Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Genome Med ; 15(1): 55, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37475004

RESUMO

BACKGROUND: Cyclin-dependent kinase 4/6 inhibitor (CDK4/6) therapy plus endocrine therapy (ET) is an effective treatment for patients with hormone receptor-positive/human epidermal receptor 2-negative metastatic breast cancer (HR+/HER2- MBC); however, resistance is common and poorly understood. A comprehensive genomic and transcriptomic analysis of pretreatment and post-treatment tumors from patients receiving palbociclib plus ET was performed to delineate molecular mechanisms of drug resistance. METHODS: Tissue was collected from 89 patients with HR+/HER2- MBC, including those with recurrent and/or metastatic disease, receiving palbociclib plus an aromatase inhibitor or fulvestrant at Samsung Medical Center and Seoul National University Hospital from 2017 to 2020. Tumor biopsy and blood samples obtained at pretreatment, on-treatment (6 weeks and/or 12 weeks), and post-progression underwent RNA sequencing and whole-exome sequencing. Cox regression analysis was performed to identify the clinical and genomic variables associated with progression-free survival. RESULTS: Novel markers associated with poor prognosis, including genomic scar features caused by homologous repair deficiency (HRD), estrogen response signatures, and four prognostic clusters with distinct molecular features were identified. Tumors with TP53 mutations co-occurring with a unique HRD-high cluster responded poorly to palbociclib plus ET. Comparisons of paired pre- and post-treatment samples revealed that tumors became enriched in APOBEC mutation signatures, and many switched to aggressive molecular subtypes with estrogen-independent characteristics. We identified frequent genomic alterations upon disease progression in RB1, ESR1, PTEN, and KMT2C. CONCLUSIONS: We identified novel molecular features associated with poor prognosis and molecular mechanisms that could be targeted to overcome resistance to CKD4/6 plus ET. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03401359. The trial was posted on 18 January 2018 and registered prospectively.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Multiômica , Receptor ErbB-2/genética , Receptor ErbB-2/análise , Receptor ErbB-2/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Receptores de Estrogênio/genética , Receptores de Estrogênio/análise , Receptores de Estrogênio/uso terapêutico , Estrogênios/uso terapêutico
3.
Nat Cancer ; 3(6): 710-722, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35726063

RESUMO

Lorlatinib is currently the most advanced, potent and selective anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor for the treatment of ALK-positive non-small cell lung cancer in the clinic; however, diverse compound ALK mutations driving therapy resistance emerge. Here, we determine the spectrum of lorlatinib-resistant compound ALK mutations in patients, following treatment with lorlatinib, the majority of which involve ALK G1202R or I1171N/S/T. We further identify structurally diverse lorlatinib analogs that harbor differential selective profiles against G1202R versus I1171N/S/T compound ALK mutations. Structural analysis revealed increased potency against compound mutations through improved inhibition of either G1202R or I1171N/S/T mutant kinases. Overall, we propose a classification of heterogenous ALK compound mutations enabling the development of distinct therapeutic strategies for precision targeting following sequential tyrosine kinase inhibitors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Aminopiridinas , Quinase do Linfoma Anaplásico/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Lactamas , Lactamas Macrocíclicas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Inibidores de Proteínas Quinases/farmacologia , Pirazóis
4.
Cancer Cell ; 39(10): 1404-1421.e11, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34520734

RESUMO

The CDK4/6 inhibitor, palbociclib (PAL), significantly improves progression-free survival in HR+/HER2- breast cancer when combined with anti-hormonals. We sought to discover PAL resistance mechanisms in preclinical models and through analysis of clinical transcriptome specimens, which coalesced on induction of MYC oncogene and Cyclin E/CDK2 activity. We propose that targeting the G1 kinases CDK2, CDK4, and CDK6 with a small-molecule overcomes resistance to CDK4/6 inhibition. We describe the pharmacodynamics and efficacy of PF-06873600 (PF3600), a pyridopyrimidine with potent inhibition of CDK2/4/6 activity and efficacy in multiple in vivo tumor models. Together with the clinical analysis, MYC activity predicts (PF3600) efficacy across multiple cell lineages. Finally, we find that CDK2/4/6 inhibition does not compromise tumor-specific immune checkpoint blockade responses in syngeneic models. We anticipate that (PF3600), currently in phase 1 clinical trials, offers a therapeutic option to cancer patients in whom CDK4/6 inhibition is insufficient to alter disease progression.


Assuntos
Ciclo Celular/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Feminino , Humanos , Masculino , Neoplasias/imunologia
5.
Nat Commun ; 12(1): 3697, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140482

RESUMO

Despite the clinical success of the third-generation EGFR inhibitor osimertinib as a first-line treatment of EGFR-mutant non-small cell lung cancer (NSCLC), resistance arises due to the acquisition of EGFR second-site mutations and other mechanisms, which necessitates alternative therapies. Dacomitinib, a pan-HER inhibitor, is approved for first-line treatment and results in different acquired EGFR mutations than osimertinib that mediate on-target resistance. A combination of osimertinib and dacomitinib could therefore induce more durable responses by preventing the emergence of resistance. Here we present an integrated computational modeling and experimental approach to identify an optimal dosing schedule for osimertinib and dacomitinib combination therapy. We developed a predictive model that encompasses tumor heterogeneity and inter-subject pharmacokinetic variability to predict tumor evolution under different dosing schedules, parameterized using in vitro dose-response data. This model was validated using cell line data and used to identify an optimal combination dosing schedule. Our schedule was subsequently confirmed tolerable in an ongoing dose-escalation phase I clinical trial (NCT03810807), with some dose modifications, demonstrating that our rational modeling approach can be used to identify appropriate dosing for combination therapy in the clinical setting.


Assuntos
Acrilamidas/administração & dosagem , Acrilamidas/farmacologia , Compostos de Anilina/administração & dosagem , Compostos de Anilina/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/dietoterapia , Quinazolinonas/administração & dosagem , Quinazolinonas/farmacologia , Acrilamidas/farmacocinética , Acrilamidas/toxicidade , Compostos de Anilina/farmacocinética , Compostos de Anilina/toxicidade , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/secundário , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Estudos de Coortes , Simulação por Computador , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Modelos Estatísticos , Modelos Teóricos , Mutação , Quinazolinonas/farmacocinética , Quinazolinonas/toxicidade
6.
Paediatr Drugs ; 23(4): 381-394, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34173206

RESUMO

Regulatory changes have been enacted in the United States (US) and European Union (EU) to encourage the development of new treatments for pediatric cancer. Here, we review some of the factors that have hampered the development of pediatric cancer treatments and provide a comparison of the US and EU regulations implemented to address this clinical need. We then provide some recommendations for each stage of the oncology drug development pathway to help researchers maximize their chance of successful drug development while complying with regulations. A key recommendation is the engagement of key stakeholders such as regulatory authorities, pediatric oncologists, academic researchers, patient advocacy groups, and a Pediatric Expert Group early in the drug development process. During drug target selection, sponsors are encouraged to consult the Food and Drug Administration (FDA), European Medicines Agency (EMA), and the FDA target list, in addition to relevant US and European consortia that have been established to characterize and prioritize oncology drug targets. Sponsors also need to carefully consider the resourcing requirements for preclinical testing, which include ensuring appropriate access to the most relevant databases, clinical samples, and preclinical models (cell lines and animal models). During clinical development, sponsors can account for the pharmacodynamic (PD)/pharmacokinetic (PK) considerations specific to a pediatric population by developing pediatric formulations, selecting suitable PD endpoints, and employing sparse PK sampling or modeling/simulation of drug exposures where appropriate. Additional clinical considerations include the specific design of the clinical trial, the potential inclusion of children in adult trials, and the value of cooperative group trials.


In the last few decades, great progress has been made in developing new treatments for adult cancers. However, development of new treatments for childhood cancers has been much slower. To encourage drug companies (sponsors) to develop effective treatments for childhood cancer, authorities in the United States (US) and Europe have made new rules for drug development. Under these new rules, sponsors developing drugs for specific cancers in adults have to consider whether the target of that drug also causes cancers in children. If this is the case, sponsors have to carry out clinical studies of their drug in children who have cancer that is caused by the same drug target. In this article, we describe some reasons for why drug development for childhood cancers has been slow and the rules created to address this problem in the US and Europe. We share some recommendations to help sponsors maximize their chances of developing an effective drug in children while satisfying the new rules. Specifically, sponsors need to be aware of the differences between studying drugs in adults versus children and how these influence the way the drug is tested. We make several recommendations for each stage of the development process, beginning with what is needed even before human studies begin. Finally, we highlight some issues that sponsors need to think about during drug development, from the preclinical stage (testing drugs in cells and animals) through to clinical testing in adults and pediatric patients with cancer.


Assuntos
Antineoplásicos/uso terapêutico , Desenvolvimento de Medicamentos/legislação & jurisprudência , Prova Pericial/legislação & jurisprudência , Oncologia/legislação & jurisprudência , Neoplasias/tratamento farmacológico , Antineoplásicos/síntese química , Criança , Ensaios Clínicos como Assunto/legislação & jurisprudência , Ensaios Clínicos como Assunto/métodos , Sistemas de Liberação de Medicamentos/métodos , Desenvolvimento de Medicamentos/métodos , União Europeia , Prova Pericial/métodos , Humanos , Oncologia/métodos , Neoplasias/epidemiologia , Estados Unidos , United States Food and Drug Administration/legislação & jurisprudência
7.
Oncogene ; 38(21): 4125-4141, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30700828

RESUMO

The CDK4/6 inhibitor palbociclib reduces tumor growth by decreasing retinoblastoma (RB) protein phosphorylation and inducing cell cycle arrest at the G1/S phase transition. Palbociclib in combination with anti-hormonal therapy brings significant benefit to breast cancer patients. In this study, novel combination approaches and underlying molecular/cellular mechanisms for palbociclib were explored in squamous cell lung cancer (SqCLC), the second most common subtype of non-small cell lung cancer. While approximate 20% lung patients benefit from immunotherapy, most SqCLC patients who receive platinum-doublet chemotherapy as first-line treatment, which often includes a taxane, are still in need of more effective combination therapies. Our results demonstrated enhanced cytotoxicity and anti-tumor effect with palbociclib plus taxanes at clinically achievable doses in multiple SqCLC models with diverse cancer genetic backgrounds. Comprehensive gene expression analysis revealed a sustained disruption of pRB-E2F signaling by combination that was accompanied with enhanced regulation of pleiotropic biological effects. These included several novel mechanisms such as abrogation of G2/M and mitotic spindle assembly checkpoints, as well as impaired induction of hypoxia-inducible factor 1 alpha (HIF-1α). The decrease in HIF-1α modulated a couple key angiogenic and anti-angiogenic factors, resulting in an enhanced anti-angiogenic effect. This preclinical work suggests a new therapeutic opportunity for palbociclib in lung and other cancers currently treated with taxane based chemotherapy as standard of care.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Fatores de Transcrição E2F/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Proteína do Retinoblastoma/metabolismo , Taxoides/farmacologia , Inibidores da Angiogênese/farmacologia , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Piperazinas/farmacologia , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos
8.
J Med Chem ; 60(7): 3002-3019, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28287730

RESUMO

Mutant epidermal growth factor receptor (EGFR) is a major driver of non-small-cell lung cancer (NSCLC). Marketed first generation inhibitors, such as erlotinib, effect a transient beneficial response in EGFR mutant NSCLC patients before resistance mechanisms render these inhibitors ineffective. Secondary oncogenic EGFR mutations account for approximately 50% of relapses, the most common being the gatekeeper T790M substitution that renders existing therapies ineffective. The discovery of PF-06459988 (1), an irreversible pyrrolopyrimidine inhibitor of EGFR T790M mutants, was recently disclosed.1 Herein, we describe our continued efforts to achieve potency across EGFR oncogenic mutations and improved kinome selectivity, resulting in the discovery of clinical candidate PF-06747775 (21), which provides potent EGFR activity against the four common mutants (exon 19 deletion (Del), L858R, and double mutants T790M/L858R and T790M/Del), selectivity over wild-type EGFR, and desirable ADME properties. Compound 21 is currently being evaluated in phase-I clinical trials of mutant EGFR driven NSCLC.


Assuntos
Desenho de Fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Pirrolidinas/química , Pirrolidinas/farmacologia , Acrilamidas/química , Acrilamidas/farmacocinética , Acrilamidas/farmacologia , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Cães , Halogenação , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos , Modelos Moleculares , Simulação de Acoplamento Molecular , Mutação , Inibidores de Proteínas Quinases/farmacocinética , Pirrolidinas/farmacocinética , Ratos
9.
Chembiochem ; 17(20): 1925-1930, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27504718

RESUMO

Sulfonyl fluoride (SF)-based activity probes have become important tools in chemical biology. Herein, exploiting the relative chemical stability of SF to carry out a number of unprecedented SF-sparing functional group manipulations, we report the chemoselective synthesis of a toolbox of highly functionalized aryl SF monomers that we used to quickly prepare SF chemical biology probes. In addition to SF, the monomers bear an embedded click handle (a terminal alkyne that can perform copper(I)-mediated azide-alkyne cycloaddition). The monomers can be used either as fragments to prepare clickable SF analogues of drugs (biologically active compounds) bearing an aryl ring or, alternatively, attached to drugs as minimalist clickable aryl SF substituents.


Assuntos
Sondas Moleculares/síntese química , Ácidos Sulfínicos/síntese química , Química Click , Modelos Moleculares , Sondas Moleculares/química , Estrutura Molecular , Ácidos Sulfínicos/química
10.
J Med Chem ; 59(5): 2005-24, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26756222

RESUMO

First generation EGFR TKIs (gefitinib, erlotinib) provide significant clinical benefit for NSCLC cancer patients with oncogenic EGFR mutations. Ultimately, these patients' disease progresses, often driven by a second-site mutation in the EGFR kinase domain (T790M). Another liability of the first generation drugs is severe adverse events driven by inhibition of WT EGFR. As such, our goal was to develop a highly potent irreversible inhibitor with the largest selectivity ratio between the drug-resistant double mutants (L858R/T790M, Del/T790M) and WT EGFR. A unique approach to develop covalent inhibitors, optimization of reversible binding affinity, served as a cornerstone of this effort. PF-06459988 was discovered as a novel, third generation irreversible inhibitor, which demonstrates (i) high potency and specificity to the T790M-containing double mutant EGFRs, (ii) minimal intrinsic chemical reactivity of the electrophilic warhead, (iii) greatly reduced proteome reactivity relative to earlier irreversible EGFR inhibitors, and (iv) minimal activity against WT EGFR.


Assuntos
Descoberta de Drogas , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Proteínas Mutantes/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Relação Dose-Resposta a Droga , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Modelos Moleculares , Estrutura Molecular , Mutação , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinas/síntese química , Pirimidinas/química , Pirróis/síntese química , Pirróis/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
11.
Int J Cell Biol ; 2015: 798936, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26689952

RESUMO

Rapid mutations of proteins that are targeted in cancer therapy often lead to drug resistance. Often, the mutation directly affects a drug's binding site, effectively blocking binding of the drug, but these mutations can have other effects such as changing the protein turnover half-life. Utilizing SILAC MS, we measured the cellular turnover rates of an important non-small cell lung cancer target, epidermal growth factor receptor (EGFR). Wild-type (WT) EGFR, EGFR with a single activating mutant (Del 746-750 or L858R), and the drug-resistant double mutant (L858R/T790M) EGFR were analyzed. In non-small cell lung cancer cell lines, EGFR turnover rates ranged from 28 hours in A431 cells (WT) to 7.5 hours in the PC-9 cells (Del 746-750 mutant). The measurement of EGFR turnover rate in PC-9 cells dosed with irreversible inhibitors has additional complexity due to inhibitor effects on cell viability and results were reported as a range. Finally, essential amino acid recycling (K and R) was measured in different cell lines. The recycling was different in each cell line, but the overall inclusion of the effect of amino acid recycling on calculating EGFR turnover rates resulted in a 10-20% reduction in rates.

12.
Sci Signal ; 7(351): ra107, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25389372

RESUMO

Targeted blockade of aberrantly activated signaling pathways is an attractive therapeutic strategy for solid tumors, but drug resistance is common. KRAS is a frequently mutated gene in human cancer but remains a challenging clinical target. Inhibitors against KRAS signaling mediators, namely, PI3K (phosphatidylinositol 3-kinase) and mTOR (mechanistic target of rapamycin), have limited clinical efficacy as single agents in KRAS-mutant colorectal cancer (CRC). We investigated potential bypass mechanisms to PI3K/mTOR inhibition in KRAS-mutant CRC. Using genetically engineered mouse model cells that had acquired resistance to the dual PI3K/mTOR small-molecule inhibitor PF-04691502, we determined with chemical library screens that inhibitors of the ERBB [epidermal growth factor receptor (EGFR)] family restored the sensitivity to PF-04691502. Although EGFR inhibitors alone have limited efficacy in reducing KRAS-mutant tumors, we found that PF-04691502 induced the abundance, phosphorylation, and activity of EGFR, ERBB2, and ERBB3 through activation of FOXO3a (forkhead box O 3a), a transcription factor inhibited by the PI3K to AKT pathway. PF-04691502 also induced a stem cell-like gene expression signature. KRAS-mutant patient-derived xenografts from mice treated with PF-04691502 had a similar gene expression signature and exhibited increased EGFR activation, suggesting that this drug-induced resistance mechanism may occur in patients. Combination therapy with dacomitinib (a pan-ERBB inhibitor) restored sensitivity to PF-04691502 in drug-resistant cells in culture and induced tumor regression in drug-resistant allografts in mice. Our findings suggest that combining PI3K/mTOR and EGFR inhibitors may improve therapeutic outcome in patients with KRAS-mutant CRC.


Assuntos
Neoplasias Colorretais/metabolismo , Inibidores Enzimáticos/química , Receptores ErbB/antagonistas & inibidores , Genes ras , Inibidores de Fosfoinositídeo-3 Quinase , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Proliferação de Células , Separação Celular , Sobrevivência Celular , Neoplasias Colorretais/genética , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Feminino , Citometria de Fluxo , Engenharia Genética , Humanos , Camundongos , Camundongos SCID , Mutação , Transplante de Neoplasias , Fosforilação , Transdução de Sinais , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo , beta Catenina/metabolismo , Proteínas ras/genética
13.
Clin Cancer Res ; 19(11): 2929-40, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23403635

RESUMO

PURPOSE: Effective therapies for KRAS-mutant colorectal cancer (CRC) are a critical unmet clinical need. Previously, we described genetically engineered mouse models (GEMM) for sporadic Kras-mutant and non-mutant CRC suitable for preclinical evaluation of experimental therapeutics. To accelerate drug discovery and validation, we sought to derive low-passage cell lines from GEMM Kras-mutant and wild-type tumors for in vitro screening and transplantation into the native colonic environment of immunocompetent mice for in vivo validation. EXPERIMENTAL DESIGN: Cell lines were derived from Kras-mutant and non-mutant GEMM tumors under defined media conditions. Growth kinetics, phosphoproteomes, transcriptomes, drug sensitivity, and metabolism were examined. Cell lines were implanted in mice and monitored for in vivo tumor analysis. RESULTS: Kras-mutant cell lines displayed increased proliferation, mitogen-activated protein kinase signaling, and phosphoinositide-3 kinase signaling. Microarray analysis identified significant overlap with human CRC-related gene signatures, including KRAS-mutant and metastatic CRC. Further analyses revealed enrichment for numerous disease-relevant biologic pathways, including glucose metabolism. Functional assessment in vitro and in vivo validated this finding and highlighted the dependence of Kras-mutant CRC on oncogenic signaling and on aerobic glycolysis. CONCLUSIONS: We have successfully characterized a novel GEMM-derived orthotopic transplant model of human KRAS-mutant CRC. This approach combines in vitro screening capability using low-passage cell lines that recapitulate human CRC and potential for rapid in vivo validation using cell line-derived tumors that develop in the colonic microenvironment of immunocompetent animals. Taken together, this platform is a clear advancement in preclinical CRC models for comprehensive drug discovery and validation efforts.


Assuntos
Neoplasias do Colo/genética , Mutação , Proteínas ras/genética , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Análise por Conglomerados , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Genes APC , Genes p53 , Genótipo , Glucose/metabolismo , Humanos , Ácido Láctico/biossíntese , Camundongos , Camundongos Transgênicos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Via de Sinalização Wnt , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas ras/metabolismo
14.
PLoS One ; 7(7): e42001, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22860045

RESUMO

To develop a comprehensive overview of copy number aberrations (CNAs) in stage-II/III colorectal cancer (CRC), we characterized 302 tumors from the PETACC-3 clinical trial. Microsatellite-stable (MSS) samples (n = 269) had 66 minimal common CNA regions, with frequent gains on 20 q (72.5%), 7 (41.8%), 8 q (33.1%) and 13 q (51.0%) and losses on 18 (58.6%), 4 q (26%) and 21 q (21.6%). MSS tumors have significantly more CNAs than microsatellite-instable (MSI) tumors: within the MSI tumors a novel deletion of the tumor suppressor WWOX at 16 q23.1 was identified (p<0.01). Focal aberrations identified by the GISTIC method confirmed amplifications of oncogenes including EGFR, ERBB2, CCND1, MET, and MYC, and deletions of tumor suppressors including TP53, APC, and SMAD4, and gene expression was highly concordant with copy number aberration for these genes. Novel amplicons included putative oncogenes such as WNK1 and HNF4A, which also showed high concordance between copy number and expression. Survival analysis associated a specific patient segment featured by chromosome 20 q gains to an improved overall survival, which might be due to higher expression of genes such as EEF1B2 and PTK6. The CNA clustering also grouped tumors characterized by a poor prognosis BRAF-mutant-like signature derived from mRNA data from this cohort. We further revealed non-random correlation between CNAs among unlinked loci, including positive correlation between 20 q gain and 8 q gain, and 20 q gain and chromosome 18 loss, consistent with co-selection of these CNAs. These results reinforce the non-random nature of somatic CNAs in stage-II/III CRC and highlight loci and genes that may play an important role in driving the development and outcome of this disease.


Assuntos
Neoplasias Colorretais/genética , Dosagem de Genes , Genoma Humano , Oncogenes , Cromossomos Humanos Par 16 , Humanos , Repetições de Microssatélites/genética
15.
Cartilage ; 1(1): 43-54, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26069535

RESUMO

Insulin-like growth factor binding protein 5 (IGFBP-5) has been proposed to promote cartilage anabolism through insulin-like growth factor (IGF-1) signaling. A proteolytic activity towards IGFBP-5 has been detected in synovial fluids from human osteoarthritic (OA) joints. The purpose of this study was to determine if protease activity towards IGFBP-5 is present in the rat medial meniscal tear (MMT) model of OA and whether inhibition of this activity would alter disease progression. Sprague-Dawley rats were subject to MMT surgery. Synovial fluid lavages were assessed for the presence of IGFBP-5 proteolytic activity. Treatment animals received intra-articular injections of vehicle or protease inhibitor peptide PB-145. Cartilage lesions were monitored by India ink staining followed by macroscopic measurement of lesion width and depth. The MMT surgery induced a proteolytic activity towards IGFPB-5 that was detectable in joint fluid. This activity was stimulated by calcium and was sensitive to serine protease inhibitors as well as peptide PB-145. Significantly, intra-articular administration of PB-145 after surgery protected cartilage from lesion development. PB-145 treatment also resulted in an increase in cartilage turnover as evidenced by increases in serum levels of procollagen type II C-propeptide (CPII) as well as synovial fluid lavage levels of collagen type II neoepitope (TIINE). IGFBP-5 metabolism is disrupted in the rat MMT model of OA, potentially contributing to cartilage degradation. Inhibition of IGFBP-5 proteolysis protected cartilage from lesion development and enhanced cartilage turnover. These data are consistent with IGFBP-5 playing a positive role in anabolic IGF signaling in cartilage.

16.
Biochem Biophys Res Commun ; 298(1): 144-50, 2002 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-12379232

RESUMO

Telomerase is a specialized reverse transcriptase responsible for maintaining the termini of linear chromosomes. The human enzyme is a ribonucleoprotein complex minimally comprising a catalytic protein moiety (hTERT) and an RNA subunit (hTR) which acts as the template for the reverse transcriptase reaction. Here we report expression of recombinant hTERT protein in insect cells utilizing a baculovirus expression system. The recombinant hTERT protein reconstitutes telomerase activity in the presence of hTR, either when co-expressed in insect cells or when added in vitro. Reconstitution of telomerase activity using this system will facilitate further analysis of the biochemical and biophysical properties of this enzyme.


Assuntos
Spodoptera/genética , Telomerase/genética , Telomerase/metabolismo , Animais , Baculoviridae/genética , Catálise , Linhagem Celular , Proteínas de Ligação a DNA , Ativação Enzimática , Humanos , Subunidades Proteicas , Proteínas Recombinantes/metabolismo , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...