Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767281

RESUMO

The novel 2D quasi-hexagonal phase of covalently bonded fullerene molecules (qHP C60), the so-called graphullerene, has displayed far superior electron mobilities, if compared to the parent van der Waals three-dimensional crystal (vdW C60). Herein, we present a comparative study of the electronic properties of vdW and qHP C60 using state-of-the-art electronic-structure calculations and a full quantum-mechanical treatment of electron transfer. We show that both materials entail polaronic localization of electrons with similar binding energies (≈0.1 eV) and, therefore, they share the same charge transport via polaron hopping. In fact, we quantitatively reproduce the sizable increment of the electron mobility measured for qHP C60 and identify its origin in the increased electronic coupling between C60 units.

2.
J Phys Chem Lett ; 14(13): 3343-3351, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36994951

RESUMO

The performance of Koopmans-compliant hybrid functionals in reproducing the electronic structure of organic crystals is tested for a series of acene crystals. The calculated band gaps are found to be consistent with those achieved with the GW method at a fraction of the computational cost and in excellent accord with the experimental results at room temperature, when including the thermal renormalization. The energetics of excess holes and electrons reveals a struggle between polaronic localization and band-like delocalization. The consequences of these results on the transport properties of acene crystals are discussed.

3.
J Phys Chem Lett ; 14(8): 2178-2186, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36808992

RESUMO

Tin-based metal halide perovskites with a composition of ASnX3 (where A= MA or FA and X = I or Br) have been investigated by means of X-ray total scattering techniques coupled to pair distribution function (PDF) analysis. These studies revealed that that none of the four perovskites has a cubic symmetry at the local scale and that a degree of increasing distortion is always present, in particular when the cation size is increased, i.e., from MA to FA, and the hardness of the anion is increased, i.e., from Br- to I-. Electronic structure calculations provided good agreement with experimental band gaps for the four perovskites when local dynamical distortions were included in the calculations. The averaged structure obtained from molecular dynamics simulations was consistent with experimental local structures determined via X-ray PDF, thus highlighting the robustness of computational modeling and strengthening the correlation between experimental and computational results.

4.
ACS Appl Mater Interfaces ; 15(1): 1762-1771, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36537996

RESUMO

Heterostacks consisting of low-dimensional materials are attractive candidates for future electronic nanodevices in the post-silicon era. In this paper, using first-principles calculations based on density functional theory (DFT), we explore the structural and electronic properties of MoTe2/ZrS2 heterostructures with various stacking patterns and thicknesses. Our simulations show that the valence band (VB) edge of MoTe2 is almost aligned with the conduction band (CB) edge of ZrS2, and (MoTe2)m/(ZrS2)m (m = 1, 2) heterostructures exhibit the long-sought broken gap band alignment, which is pivotal for realizing tunneling transistors. Electrons are found to spontaneously flow from MoTe2 to ZrS2, and the system resembles an ultrascaled parallel plate capacitor with an intrinsic electric field pointed from MoTe2 to ZrS2. The effects of strain and external electric fields on the electronic properties are also investigated. For vertical compressive strains, the charge transfer increases due to the decreased coupling between the layers, whereas tensile strains lead to the opposite behavior. For negative electric fields a transition from the type-III to the type-II band alignment is induced. In contrast, by increasing the positive electric fields, a larger overlap between the valence and conduction bands is observed, leading to a larger band-to-band tunneling (BTBT) current. Low-strained heterostructures with various rotation angles between the constituent layers are also considered. We find only small variations in the energies of the VB and CB edges with respect to the Fermi level, for different rotation angles up to 30°. Overall, our simulations offer insights into the fundamental properties of low-dimensional heterostructures and pave the way for their future application in energy-efficient electronic nanodevices.

5.
J Phys Chem Lett ; 13(15): 3382-3391, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35404613

RESUMO

A comprehensive microscopic description of thermally induced distortions in lead halide perovskites is crucial for their realistic applications, yet still unclear. Here, we quantify the effects of thermal activation in CsPbBr3 nanocrystals across length scales with atomic-level precision, and we provide a framework for the description of phase transitions therein, beyond the simplistic picture of unit-cell symmetry increase upon heating. The temperature increase significantly enhances the short-range structural distortions of the lead halide framework as a consequence of the phonon anharmonicity, which causes the excess free energy surface to change as a function of temperature. As a result, phase transitions can be rationalized via the soft-mode model, which also describes displacive thermal phase transitions in oxide perovskites. Our findings allow to reconcile temperature-dependent modifications of physical properties, such as changes in the optical band gap, that are incompatible with the perovskite time- and space-average structures.

6.
Nat Commun ; 12(1): 5566, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552098

RESUMO

Perovskite photovoltaics advance rapidly, but questions remain regarding point defects: while experiments have detected the presence of electrically active defects no experimentally confirmed microscopic identifications have been reported. Here we identify lead monovacancy (VPb) defects in MAPbI3 (MA = CH3NH3+) using positron annihilation lifetime spectroscopy with the aid of density functional theory. Experiments on thin film and single crystal samples all exhibited dominant positron trapping to lead vacancy defects, and a minimum defect density of ~3 × 1015 cm-3 was determined. There was also evidence of trapping at the vacancy complex [Formula: see text] in a minority of samples, but no trapping to MA-ion vacancies was observed. Our experimental results support the predictions of other first-principles studies that deep level, hole trapping, [Formula: see text], point defects are one of the most stable defects in MAPbI3. This direct detection and identification of a deep level native defect in a halide perovskite, at technologically relevant concentrations, will enable further investigation of defect driven mechanisms.

7.
J Phys Chem Lett ; 12(22): 5339-5343, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34062062

RESUMO

Tin halide perovskites (THPs) have been established as a lower-toxicity alternative to lead halide perovskites. In spite of the increasing interest, the behavior of photoexcited charges has not been well understood in this class of materials. We here investigate the behavior of excess electrons in a series of tin halide perovskites by employing advanced electronic-structure calculations. We first focus on CsSnBr3 and show that electron localization is favorable in this compound and that bipolaronic states are the most stable form of self-trapped electrons. We then extend the analysis to CsSnI3, CsSnCl3, MASnBr3, FASnBr3, and DMASnBr3 and show that electron bipolarons are stable in all these compounds, thus indicating that strong electron localization is recurrent in THPs.

8.
J Phys Chem Lett ; 11(15): 6279-6285, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32659096

RESUMO

The dielectric properties of tetragonal hybrid perovskite CH3NH3PbI3 are studied through molecular dynamics at a temperature of 300 K in the presence of a finite electric field. The high-frequency dielectric constant ε∞ is found to be 4.5 along the a axis and 4.7 along the c axis. The values of the respective static dielectric constants ε0 are 43 ± 1 and 53 ± 3, much larger than the value of ∼25 pertaining to the orthorhombic phase, in which the organic cations cannot rotate. At frequencies below 3 cm-1, we observe a significant increase in ε0 by ∼23 (a axis) and ∼30 (c axis) compared to a vibrational approach, which does not account for the reorientation of the molecular units. The decomposition shows that the reorientation of the organic cations accounts for an increase of only ∼10. An increase of similar size results from the displacement of the cations within the cages of the lattice. The dominant contribution is found to arise from lattice vibrations coupled to the motion of the organic cations.

9.
J Chem Phys ; 152(12): 124102, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32241118

RESUMO

abinit is probably the first electronic-structure package to have been released under an open-source license about 20 years ago. It implements density functional theory, density-functional perturbation theory (DFPT), many-body perturbation theory (GW approximation and Bethe-Salpeter equation), and more specific or advanced formalisms, such as dynamical mean-field theory (DMFT) and the "temperature-dependent effective potential" approach for anharmonic effects. Relying on planewaves for the representation of wavefunctions, density, and other space-dependent quantities, with pseudopotentials or projector-augmented waves (PAWs), it is well suited for the study of periodic materials, although nanostructures and molecules can be treated with the supercell technique. The present article starts with a brief description of the project, a summary of the theories upon which abinit relies, and a list of the associated capabilities. It then focuses on selected capabilities that might not be present in the majority of electronic structure packages either among planewave codes or, in general, treatment of strongly correlated materials using DMFT; materials under finite electric fields; properties at nuclei (electric field gradient, Mössbauer shifts, and orbital magnetization); positron annihilation; Raman intensities and electro-optic effect; and DFPT calculations of response to strain perturbation (elastic constants and piezoelectricity), spatial dispersion (flexoelectricity), electronic mobility, temperature dependence of the gap, and spin-magnetic-field perturbation. The abinit DFPT implementation is very general, including systems with van der Waals interaction or with noncollinear magnetism. Community projects are also described: generation of pseudopotential and PAW datasets, high-throughput calculations (databases of phonon band structure, second-harmonic generation, and GW computations of bandgaps), and the library libpaw. abinit has strong links with many other software projects that are briefly mentioned.

10.
J Phys Chem Lett ; 10(22): 7113-7118, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31657932

RESUMO

We present a study of hole bipolarons in BiVO4. We show that in the presence of two holes O-O dimers are formed, leading to strong charge trapping. While the formation of bipolarons in bulk BiVO4 requires overcoming a kinetic barrier, we find that these defects should be spontaneously formed at the surface of the material and its interface with water. Through molecular dynamics simulations, we study the effect of bipolarons on the water-splitting reaction and show that their presence may be especially beneficial in alkaline conditions.

11.
ACS Appl Mater Interfaces ; 11(20): 18423-18426, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31021076

RESUMO

We determine the transition levels of electron and hole polarons at the BiVO4-water interface through thermodynamic integration within a hybrid functional scheme, thereby accounting for the liquid nature of the water component. The electron polaron is found to be less stable at the interface than in the bulk by 0.18 eV, while for the hole polaron the binding energy increases by 0.20 eV when the charge localizes in the surface layer of BiVO4. These results indicate that interfacial effects on the polaron binding energy and charge distribution are sizeable and cannot trivially be inferred from bulk calculations.

12.
J Phys Chem Lett ; 9(19): 5698-5703, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30193068

RESUMO

Copper vanadates have been proposed as promising photoanodes for water-splitting photoelectrochemical cells, but their performance has recently been shown to be severely limited. To understand this behavior, we study the electronic structure and the optical properties of ß-Cu2V2O7 both experimentally and computationally. The measured absorption spectrum shows an absorption peak at 1.5 eV followed by the onset of an apparent continuum at 2.26 eV, as generally found for this class of materials. We perform calculations within the framework of the QS GW̃ method and the Bethe-Salpeter equation while including effects of magnetic ordering, nuclear quantum motion, and thermal vibrations. We demonstrate the occurrence of two kinds of excitons with high binding energies upon optical excitation in ß-Cu2V2O7, which account for the first absorption peak and the lower edge of the apparent continuum. The results are confirmed by photoluminescence measurements, where sub-band-gap emissions are found for both excitons. These results provide an explanation for the low photocatalytic efficiencies of copper vanadates, despite the favorable size of their optical band gaps.

13.
ACS Appl Mater Interfaces ; 10(12): 10011-10021, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29498266

RESUMO

We present a theoretical formulation for studying the pH-dependent interfacial coverage of semiconductor-water interfaces through ab initio electronic structure calculations, molecular dynamics simulations, and the thermodynamic integration method. This general methodology allows one to calculate the acidity of the individual adsorption sites on the surface and consequently the pH at the point of zero charge, pHPZC, and the preferential adsorption mode of water molecules, either molecular or dissociative, at the semiconductor-water interface. The proposed method is applied to study the BiVO4(010)-water interface, yields a pHPZC in excellent agreement with the experimental characterization. Furthermore, from the calculated p Ka values of the individual adsorption sites, we construct an ab initio concentration diagram of all adsorbed species at the interface as a function of the pH of the aqueous solution. The diagram clearly illustrates the pH-dependent coverage of the surface and indicates that protons are found to be significantly adsorbed (∼1% of available sites) only in highly acidic conditions. The surface is found to be mostly covered by molecularly adsorbed water molecules in a wide interval of pH values ranging from 2 to 8. Hydroxyl ions are identified as the dominant adsorbed species at pH larger than 8.2.

14.
J Chem Phys ; 147(21): 216101, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29221373

RESUMO

The performance of the SCAN+rVV10 functional in modeling the structural properties of liquid water is studied through constant-volume ab initio molecular dynamics simulations with both classical and quantum nuclei. The radial distribution functions are found to be slightly overstructured with respect to experiment, but overall similar to those achieved with the bare SCAN and the rVV10 functionals. From the pressures calculated during the dynamics, it is inferred that the SCAN+rVV10 functional leads to a noticeable overestimation of the density of liquid water.

15.
J Phys Chem Lett ; 8(22): 5507-5512, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29077408

RESUMO

We carry out first-principles calculations of band gaps of cubic inorganic perovskites belonging to the class CsBX3, with B = Pb, Sn and X = Cl, Br, I. We use the quasi-particle self-consistent GW method with efficient vertex corrections to calculate the electronic structure of the studied materials. We demonstrate the importance of including the higher-lying core and semicore shells among the valence states. For a meaningful comparison with experimental values, we account for thermal vibrations and disorder through ab initio molecular dynamics. Additionally, we calculate the spin-orbit coupling at levels of theory of increasing accuracy and show that semilocal density functionals significantly underestimate these corrections. We show that all of these effects need to be properly included in order to obtain reliable predictions for the band gaps of halide perovskites.

16.
J Chem Theory Comput ; 13(8): 3427-3431, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28683201

RESUMO

Partial molar volumes of ions in water solution are calculated through pressures obtained from ab initio molecular dynamics simulations. The correct definition of pressure in charged systems subject to periodic boundary conditions requires access to the variation of the electrostatic potential upon a change of volume. We develop a scheme for calculating such a variation in liquid systems by setting up an interface between regions of different density. This also allows us to determine the absolute deformation potentials for the band edges of liquid water. With the properly defined pressures, we obtain partial molar volumes of a series of aqua ions in very good agreement with experimental values.

17.
J Phys Condens Matter ; 29(3): 035503, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-27869643

RESUMO

We performed first-principles calculations of the momentum distributions of annihilating electron-positron pairs in vacancies in uranium dioxide. Full atomic relaxation effects (due to both electronic and positronic forces) were taken into account and self-consistent two-component density functional theory schemes were used. We present one-dimensional momentum distributions (Doppler-broadened annihilation radiation line shapes) along with line-shape parameters S and W. We studied the effect of the charge state of the defect on the Doppler spectra. The effect of krypton incorporation in the vacancy was also considered and it was shown that it should be possible to observe the fission gas incorporation in defects in UO2 using positron annihilation spectroscopy. We suggest that the Doppler broadening measurements can be especially useful for studying impurities and dopants in UO2 and of mixed actinide oxides.

18.
J Phys Condens Matter ; 26(32): 325501, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25031239

RESUMO

We present a physically justified formalism for the calculation of point defects and cluster formation energies in UO2. The accessible ranges of chemical potentials of the two components U and O are calculated using the U-O experimental phase diagram and a constraint on the formation energies of vacancies. We then apply this formalism to the DFT + U investigation of the point defects and cluster defects in this material (including charged ones). The most stable charge states obtained for these defects near stoichiometry are consistent with a strongly ionic system. Calculations predict similarly low formation energies for V(U)(4)(-) and I(O)(2)(-) in hyperstoichiometric UO2. In stoichiometric UO2, V(O)(2)(+) and I(o)(@)(-) have the same formation energy in the middle of the gap and in hypostoichiometric UO2, V[Formula: see text] is the most stable defect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...