Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3594, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678011

RESUMO

Recurrent DNA break clusters (RDCs) are replication-transcription collision hotspots; many are unique to neural progenitor cells. Through high-resolution replication sequencing and a capture-ligation assay in mouse neural progenitor cells experiencing replication stress, we unravel the replication features dictating RDC location and orientation. Most RDCs occur at the replication forks traversing timing transition regions (TTRs), where sparse replication origins connect unidirectional forks. Leftward-moving forks generate telomere-connected DNA double-strand breaks (DSBs), while rightward-moving forks lead to centromere-connected DSBs. Strand-specific mapping for DNA-bound RNA reveals co-transcriptional dual-strand DNA:RNA hybrids present at a higher density in RDC than in other actively transcribed long genes. In addition, mapping RNA polymerase activity uncovers that head-to-head interactions between replication and transcription machinery result in 60% DSB contribution to the head-on compared to 40% for co-directional. Taken together we reveal TTR as a fragile class and show how the linear interaction between transcription and replication impacts genome stability.


Assuntos
Quebras de DNA de Cadeia Dupla , Replicação do DNA , Instabilidade Genômica , Transcrição Gênica , Animais , Camundongos , Células-Tronco Neurais/metabolismo , DNA/metabolismo , DNA/genética , Origem de Replicação , Telômero/metabolismo , Telômero/genética , Centrômero/metabolismo , Centrômero/genética
2.
bioRxiv ; 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-37662334

RESUMO

Recurrent DNA break clusters (RDCs) are replication-transcription collision hotspots; many are unique to neural progenitor cells. Through high-resolution replication sequencing and a capture-ligation assay in mouse neural progenitor cells experiencing replication stress, we unraveled the replication features dictating RDC location and orientation. Most RDCs occur at the replication forks traversing timing transition regions (TTRs), where sparse replication origins connect unidirectional forks. Leftward-moving forks generate telomere-connected DNA double-strand breaks (DSBs), while rightward-moving forks lead to centromere-connected DSBs. Strand-specific mapping for DNA-bound RNA revealed co-transcriptional dual-strand DNA:RNA hybrids present at a higher density in RDC than in other actively transcribed long genes. In addition, mapping RNA polymerase activity revealed that head-to-head interactions between replication and transcription machinery resulted in 60% DSB contribution to the head-on compared to 40% for co-directional. Our findings revealed TTR as a novel fragile class and highlighted how the linear interaction between transcription and replication impacts genome stability.

3.
Neuro Oncol ; 23(12): 2028-2041, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34049392

RESUMO

BACKGROUND: Medulloblastomas with chromothripsis developing in children with Li-Fraumeni Syndrome (germline TP53 mutations) are highly aggressive brain tumors with dismal prognosis. Conventional photon radiotherapy and DNA-damaging chemotherapy are not successful for these patients and raise the risk of secondary malignancies. We hypothesized that the pronounced homologous recombination deficiency in these tumors might offer vulnerabilities that can be therapeutically utilized in combination with high linear energy transfer carbon ion radiotherapy. METHODS: We tested high-precision particle therapy with carbon ions and protons as well as topotecan with or without PARP inhibitor in orthotopic primary and matched relapsed patient-derived xenograft models. Tumor and normal tissue underwent longitudinal morphological MRI, cellular (markers of neurogenesis and DNA damage-repair), and molecular characterization (whole-genome sequencing). RESULTS: In the primary medulloblastoma model, carbon ions led to complete response in 79% of animals irrespective of PARP inhibitor within a follow-up period of 300 days postirradiation, as detected by MRI and histology. No sign of neurologic symptoms, impairment of neurogenesis or in-field carcinogenesis was detected in repair-deficient host mice. PARP inhibitors further enhanced the effect of proton irradiation. In the postradiotherapy relapsed tumor model, median survival was significantly increased after carbon ions (96 days) versus control (43 days, P < .0001). No major change in the clonal composition was detected in the relapsed model. CONCLUSION: The high efficacy and favorable toxicity profile of carbon ions warrants further investigation in primary medulloblastomas with chromothripsis. Postradiotherapy relapsed medulloblastomas exhibit relative resistance compared to treatment-naïve tumors, calling for exploration of multimodal strategies.


Assuntos
Neoplasias Cerebelares , Cromotripsia , Radioterapia com Íons Pesados , Síndrome de Li-Fraumeni , Meduloblastoma , Animais , Carbono , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/radioterapia , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/radioterapia , Camundongos
4.
Free Radic Biol Med ; 165: 368-384, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33460768

RESUMO

Emerging evidences implicate the contribution of ROS to T cell activation and signaling. The tyrosine kinase, ζ-chain-associated protein of 70 kDa (ZAP70), is essential for T cell development and activation. However, it remains elusive whether a direct redox regulation affects ZAP70 activity upon TCR stimulation. Here, we show that deficiency of non-selenocysteine containing phospholipid hydroperoxide glutathione peroxidase (NPGPx), a redox sensor, results in T cell hyperproliferation and elevated cytokine productions. T cell-specific NPGPx-knockout mice reveal enhanced T-dependent humoral responses and are susceptible to experimental autoimmune encephalomyelitis (EAE). Through proteomic approaches, ZAP70 is identified as the key interacting protein of NPGPx through disulfide bonding. NPGPx is activated by ROS generated from TCR stimulation, and modulates ZAP70 activity through redox switching to reduce ZAP70 recruitment to TCR/CD3 complex in membrane lipid raft, therefore subduing TCR responses. These results reveal a delicate redox mechanism that NPGPx serves as a modulator to curb ZAP70 functions in maintaining T cell homeostasis.


Assuntos
Proteômica , Linfócitos T , Animais , Homeostase , Camundongos , Oxirredução , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(19): 10541-10546, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32332169

RESUMO

Mild replication stress enhances appearance of dozens of robust recurrent genomic break clusters, termed RDCs, in cultured primary mouse neural stem and progenitor cells (NSPCs). Robust RDCs occur within genes ("RDC-genes") that are long and have roles in neural cell communications and/or have been implicated in neuropsychiatric diseases or cancer. We sought to develop an in vitro approach to determine whether specific RDC formation is associated with neural development. For this purpose, we adapted a system to induce neural progenitor cell (NPC) development from mouse embryonic stem cell (ESC) lines deficient for XRCC4 plus p53, a genotype that enhances DNA double-strand break (DSB) persistence to enhance detection. We tested for RDCs by our genome-wide DSB identification approach that captures DSBs via their ability to join to specific genomic Cas9/single-guide RNA-generated bait DSBs. In XRCC4/p53-deficient ESCs, we detected seven RDCs, all of which were in genes and two of which were robust. In contrast, in NPCs derived from these ESC lines we detected 29 RDCs, a large fraction of which were robust and associated with long, transcribed neural genes that were also robust RDC-genes in primary NSPCs. These studies suggest that many RDCs present in NSPCs are developmentally influenced to occur in this cell type and indicate that induced development of NPCs from ESCs provides an approach to rapidly elucidate mechanistic aspects of NPC RDC formation.


Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Neurais/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Quebras de DNA , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Genes p53/genética , Genoma , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Família Multigênica/genética , Neurogênese , Neurônios/citologia
6.
Cell Stem Cell ; 26(2): 221-233.e6, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32004479

RESUMO

The association between macrocephaly and autism spectrum disorder (ASD) suggests that the mechanisms underlying excessive neural growth could contribute to ASD pathogenesis. Consistently, neural progenitor cells (NPCs) derived from human induced pluripotent stem cells (hiPSCs) of ASD individuals with early developmental brain enlargement are inherently more proliferative than control NPCs. Here, we show that hiPSC-derived NPCs from ASD individuals with macrocephaly display an altered DNA replication program and increased DNA damage. When compared with the control NPCs, high-throughput genome-wide translocation sequencing (HTGTS) demonstrates that ASD-derived NPCs harbored elevated DNA double-strand breaks in replication stress-susceptible genes, some of which are associated with ASD pathogenesis. Our results provide a mechanism linking hyperproliferation of NPCs with the pathogenesis of ASD by disrupting long neural genes involved in cell-cell adhesion and migration.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Células-Tronco Pluripotentes Induzidas , Transtorno do Espectro Autista/genética , Proliferação de Células , Instabilidade Genômica , Humanos
7.
Mol Neurobiol ; 56(6): 3972-3983, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30238389

RESUMO

Alzheimer's disease (AD), probably caused by abnormal accumulation of ß-amyloid (Aß) and aberrant phosphorylation of tau, is the most common cause of dementia among older people. Generation of patient-specific neurons by induced pluripotent stem cell (iPSC) technology facilitates exploration of the disease features in live human neurons from AD patients. In this study, we generated iPSCs from two familial AD patients carrying a heterozygous D678H mutation in the APP gene (AD-iPSCs). The neurons derived from our AD-iPSCs demonstrated aberrant accumulation of intracellular and secreted Aß42 and Aß40, reduction of serine 9 phosphorylation in glycogen synthase kinase 3ß (GSK3ß) hyperphosphorylation of threonine 181 and serine 396 in tau protein, impaired neurite outgrowth, downregulation of synaptophysin, and increased caspase 1 activity. The comparison between neurons derived from a sibling pair of wild-type and mutated iPSCs successfully recapitulated these AD phenotypes. Treatment with indole compound NC009-1 (3-((1H-Indole-3-yl)methyl)-4-(2-nitrophenyl)but-3-en-2-one), a potential Aß aggregation reducer, normalized the Aß levels and GSK3ß and tau phosphorylation, attenuated caspase 1 activity, and improved neurite outgrowth in AD-iPSC-derived neurons. Thus, APP D678H iPSCs-derived neurons recapitulate the cellular characteristics relevant to AD and enable exploration of the underlying pathogenesis and therapeutic strategies for AD.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , Mutação/genética , Adulto , Animais , Sequência de Bases , Diferenciação Celular/efeitos dos fármacos , Feminino , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Indóis/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Masculino , Camundongos , Pessoa de Meia-Idade , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Linhagem , Fenótipo , Fosforilação/efeitos dos fármacos , Proteínas tau/metabolismo
8.
Nat Commun ; 9(1): 4760, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420702

RESUMO

Chromothripsis and chromoanasynthesis are catastrophic events leading to clustered genomic rearrangements. Whole-genome sequencing revealed frequent complex genomic rearrangements (n = 16/26) in brain tumors developing in mice deficient for factors involved in homologous-recombination-repair or non-homologous-end-joining. Catastrophic events were tightly linked to Myc/Mycn amplification, with increased DNA damage and inefficient apoptotic response already observable at early postnatal stages. Inhibition of repair processes and comparison of the mouse tumors with human medulloblastomas (n = 68) and glioblastomas (n = 32) identified chromothripsis as associated with MYC/MYCN gains and with DNA repair deficiencies, pointing towards therapeutic opportunities to target DNA repair defects in tumors with complex genomic rearrangements.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Dano ao DNA/genética , Reparo do DNA/genética , Genoma , Animais , Apoptose/genética , Linhagem Celular Tumoral , Reparo do DNA por Junção de Extremidades/genética , Proteínas de Ligação a DNA/metabolismo , Amplificação de Genes , Rearranjo Gênico/genética , Recombinação Homóloga/genética , Humanos , Cariotipagem , Camundongos , Proteína Proto-Oncogênica N-Myc/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteína Supressora de Tumor p53/metabolismo
9.
Proc Natl Acad Sci U S A ; 115(34): 8615-8620, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30072430

RESUMO

The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is a classical nonhomologous end-joining (cNHEJ) factor. Loss of DNA-PKcs diminished mature B cell class switch recombination (CSR) to other isotypes, but not IgG1. Here, we show that expression of the kinase-dead DNA-PKcs (DNA-PKcsKD/KD ) severely compromises CSR to IgG1. High-throughput sequencing analyses of CSR junctions reveal frequent accumulation of nonproductive interchromosomal translocations, inversions, and extensive end resection in DNA-PKcsKD/KD , but not DNA-PKcs-/- , B cells. Meanwhile, the residual joints from DNA-PKcsKD/KD cells and the efficient Sµ-Sγ1 junctions from DNA-PKcs-/- B cells both display similar preferences for small (2-6 nt) microhomologies (MH). In DNA-PKcs-/- cells, Sµ-Sγ1 joints are more resistant to inversions and extensive resection than Sµ-Sε and Sµ-Sµ joints, providing a mechanism for the isotype-specific CSR defects. Together, our findings identify a kinase-dependent role of DNA-PKcs in suppressing MH-mediated end joining and a structural role of DNA-PKcs protein in the orientation of CSR.


Assuntos
Linfócitos B/enzimologia , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Switching de Imunoglobulina/fisiologia , Imunoglobulina G/biossíntese , Proteínas Nucleares/metabolismo , Recombinação Genética/fisiologia , Animais , Linfócitos B/citologia , Linhagem Celular , Proteína Quinase Ativada por DNA/genética , Proteínas de Ligação a DNA/genética , Imunoglobulina G/genética , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética
10.
Proc Natl Acad Sci U S A ; 115(8): 1919-1924, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29432181

RESUMO

We recently discovered 27 recurrent DNA double-strand break (DSB) clusters (RDCs) in mouse neural stem/progenitor cells (NSPCs). Most RDCs occurred across long, late-replicating RDC genes and were found only after mild inhibition of DNA replication. RDC genes share intriguing characteristics, including encoding surface proteins that organize brain architecture and neuronal junctions, and are genetically implicated in neuropsychiatric disorders and/or cancers. RDC identification relies on high-throughput genome-wide translocation sequencing (HTGTS), which maps recurrent DSBs based on their translocation to "bait" DSBs in specific chromosomal locations. Cellular heterogeneity in 3D genome organization allowed unequivocal identification of RDCs on 14 different chromosomes using HTGTS baits on three mouse chromosomes. Additional candidate RDCs were also implicated, however, suggesting that some RDCs were missed. To more completely identify RDCs, we exploited our finding that joining of two DSBs occurs more frequently if they lie on the same cis chromosome. Thus, we used CRISPR/Cas9 to introduce specific DSBs into each mouse chromosome in NSPCs that were used as bait for HTGTS libraries. This analysis confirmed all 27 previously identified RDCs and identified many new ones. NSPC RDCs fall into three groups based on length, organization, transcription level, and replication timing of genes within them. While mostly less robust, the largest group of newly defined RDCs share many intriguing characteristics with the original 27. Our findings also revealed RDCs in NSPCs in the absence of induced replication stress, and support the idea that the latter treatment augments an already active endogenous process.


Assuntos
Quebras de DNA de Cadeia Dupla , Animais , Encéfalo , Reparo do DNA , Deleção de Genes , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Células-Tronco Neurais/metabolismo , Interferência de RNA , Translocação Genética
11.
Proc Natl Acad Sci U S A ; 115(4): 762-767, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29311308

RESUMO

Ig heavy chain (IgH) class switch recombination (CSR) in B lymphocytes switches IgH constant regions to change antibody functions. CSR is initiated by DNA double-strand breaks (DSBs) within a donor IgH switch (S) region and a downstream acceptor S region. CSR is completed by fusing donor and acceptor S region DSB ends by classical nonhomologous end-joining (C-NHEJ) and, in its absence, by alternative end-joining that is more biased to use longer junctional microhomologies (MHs). Deficiency for DSB response (DSBR) factors, including ataxia telangiectasia-mutated (ATM) and 53BP1, variably impair CSR end-joining, with 53BP1 deficiency having the greatest impact. However, studies of potential impact of DSBR factor deficiencies on MH-mediated CSR end-joining have been technically limited. We now use a robust DSB joining assay to elucidate impacts of deficiencies for DSBR factors on CSR and chromosomal translocation junctions in primary mouse B cells and CH12F3 B-lymphoma cells. Compared with wild-type, CSR and c-myc to S region translocation junctions in the absence of 53BP1, and, to a lesser extent, other DSBR factors, have increased MH utilization; indeed, 53BP1-deficient MH profiles resemble those associated with C-NHEJ deficiency. However, translocation junctions between c-myc DSB and general DSBs genome-wide are not MH-biased in ATM-deficient versus wild-type CH12F3 cells and are less biased in 53BP1- and C-NHEJ-deficient cells than CSR junctions or c-myc to S region translocation junctions. We discuss potential roles of DSBR factors in suppressing increased MH-mediated DSB end-joining and features of S regions that may render their DSBs prone to MH-biased end-joining in the absence of DSBR factors.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Switching de Imunoglobulina , Translocação Genética , Animais , Linhagem Celular , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos
12.
EMBO Mol Med ; 9(12): 1660-1680, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28993429

RESUMO

Lymph node (LN) metastasis is commonly associated with systemic distant organ metastasis in human breast cancer and is an important prognostic predictor for survival of breast cancer patients. However, whether tumor-draining LNs (TDLNs) play a significant role in modulating the malignancy of cancer cells for distant metastasis remains controversial. Using a syngeneic mouse mammary tumor model, we found that breast tumor cells derived from TDLN have higher malignancy and removal of TDLNs significantly reduced distant metastasis. Up-regulation of oncogenic Il-17rb in cancer cells derived from TDLNs contributes to their malignancy. TGF-ß1 secreted from regulatory T cells (Tregs) in the TDLNs mediated the up-regulation of Il-17rb through downstream Smad2/3/4 signaling. These phenotypes can be abolished by TGF-ß1 neutralization or depletion of Tregs. Consistently, clinical data showed that the up-regulation of IL-17RB in cancer cells from LN metastases correlated with the increased prevalence of Tregs as well as the aggressive growth of tumors in mouse xenograft assay. Together, these results indicate that Tregs in TDLNs play an important role in modulating the malignancy of breast cancer cells for distant metastasis. Blocking IL-17RB expression could therefore be a potential approach to curb the process.


Assuntos
Neoplasias da Mama/patologia , Linfonodos/patologia , Receptores de Interleucina-17/metabolismo , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/radioterapia , Feminino , Humanos , Linfonodos/imunologia , Metástase Linfática , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , RNA Interferente Pequeno/metabolismo , Receptores de Interleucina-17/antagonistas & inibidores , Receptores de Interleucina-17/genética , Transdução de Sinais , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Transplante Homólogo , Células Tumorais Cultivadas , Regulação para Cima
13.
Am J Transl Res ; 8(4): 1626-40, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27186289

RESUMO

NPGPx (GPx7) is a member of the glutathione peroxidase (GPx) family without any GPx activity. GPx7 displays a unique function which serves as a stress sensor/transmitter to transfer the signal to its interacting proteins by shuttling disulfide bonds in response to various stresses. In this review, we focus on the exceptional structural and biochemical features of GPx7 compared to other 7 family members and described how GPx7 regulates the diverse signaling targets including GRP78, PDI, CPEB2, and XRN2, and their different roles in unfolded protein response, oxidative stress, and non-targeting siRNA stress response, respectively. The phenotypes associated with GPx7 deficiency in mouse or human including ROS accumulations, highly elevated cancer incidences, auto-immune disorders, and obesity are also revealed in this paper. Finally, we compare GPx8 with GPx7, which shares the highest structural similarity but different biological roles in stress response. These insights have thus provided a more comprehensive understanding of the role of GPx7 in the maintenance of redox homeostasis.

14.
Proc Natl Acad Sci U S A ; 113(8): 2258-63, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26873106

RESUMO

High-throughput, genome-wide translocation sequencing (HTGTS) studies of activated B cells have revealed that DNA double-strand breaks (DSBs) capable of translocating to defined bait DSBs are enriched around the transcription start sites (TSSs) of active genes. We used the HTGTS approach to investigate whether a similar phenomenon occurs in primary neural stem/progenitor cells (NSPCs). We report that breakpoint junctions indeed are enriched around TSSs that were determined to be active by global run-on sequencing analyses of NSPCs. Comparative analyses of transcription profiles in NSPCs and B cells revealed that the great majority of TSS-proximal junctions occurred in genes commonly expressed in both cell types, possibly because this common set has higher transcription levels on average than genes transcribed in only one or the other cell type. In the latter context, among all actively transcribed genes containing translocation junctions in NSPCs, those with junctions located within 2 kb of the TSS show a significantly higher transcription rate on average than genes with junctions in the gene body located at distances greater than 2 kb from the TSS. Finally, analysis of repair junction signatures of TSS-associated translocations in wild-type versus classical nonhomologous end-joining (C-NHEJ)-deficient NSPCs reveals that both C-NHEJ and alternative end-joining pathways can generate translocations by joining TSS-proximal DSBs to DSBs on other chromosomes. Our studies show that the generation of transcription-associated DSBs is conserved across divergent cell types.


Assuntos
Quebras de DNA de Cadeia Dupla , Células-Tronco Neurais/metabolismo , Transcrição Gênica , Translocação Genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linfócitos B/metabolismo , Células Cultivadas , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genes myc , Genes p53 , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-myc/deficiência , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Sítio de Iniciação de Transcrição , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
15.
Cell ; 164(4): 644-55, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26871630

RESUMO

Repair of DNA double-strand breaks (DSBs) by non-homologous end joining is critical for neural development, and brain cells frequently contain somatic genomic variations that might involve DSB intermediates. We now use an unbiased, high-throughput approach to identify genomic regions harboring recurrent DSBs in primary neural stem/progenitor cells (NSPCs). We identify 27 recurrent DSB clusters (RDCs), and remarkably, all occur within gene bodies. Most of these NSPC RDCs were detected only upon mild, aphidicolin-induced replication stress, providing a nucleotide-resolution view of replication-associated genomic fragile sites. The vast majority of RDCs occur in long, transcribed, and late-replicating genes. Moreover, almost 90% of identified RDC-containing genes are involved in synapse function and/or neural cell adhesion, with a substantial fraction also implicated in tumor suppression and/or mental disorders. Our characterization of NSPC RDCs reveals a basis of gene fragility and suggests potential impacts of DNA breaks on neurodevelopment and neural functions.


Assuntos
Quebras de DNA , Células-Tronco Neurais/metabolismo , Animais , Afidicolina/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Encéfalo/citologia , Adesão Celular , Moléculas de Adesão Celular Neuronais/metabolismo , Quebras de DNA/efeitos dos fármacos , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Proteínas Ligadas por GPI/metabolismo , Genoma , Humanos , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Sinapses , Fatores de Transcrição/metabolismo , Translocação Genética
16.
J Exp Med ; 212(3): 333-49, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25732306

RESUMO

Pancreatic cancer has an extremely high mortality rate due to its aggressive metastatic nature. Resolving the underlying mechanisms will be crucial for treatment. Here, we found that overexpression of IL-17B receptor (IL-17RB) strongly correlated with postoperative metastasis and inversely correlated with progression-free survival in pancreatic cancer patients. Consistently, results from ex vivo experiments further validated that IL-17RB and its ligand, IL-17B, plays an essential role in pancreatic cancer metastasis and malignancy. Signals from IL-17B-IL-17RB activated CCL20/CXCL1/IL-8/TFF1 chemokine expressions via the ERK1/2 pathway to promote cancer cell invasion, macrophage and endothelial cell recruitment at primary sites, and cancer cell survival at distant organs. Treatment with a newly derived monoclonal antibody against IL-17RB blocked tumor metastasis and promoted survival in a mouse xenograft model. These findings not only illustrate a key mechanism underlying the highly aggressive characteristics of pancreatic cancer but also provide a practical approach to tackle this disease.


Assuntos
Anticorpos Monoclonais/farmacologia , Quimiocinas/metabolismo , Interleucina-17/imunologia , Interleucina-17/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Receptores de Interleucina-17/metabolismo , Animais , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-17/genética , Masculino , Camundongos SCID , Pessoa de Meia-Idade , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/mortalidade , Receptores de Interleucina-17/genética , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
17.
EMBO Mol Med ; 5(8): 1165-79, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23828861

RESUMO

Elevated oxidative stress is closely associated with obesity. Emerging evidence shows that instead of being a consequence of obesity, oxidative stress may also contribute to fat formation. Nonselenocysteine-containing phospholipid hydroperoxide glutathione peroxidase (NPGPx) is a conserved oxidative stress sensor/transducer and deficiency of NPGPx causes accumulation of reactive oxygen species (ROS). In this communication, we show that NPGPx was highly expressed in preadipocytes of adipose tissue. Deficiency of NPGPx promoted preadipocytes to differentiate to adipocytes via ROS-dependent dimerization of protein kinase A regulatory subunits and activation of CCAAT/enhancer-binding protein beta (C/EBPß). This enhanced adipogenesis was alleviated by antioxidant N-acetylcysteine (NAC). Consistently, NPGPx-deficient mice exhibited markedly increased fat mass and adipocyte hypertrophy, while treatment with NAC ablated these phenotypes. Furthermore, single nucleotide polymorphisms (SNPs) in human NPGPx gene, which correlated with lower NPGPx expression level in adipose tissue, were associated with higher body mass index (BMI) in several independent human populations. These results indicate that NPGPx protects against fat accumulation in mice and human via modulating ROS, and highlight the importance of targeting redox homeostasis in obesity management.


Assuntos
Proteínas de Transporte/fisiologia , Regulação da Expressão Gênica , Obesidade/genética , Estresse Oxidativo , Peroxidases/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Acetilcisteína/farmacologia , Adipócitos/citologia , Animais , Antioxidantes/metabolismo , Índice de Massa Corporal , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteínas de Transporte/genética , Feminino , Glutationa Peroxidase , Humanos , Masculino , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Peroxidases/genética , Fenótipo , Polimorfismo de Nucleotídeo Único
18.
Nucleic Acids Res ; 41(3): 1533-43, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23241391

RESUMO

We reported that non-targeting siRNA (NT-siRNA) stress induces non-selenocysteine containing phospholipid hydroperoxide glutathione peroxidase (NPGPx) expression to cooperate with exoribonuclease XRN2 for releasing the stress [Wei,P.C., Lo,W.T., Su,M.I., Shew,J.Y. and Lee,W.H. (2011) Non-targeting siRNA induces NPGPx expression to cooperate with exoribonuclease XRN2 for releasing the stress. Nucleic Acids Res., 40, 323-332]. However, how NT-siRNA stress inducing NPGPx expression remains elusive. In this communication, we showed that the proximal promoter of NPGPx contained a mixed G-quadruplex (G4) structure, and disrupting the structure diminished NT-siRNA induced NPGPx promoter activity. We also demonstrated that nucleolin (NCL) specifically bonded to the G4-containing sequences to replace the originally bound Sp1 at the NPGPx promoter on NT-siRNA stress. Consistently, overexpression of NCL further increased NPGPx promoter activity, whereas depletion of NCL desensitized NPGPx promoter to NT-siRNA stress. These results suggest that the cis-element with mixed G4 structure at the NPGPx promoter plays an essential role for its transactivation mediated by NCL to release cells from NT-siRNA stress.


Assuntos
Quadruplex G , Peroxidases/genética , Fosfoproteínas/metabolismo , Regiões Promotoras Genéticas , RNA Interferente Pequeno , Proteínas de Ligação a RNA/metabolismo , Estresse Fisiológico/genética , Ativação Transcricional , Sítios de Ligação , Linhagem Celular , Sequência Rica em GC , Humanos , Peroxidases/metabolismo , Fator de Transcrição Sp1/metabolismo , Regulação para Cima , Nucleolina
19.
Mol Cell ; 48(5): 747-59, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23123197

RESUMO

NPGPx is a member of the glutathione peroxidase (GPx) family; however, it lacks GPx enzymatic activity due to the absence of a critical selenocysteine residue, rendering its function an enigma. Here, we show that NPGPx is a newly identified stress sensor that transmits oxidative stress signals by forming the disulfide bond between its Cys57 and Cys86 residues. This oxidized form of NPGPx binds to glucose-regulated protein (GRP)78 and forms covalent bonding intermediates between Cys86 of NPGPx and Cys41/Cys420 of GRP78. Subsequently, the formation of the disulfide bond between Cys41 and Cys420 of GRP78 enhances its chaperone activity. NPGPx-deficient cells display increased reactive oxygen species, accumulated misfolded proteins, and impaired GRP78 chaperone activity. Complete loss of NPGPx in animals causes systemic oxidative stress, increases carcinogenesis, and shortens life span. These results suggest that NPGPx is essential for releasing excessive ER stress by enhancing GRP78 chaperone activity to maintain physiological homeostasis.


Assuntos
Proteínas de Transporte/metabolismo , Estresse do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , Estresse Oxidativo , Peroxidases/metabolismo , Deficiências na Proteostase/enzimologia , Transdução de Sinais , Animais , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Cisteína , Dano ao DNA , Dissulfetos/metabolismo , Relação Dose-Resposta a Droga , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Fibroblastos/enzimologia , Fibroblastos/patologia , Glutationa Peroxidase , Proteínas de Choque Térmico/genética , Homeostase , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Sítio-Dirigida , Mutação , Oxidantes/farmacologia , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Peroxidases/genética , Ligação Proteica , Dobramento de Proteína , Deficiências na Proteostase/genética , Deficiências na Proteostase/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Tempo , Transfecção
20.
Nucleic Acids Res ; 40(1): 323-32, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21908404

RESUMO

Short interfering RNAs (siRNAs) target specific mRNAs for their degradation mediated by RNA-induced silencing complex (RISC). Persistent activation of siRNA-RISC frequently leads to non-targeting toxicity. However, how cells mediate this stress remains elusive. In this communication, we found that the presence of non-targeting siRNA selectively induced the expression of an endoplasmic reticulum (ER)-resident protein, non-selenocysteine containing phospholipid hydroperoxide glutathione peroxidase (NPGPx), but not other ER-stress proteins including GRP78, Calnexin and XBP1. Cells suffering from constant non-targeting siRNA stress grew slower and prolonged G1 phase, while NPGPx-depleted cells accumulated mature non-targeting siRNA and underwent apoptosis. Upon the stress, NPGPx covalently bound to exoribonuclease XRN2, facilitating XRN2 to remove accumulated non-targeting siRNA. These results suggest that NPGPx serves as a novel responder to non-targeting siRNA-induced stress in facilitating XRN2 to release the non-targeting siRNA accumulation.


Assuntos
Exorribonucleases/metabolismo , Glutationa Peroxidase/metabolismo , Peroxidases/metabolismo , RNA Interferente Pequeno/metabolismo , Estresse Fisiológico , Animais , Apoptose , Dano ao DNA , Chaperona BiP do Retículo Endoplasmático , Exorribonucleases/fisiologia , Fase G1 , Glutationa Peroxidase/biossíntese , Glutationa Peroxidase/genética , Humanos , Camundongos , Peroxidases/biossíntese , Peroxidases/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...