Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2705: 199-210, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37668975

RESUMO

Biosensor measurement using surface plasmon resonance enables precise evaluation of peptide-protein interactions. It is a sensitive technique that provides kinetic and affinity data with very little sample and without the need for analyte labels. Here, we describe its application for the analysis of peptide interactions with the Grb7-SH2 domain prepared with a GST-tag for tethering to the chip surface. This has been successfully and reliably used for direct comparison of a range of peptides under different solution conditions as well as direct comparison of peptides flowed over different related SH2 domains in real time. We have used the BIAcore system and describe both the methodology for data collection and analysis, with principles also applicable to other biosensor platforms.


Assuntos
Ressonância de Plasmônio de Superfície , Domínios de Homologia de src , Coleta de Dados , Cinética , Peptídeos
2.
mBio ; 13(4): e0206422, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35924852

RESUMO

Cytoplasmic detection of DNA by cyclic GMP-AMP (cGAMP) synthase (cGAS) is an essential component of antiviral responses. Upon synthesis, cGAMP binds to the stimulator of interferon (IFN) genes (STING) in infected and adjacent cells through intercellular transfer by connexins forming gap-junctions, eliciting a strong IFN-ß-driven antiviral response. We demonstrate here that Genistein, a flavonoid compound naturally occurring in soy-based foods, inhibits cGAS-STING antiviral signaling at two levels. First, Genistein pretreatment of cGAMP-producing cells inhibited gap-junction intercellular communication, resulting in reduced STING responses in adjacent cells. In addition, Genistein directly blocked STING activation by the murine agonist DMXAA, by decreasing the interaction of STING with TBK1 and IKKε. As a result, Genistein attenuated STING signaling in human and mouse cells, dampening antiviral activity against Semliki Forest Virus infection. Collectively, our findings identify a previously unrecognized proviral activity of Genistein mediated via its inhibitory effects at two levels of cGAS-STING signaling. IMPORTANCE Several reports suggest that Genistein exhibits antiviral activities against DNA viruses. Our work uncovers a previously unrecognized proviral effect of Genistein, through inhibition of the cGAS-STING pathway at the level of cGAMP transfer and its sensing by STING. This suggests that the use of Genistein as an antiviral should be taken with caution as it may reduce the protective antiviral effects elicited by host STING activation.


Assuntos
Genisteína , Proteínas de Membrana , Animais , Antivirais/farmacologia , Genisteína/farmacologia , Humanos , Imunidade Inata/genética , Interferon beta/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Nucleotidiltransferases/genética
3.
Front Mol Biosci ; 9: 960806, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911965

RESUMO

Stress granules are non-membrane bound RNA-protein granules essential for survival during acute cellular stress. TIA-1 is a key protein in the formation of stress granules that undergoes liquid-liquid phase separation by association with specific RNAs and protein-protein interactions. However, the fundamental properties of the TIA-1 protein that enable phase-separation also render TIA-1 susceptible to the formation of irreversible fibrillar aggregates. Despite this, within physiological stress granules, TIA-1 is not present as fibrils, pointing to additional factors within the cell that prevent TIA-1 aggregation. Here we show that heterotypic interactions with stress granule co-factors Zn2+ and RGG-rich regions from FUS each act together with nucleic acid to induce the liquid-liquid phase separation of TIA-1. In contrast, these co-factors do not enhance nucleic acid induced fibril formation of TIA-1, but rather robustly inhibit the process. NMR titration experiments revealed specific interactions between Zn2+ and H94 and H96 in RRM2 of TIA-1. Strikingly, this interaction promotes multimerization of TIA-1 independently of the prion-like domain. Thus, through different molecular mechanisms, these stress granule co-factors promote TIA-1 liquid-liquid phase separation and suppress fibrillar aggregates, potentially contributing to the dynamic nature of stress granules and the cellular protection that they provide.

4.
Biomedicines ; 10(5)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35625882

RESUMO

The development of peptide inhibitors against intracellular targets depends upon the dual challenge of achieving a high affinity and specificity for the target and maintaining cellular permeability for biological activity. Previous efforts to develop bicyclic peptides targeted to the Grb7 signalling protein implicated in HER2+ve cancer progression have resulted in improved affinity. However, these same peptides demonstrated a lowered activity due to their decreased ability to penetrate cell membranes. Here, we report the testing of a new series of bicyclic G7 peptides designed to possess improved bioactivity. We discovered that the incorporation of two amino acids (Phe-Pro, Phe-Trp or Phe-Arg) within the bicyclic peptide framework maintains an enhanced binding affinity for the Grb7-SH2 domain compared to that of the first-generation monocyclic peptide G7-18NATE. Structure determination using X-ray crystallography revealed that the mode of binding by the expanded bicyclic G7 peptide is analogous to that of G7-18NATE. Interestingly, while the bicyclic peptide containing Phe-Trp did not display the highest affinity for Grb7-SH2 in the series, it was the most potent inhibitor of HER2+ve SKBR3 breast cancer cell migration when coupled to Penetratin. Together, this demonstrates that peptide flexibility as well as the amino acid tryptophan can play important roles in the uptake of peptides into the cell.

5.
Nucleic Acids Res ; 49(5): 2403-2417, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33621982

RESUMO

TIA-1 is an RNA-binding protein that sequesters target RNA into stress granules under conditions of cellular stress. Promotion of stress granule formation by TIA-1 depends upon self-association of its prion-like domain that facilitates liquid-liquid phase separation and is thought to be enhanced via RNA binding. However, the mechanisms underlying the influence of RNA on TIA-1 self-association have not been previously demonstrated. Here we have investigated the self-associating properties of full-length TIA-1 in the presence of designed and native TIA-1 nucleic acid binding sites in vitro, monitoring phase separation, fibril formation and shape. We show that single stranded RNA and DNA induce liquid-liquid phase separation of TIA-1 in a multisite, sequence-specific manner and also efficiently promote formation of amyloid-like fibrils. Although RNA binding to a single site induces a small conformational change in TIA-1, this alone does not enhance phase separation of TIA-1. Tandem binding sites are required to enhance phase separation of TIA-1 and this is finely tuned by the protein:binding site stoichiometry rather than nucleic acid length. Native tandem TIA-1 binding sites within the 3' UTR of p53 mRNA also efficiently enhance phase separation of TIA-1 and thus may potentially act as potent nucleation sites for stress granule assembly.


Assuntos
RNA/metabolismo , Antígeno-1 Intracelular de Células T/química , Regiões 3' não Traduzidas , Amiloide/ultraestrutura , Sítios de Ligação , DNA/química , DNA/metabolismo , Humanos , Modelos Moleculares , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Conformação Proteica , RNA/química , Antígeno-1 Intracelular de Células T/metabolismo , Antígeno-1 Intracelular de Células T/ultraestrutura , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
6.
Protein Expr Purif ; 176: 105722, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32768454

RESUMO

Heat Shock Factor 1 (HSF1) is the master regulator of the heat shock response, a universal survival mechanism throughout eukaryotic species used to buffer potentially lethal proteotoxic conditions. HSF1's function in vivo is regulated by several factors, including post translational modifications and elevated temperatures, whereupon it forms trimers to bind with heat shock elements in DNA. Unsurprisingly, HSF1 is also extremely sensitive to elevated temperatures in vitro, which poses specific technical challenges when producing HSF1 using a recombinant expression system. Although there are several useful publications which outline steps taken for HSF1 expression and purification, studies that describe specific strategies and detailed protocols to overcome HSF1 trimerisation and degradation are currently lacking. Herein, we have reported our detailed experimental protocol for the expression and purification of monomeric human HSF1 (HsHSF1) as a major species. We also propose a refined method of inducing HsHSF1 activation in vitro, that we consider more accurately mimics HsHSF1 activation in vivo and is therefore more physiologically relevant.


Assuntos
Expressão Gênica , Fatores de Transcrição de Choque Térmico , Fatores de Transcrição de Choque Térmico/biossíntese , Fatores de Transcrição de Choque Térmico/química , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/isolamento & purificação , Humanos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
7.
Endocrinology ; 161(8)2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32569368

RESUMO

Ovarian-derived inhibin A and inhibin B (heterodimers of common α- and differing ß-subunits) are secreted throughout the menstrual cycle in a discordant pattern, with smaller follicles producing inhibin B, whereas the dominant follicle and corpus luteum produce inhibin A. The classical function for endocrine inhibins is to block signalling by activins (homodimers of ß-subunits) in gonadotrope cells of the anterior pituitary and, thereby, inhibit the synthesis of FSH. Whether inhibin A and inhibin B have additional physiological functions is unknown, primarily because producing sufficient quantities of purified inhibins, in the absence of contaminating activins, for preclinical studies has proven extremely difficult. Here, we describe novel methodology to enhance inhibin A and inhibin B activity and to produce these ligands free of contaminating activins. Using computational modeling and targeted mutagenesis, we identified a point mutation in the activin ß A-subunit, A347H, which completely disrupted activin dimerization and activity. Importantly, this ß A-subunit mutation had minimal effect on inhibin A bioactivity. Mutation of the corresponding residue in the inhibin ß B-subunit, G329E, similarly disrupted activin B synthesis/activity without affecting inhibin B production. Subsequently, we enhanced inhibin A potency by modifying the binding site for its co-receptor, betaglycan. Introducing a point mutation into the α-subunit (S344I) increased inhibin A potency ~12-fold. This study has identified a means to eliminate activin A/B interference during inhibin A/B production, and has facilitated the generation of potent inhibin A and inhibin B agonists for physiological exploration.


Assuntos
Inibinas , Engenharia de Proteínas/métodos , Feminino , Células HEK293 , Humanos , Inibinas/genética , Inibinas/isolamento & purificação , Inibinas/metabolismo , Inibinas/farmacologia , Proteínas de Membrana , Modelos Moleculares , Mutagênese/fisiologia , Ovário/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/isolamento & purificação , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacologia , Multimerização Proteica/genética , Estrutura Quaternária de Proteína/genética , Estrutura Terciária de Proteína/genética , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , Subunidades Proteicas/farmacologia , Proteínas de Saccharomyces cerevisiae , Transfecção
8.
Nucleic Acids Res ; 48(14): 8006-8021, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32556302

RESUMO

The poliovirus type I IRES is able to recruit ribosomal machinery only in the presence of host factor PCBP2 that binds to stem-loop IV of the IRES. When PCBP2 is cleaved in its linker region by viral proteinase 3CD, translation initiation ceases allowing the next stage of replication to commence. Here, we investigate the interaction of PCBP2 with the apical region of stem-loop IV (SLIVm) of poliovirus RNA in its full-length and truncated form. CryoEM structure reconstruction of the full-length PCBP2 in complex with SLIVm solved to 6.1 Å resolution reveals a compact globular complex of PCBP2 interacting with the cruciform RNA via KH domains and featuring a prominent GNRA tetraloop. SEC-SAXS, SHAPE and hydroxyl-radical cleavage establish that PCBP2 stabilizes the SLIVm structure, but upon cleavage in the linker domain the complex becomes more flexible and base accessible. Limited proteolysis and REMSA demonstrate the accessibility of the linker region in the PCBP2/SLIVm complex and consequent loss of affinity of PCBP2 for the SLIVm upon cleavage. Together this study sheds light on the structural features of the PCBP2/SLIV complex vital for ribosomal docking, and the way in which this key functional interaction is regulated following translation of the poliovirus genome.


Assuntos
Iniciação Traducional da Cadeia Peptídica , Poliovirus/genética , RNA Viral/química , Proteínas de Ligação a RNA/química , Microscopia Crioeletrônica , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X
9.
Arch Biochem Biophys ; 687: 108386, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32360748

RESUMO

Growth factor receptor bound protein 7 (Grb7) is a mammalian adaptor protein participating in signaling pathways implicated in cell migration, metastatic invasion, cell proliferation and tumor-associated angiogenesis. We expressed tagged versions of wild type Grb7 and the mutant Grb7Δ, lacking its calmodulin-binding domain (CaM-BD), in human embryonic kidney (HEK) 293 cells and rat glioma C6 cells to identify novel binding partners using shot-gun proteomics. Among the new identified proteins, we validated the ubiquitin-ligase Nedd4 (neural precursor cell expressed developmentally down-regulated protein 4), the heat-shock protein Hsc70/HSPA8 (heat shock cognate protein 70) and the cell cycle regulatory protein caprin-1 (cytoplasmic activation/proliferation-associated protein 1) in rat glioma C6 cells. Our results suggest a role of Grb7 in pathways where these proteins are implicated. These include protein trafficking and degradation, stress-response, chaperone-mediated autophagy, apoptosis and cell proliferation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteína Adaptadora GRB7/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Animais , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Linhagem Celular Tumoral , Proteína Adaptadora GRB7/genética , Células HEK293 , Humanos , Mutação , Ligação Proteica , Domínios Proteicos/genética , Estrutura Secundária de Proteína , Proteômica , Ratos
10.
Emerg Microbes Infect ; 9(1): 601-604, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32178593

RESUMO

The recent outbreak of pneumonia-causing COVID-19 in China is an urgent global public health issue with an increase in mortality and morbidity. Here we report our modelled homo-trimer structure of COVID-19 spike glycoprotein in both closed (ligand-free) and open (ligand-bound) conformation, which is involved in host cell adhesion. We also predict the unique N- and O-linked glycosylation sites of spike glycoprotein that distinguish it from the SARS and underlines shielding and camouflage of COVID-19 from the host the defence system. Furthermore, our study also highlights the key finding that the S1 domain of COVID-19 spike glycoprotein potentially interacts with the human CD26, a key immunoregulatory factor for hijacking and virulence. These findings accentuate the unique features of COVID-19 and assist in the development of new therapeutics.


Assuntos
Betacoronavirus/metabolismo , Dipeptidil Peptidase 4/química , Polissacarídeos/química , Glicoproteína da Espícula de Coronavírus/química , Betacoronavirus/química , Betacoronavirus/genética , COVID-19 , Infecções por Coronavirus/virologia , Dipeptidil Peptidase 4/metabolismo , Humanos , Modelos Moleculares , Pandemias , Pneumonia Viral/virologia , Polissacarídeos/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
11.
Int J Mol Sci ; 21(4)2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32079204

RESUMO

Grb7 is a signalling adapter protein that engages activated receptor tyrosine kinases at cellular membranes to effect downstream pathways of cell migration, proliferation and survival. Grb7's cellular location was shown to be regulated by the small calcium binding protein calmodulin (CaM). While evidence for a Grb7/CaM interaction is compelling, a direct interaction between CaM and purified Grb7 has not been demonstrated and quantitated. In this study we sought to determine this, and prepared pure full-length Grb7, as well as its RA-PH and SH2 subdomains, and tested for CaM binding using surface plasmon resonance. We report a direct interaction between full-length Grb7 and CaM that occurs in a calcium dependent manner. While no binding was observed to the SH2 domain alone, we observed a high micromolar affinity interaction between the Grb7 RA-PH domain and CaM, suggesting that the Grb7/CaM interaction is mediated through this region of Grb7. Together, our data support the model of a CaM interaction with Grb7 via its RA-PH domain.


Assuntos
Calmodulina/genética , Proteína Adaptadora GRB7/genética , Domínios de Homologia à Plecstrina/genética , Calmodulina/metabolismo , Movimento Celular , Proliferação de Células , Escherichia coli/genética , Escherichia coli/metabolismo , Proteína Adaptadora GRB7/metabolismo , Ligação Proteica , Conformação Proteica , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Ressonância de Plasmônio de Superfície , Domínios de Homologia de src/genética
12.
Molecules ; 24(20)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31627265

RESUMO

Grb7 is an adapter protein, overexpressed in HER2+ve breast and other cancers, and identified as a therapeutic target. Grb7 promotes both proliferative and migratory cellular pathways through interaction of its SH2 domain with upstream binding partners including HER2, SHC, and FAK. Here we present the evaluation of a series of monocyclic and bicyclic peptide inhibitors that have been developed to specifically and potently target the Grb7 SH2-domain. All peptides tested were found to inhibit signaling in both ERK and AKT pathways in SKBR-3 and MDA-MB-231 cell lines. Proliferation, migration, and invasion assays revealed, however, that the second-generation bicyclic peptides were not more bioactive than the first generation G7-18NATE peptide, despite their higher in vitro affinity for the target. This was found not to be due to steric hindrance by the cell-permeability tag, as ascertained by ITC, but to differences in the ability of the bicyclic peptides to interact with and penetrate cellular membranes, as determined using SPR and mass spectrometry. These studies reveal that just small differences to amino acid composition can greatly impact the effectiveness of peptide inhibitors to their intracellular target and demonstrate that G7-18NATE remains the most effective peptide inhibitor of Grb7 developed to date.


Assuntos
Antineoplásicos/farmacologia , Células Epiteliais/efeitos dos fármacos , Proteína Adaptadora GRB7/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica , Peptídeos Cíclicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sequência de Aminoácidos , Antineoplásicos/síntese química , Sítios de Ligação , Linhagem Celular , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Proteína Adaptadora GRB7/genética , Proteína Adaptadora GRB7/metabolismo , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Peptídeos Cíclicos/síntese química , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Relação Estrutura-Atividade , Domínios de Homologia de src/efeitos dos fármacos
13.
Curr Opin Struct Biol ; 59: 134-142, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31479821

RESUMO

RNA-binding proteins TDP-43 and FUS play essential roles in pre-mRNA splicing, localization, granule formation and other aspects of RNA metabolism. Both proteins are implicated in neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Despite their apparent similarities, each protein has unique structural characteristics. Here we present the current structural understanding of RNA-binding and self-association mechanisms. Both globular and intrinsically disordered domains contribute to RNA binding, each with different specificities, affinities and kinetics. Self-associating Prion-like domains in each protein form multivalent interactions and labile cross-ß structures. These interactions are modulated by distinctive additional domains including a globular oligomerization domain in TDP-43 and synergistic interactions with intrinsically disordered Arginine-Glycine rich domains in FUS. These insights contribute to a better understanding of native biological functions of TDP-43 and FUS and potential molecular pathways in neurodegenerative diseases.


Assuntos
Proteínas de Ligação a DNA/química , Proteína FUS de Ligação a RNA/química , RNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , RNA/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo
14.
Elife ; 72018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30575518

RESUMO

Proper regulation of germline gene expression is essential for fertility and maintaining species integrity. In the C. elegans germline, a diverse repertoire of regulatory pathways promote the expression of endogenous germline genes and limit the expression of deleterious transcripts to maintain genome homeostasis. Here we show that the conserved TRIM-NHL protein, NHL-2, plays an essential role in the C. elegans germline, modulating germline chromatin and meiotic chromosome organization. We uncover a role for NHL-2 as a co-factor in both positively (CSR-1) and negatively (HRDE-1) acting germline 22G-small RNA pathways and the somatic nuclear RNAi pathway. Furthermore, we demonstrate that NHL-2 is a bona fide RNA binding protein and, along with RNA-seq data point to a small RNA independent role for NHL-2 in regulating transcripts at the level of RNA stability. Collectively, our data implicate NHL-2 as an essential hub of gene regulatory activity in both the germline and soma.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Células Germinativas/metabolismo , Interferência de RNA , Animais , Cromatina/metabolismo , Redes Reguladoras de Genes
15.
Nucleic Acids Res ; 46(6): 3169-3186, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29346611

RESUMO

RIG-I (retinoic acid inducible gene-I) is a cytosolic innate immune protein that senses viral dsRNA with a 5'-triphosphate overhang. Upon interaction with dsRNA a de-repression of the RIG-I CARD domains takes place that ultimately leads to the production of type I interferons and pro-inflammatory cytokines. Here we investigate the RIG-I conformational rearrangement upon interaction with an activating 5'-triphosphate-10-base pair dsRNA hairpin loop (10bp) compared with a less active 5'-triphosphate-8-base pair dsRNA hairpin loop (8bp). We use size-exclusion chromatography-coupled small-angle X-ray scattering (SAXS) and limited tryptic digest experiments to show that that upon binding to 10 bp, but not 8 bp, RIG-I becomes extended and shows greater flexibility, reflecting the release of its CARDs. We also examined the effect of different ATP analogues on the conformational changes of RIG-I/dsRNA complexes. Of the analogues tested, the addition of ATP transition state analogue ADP-AlFx further assisted in the complete activation of RIG-I in complex with 10bp and also to some extent RIG-I bound to 8bp. Together these data provide solution-based evidence for the molecular mechanism of innate immune signaling by RIG-I as stimulated by short hairpin RNA and ATP.


Assuntos
Trifosfato de Adenosina/química , Proteína DEAD-box 58/química , Domínios Proteicos , RNA de Cadeia Dupla/química , Trifosfato de Adenosina/metabolismo , Sequência de Bases , Cromatografia em Gel , Proteína DEAD-box 58/metabolismo , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Receptores Imunológicos , Espalhamento a Baixo Ângulo , Transdução de Sinais , Soluções/química , Difração de Raios X
16.
ACS Omega ; 2(2): 670-677, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29152602

RESUMO

Delivery across the cell membrane is of critical importance for the development of therapeutics targeting intracellular proteins. The use of cell-penetrating peptides (CPPs), such as Penetratin (P16), has facilitated the delivery of otherwise cell-impermeable molecules allowing them to carry out their biological function. A truncated form of Penetratin (RRMKWKK) has been previously described as the minimal Penetratin sequence that is required for translocation across the cell membrane. Here, we performed a detailed comparison of cellular uptake by Penetratin (P16) and the truncated Penetratin peptide (P7), including their ability to deliver G7-18NATE, a cyclic peptide targeting the cytosolic cancer target Grb7-adapter protein into cells. We identified that both P16 and P7 were internalized by cells to comparable levels; however, only P16 was effective in delivering G7-18NATE to produce a biological response. Live-cell imaging of fluorescein isothiocyanate-labeled peptides suggested that while P7 may be taken up into cells, it does not gain access to the cytosolic compartment. Thus, this study has identified that the P7 peptide is a poor CPP for the delivery of G7-18NATE and may also be insufficient for the intracellular delivery of other bioactive molecules.

17.
Front Mol Biosci ; 4: 64, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29018805

RESUMO

Growth factor receptor bound protein 7 (Grb7) is an adaptor protein with established roles in the progression of both breast and pancreatic cancers. Through its C-terminal SH2 domain, Grb7 binds to phosphorylated tyrosine kinases to promote proliferative and migratory signaling. Here, we investigated the molecular basis for the specificity of a Grb7 SH2-domain targeted peptide inhibitor. We identified that arginine 462 in the BC loop is unique to Grb7 compared to Grb2, another SH2 domain bearing protein that shares the same consensus binding motif as Grb7. Using surface plasmon resonance we demonstrated that Grb7-SH2 binding to G7-18NATE is reduced 3.3-fold when the arginine is mutated to the corresponding Grb2 amino acid. The reverse mutation in Grb2-SH2 (serine to arginine), however, was insufficient to restore binding of G7-18NATE to Grb2-SH2. Further, using a microarray, we confirmed that G7-18NATE is specific for Grb7 over a panel of 79 SH2 domains, and identified that leucine at the ßD6 position may also be a requirement for Grb7-SH2 binding. This study provides insight into the specificity defining features of Grb7 for the inhibitor molecule G7-18NATE, that will assist in the development of improved Grb7 targeted inhibitors.

18.
J Med Chem ; 60(22): 9349-9359, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29083893

RESUMO

Grb7 is a signaling protein with critical roles in tumor cell proliferation and migration and an established cancer therapeutic target. Here we explore chemical space to develop a new bicyclic peptide inhibitor, incorporating thioether and lactam linkers that binds with affinity (KD = 1.1 µM) and specificity to the Grb7-SH2 domain. Structural analysis of the Grb7-SH2/peptide complex revealed an unexpected binding orientation underlying the binding selectivity by this new scaffold. We further incorporated carboxymethylphenylalanine and carboxyphenylalanine phosphotyrosine mimetics and arrived at an optimized inhibitor that potently binds Grb7-SH2 (KD = 0.13 µM) under physiological conditions. X-ray crystal structures of these Grb7-SH2/peptide complexes reveal the structural basis for the most potent and specific inhibitors of Grb7 developed to date. Finally, we demonstrate that cell permeable versions of these peptides successfully block Grb7 mediated interactions in a breast cancer cell line, establishing the potential of these peptides in the development of novel therapeutics targeted to Grb7.


Assuntos
Proteína Adaptadora GRB7/antagonistas & inibidores , Peptídeos Cíclicos/farmacologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Descoberta de Drogas , Quinase 1 de Adesão Focal/metabolismo , Proteína Adaptadora GRB7/química , Proteína Adaptadora GRB7/metabolismo , Humanos , Lactamas/síntese química , Lactamas/química , Lactamas/farmacologia , Ligantes , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Fosfatos/química , Conformação Proteica , Receptor ErbB-2/metabolismo , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Domínios de Homologia de src
19.
Cell Rep ; 19(5): 919-927, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28467905

RESUMO

Competing models exist in the literature for the relationship between mutant Huntingtin exon 1 (Httex1) inclusion formation and toxicity. In one, inclusions are adaptive by sequestering the proteotoxicity of soluble Httex1. In the other, inclusions compromise cellular activity as a result of proteome co-aggregation. Using a biosensor of Httex1 conformation in mammalian cell models, we discovered a mechanism that reconciles these competing models. Newly formed inclusions were composed of disordered Httex1 and ribonucleoproteins. As inclusions matured, Httex1 reconfigured into amyloid, and other glutamine-rich and prion domain-containing proteins were recruited. Soluble Httex1 caused a hyperpolarized mitochondrial membrane potential, increased reactive oxygen species, and promoted apoptosis. Inclusion formation triggered a collapsed mitochondrial potential, cellular quiescence, and deactivated apoptosis. We propose a revised model where sequestration of soluble Httex1 inclusions can remove the trigger for apoptosis but also co-aggregate other proteins, which curtails cellular metabolism and leads to a slow death by necrosis.


Assuntos
Amiloide/metabolismo , Apoptose , Proteína Huntingtina/genética , Éxons , Células HEK293 , Células HeLa , Humanos , Proteína Huntingtina/metabolismo , Corpos de Inclusão/metabolismo , Potencial da Membrana Mitocondrial , Mutação , Espécies Reativas de Oxigênio/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
20.
Nucleic Acids Res ; 45(8): 4944-4957, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28184449

RESUMO

TIA-1 (T-cell restricted intracellular antigen-1) is an RNA-binding protein involved in splicing and translational repression. It mainly interacts with RNA via its second and third RNA recognition motifs (RRMs), with specificity for U-rich sequences directed by RRM2. It has recently been shown that RRM3 also contributes to binding, with preferential binding for C-rich sequences. Here we designed UC-rich and CU-rich 10-nt sequences for engagement of both RRM2 and RRM3 and demonstrated that the TIA-1 RRM23 construct preferentially binds the UC-rich RNA ligand (5΄-UUUUUACUCC-3΄). Interestingly, this binding depends on the presence of Lys274 that is C-terminal to RRM3 and binding to equivalent DNA sequences occurs with similar affinity. Small-angle X-ray scattering was used to demonstrate that, upon complex formation with target RNA or DNA, TIA-1 RRM23 adopts a compact structure, showing that both RRMs engage with the target 10-nt sequences to form the complex. We also report the crystal structure of TIA-1 RRM2 in complex with DNA to 2.3 Šresolution providing the first atomic resolution structure of any TIA protein RRM in complex with oligonucleotide. Together our data support a specific mode of TIA-1 RRM23 interaction with target oligonucleotides consistent with the role of TIA-1 in binding RNA to regulate gene expression.


Assuntos
Proteínas de Ligação a DNA/química , DNA/química , Proteínas de Ligação a Poli(A)/química , Ribonucleosídeo Difosfato Redutase/química , Cristalografia por Raios X , DNA/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Humanos , Oligonucleotídeos/química , Proteínas de Ligação a Poli(A)/genética , Ligação Proteica/genética , Mapas de Interação de Proteínas/genética , Motivo de Reconhecimento de RNA/genética , Ribonucleosídeo Difosfato Redutase/genética , Antígeno-1 Intracelular de Células T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...