of 6.12 x 10(10), and a subthreshold slope (SS) of 0.21 V/decade. Respectively, the as-deposited ones without annealing possess a max muFE of 6.61 cm2/V x s, on/off current ratio of 4.58 x 10(8), and a SS of 0.46 V/decade. In contrast, the a-IGZO TFTs annealed at 250 degrees C for 30 mins in the nitrogen ambient would be degraded to have a max muFE of 0.18 cm2/V x s, on/off current ratio of 2.22 x 10(4), and a SS of 7.37 V/decade, corresponding. It is attributed to the content of the oxygen vacancies, according the x-ray photoelectron spectroscopy (XPS) analyze of the three different samples.

6.
J Nanosci Nanotechnol ; 12(7): 5783-7, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22966654

RESUMO

In this paper, high-performance bottom-gate (BG) thin-film transistors (TFTs) with zinc oxide (ZnO) artificially location-controlled lateral grain growth have been prepared via low-temperature hydrothermal method. For the proper design of source/drain structure of ZnO/Ti/Pt thin films, the grains can be laterally grown from the under-cut ZnO beneath the Ti/Pt layer. Consequently, the single one vertical grain boundary perpendicular to the current flow will be produced in the channel region as the grown grains from the source/drain both sides are impinged. As compared with the conventional sputtered ZnO BG-TFTs, the proposed location-controlled hydrothermal ZnO BG-TFTs (W/L = 250 microm/10 microm) demonstrated the higher field-effect mobility of 6.09 cm2/V x s, lower threshold voltage of 3.67 V, higher on/off current ratio above 10(6), and superior current drivability, reflecting the high-quality ZnO thin films with less grain boundary effect in the channel region.

7.
J Nanosci Nanotechnol ; 11(7): 5737-43, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22121600

RESUMO

A transparent ultraviolet (UV) sensor using nanoheterojunctions (NHJs) composed of p-type NiO nanoflowers (NFs) and n-type ZnO nanowires (NWs) was prepared through a sequential low-temperature hydrothermal-growth process. The devices that were annealed in an oxygen (O2) ambient exhibited better rectification behavior (I forward/I reverse = 427), a lower forward threshold voltage (V(th) = 0.98 V), a lower leakage current (1.68 x 10(-5) A/cm2), and superior sensitivity (I uv/I dark = 57.8; I visible/I dark = 1.25) to UV light (lambda = 325 nm) than the unannealed devices. The remarkably improved device performances and optoelectronic characteristics of the annealed p-NiO-NF/n-ZnO-NW NHJs can be associated with their fewer structural defects, fewer interfacial defects, and better crystallinity. A stable and repeatable operation of dynamic photoresponse was also observed in the annealed devices. The excellent sensitivity and repeatable photoresponse to UV light of the hydrothermally grown p-NiO-NF/n-ZnO-NW NHJs annealed in a suitable O2 ambient indicate that they can be applied to nano-integrated optoelectronic devices.

8.
J Nanosci Nanotechnol ; 11(7): 6013-9, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22121649

RESUMO

The aluminum-doped ZnO (AZO) nanostructures with different Al concentrations were synthesized on AZO/glass substrate via a simple hydrothermal growth method at a temperature as low as 85 degrees C. The morphologies, crystallinity, optical emission properties, and chemical bonding states of AZO nanostructures show evident dependence on the aluminum dosage. The morphologies of AZO nanostructures were changed from vertically aligned nanowires (NWs), and NWs coexisted with nanosheets (NSs), to complete NSs in respect of the Al-dosages of 0-3 at.%, 5 at.%, and 7 at.%, correspondingly. The undoped ZnO and lightly Al-doped AZO (< or = 3 at.%) NWs are single-crystalline wurtzite structure. In contrast, heavily Al-doped AZO sample is polycrystalline. The AZO nanostructure with 3 at.% Al-dosages reveals the optimal crystallinity and less structural defects, reflecting the longest carrier lifetime and highest conductivity. Consequently, the field-emission characteristics of such an AZO emitter can exhibit the higher current density, larger field-enhancement factor (beta) of 3131, lower turn-on field of 2.17 V/microm, and lower threshold field of 3.43 V/microm.

9.
Nanotechnology ; 16(2): 273-7, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21727435

RESUMO

The thermal annealing conditions in nitrogen ambient for the self-synthesis of tungsten carbide nanowires from sputter-deposited WC(x) films were investigated. Experimental results show that the temperature window for the growth of nanowires lies in the range of 500-750 °C with the corresponding annealing time interval ranging from 2.5 to 0.25 h. The diameter, length, and density of the grown nanowires are in the range of 10-15 nm, 0.1-0.3 µm, and 210-410 µm(-2), respectively. The degree of carbon depletion in the annealed WC(x) films plays a crucial role in determining both the shape and density of the self-synthesized nanowires. Nanowires synthesized at lower temperatures were seen to be smaller in dimension but higher in density. Material analysis reveals that the phase transition from WC to W(2)C arising from decarburization of the WC(x) film during thermal annealing should be responsible for the self-synthesis of nanowires.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...