Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(1): e2307563, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37965844

RESUMO

Naturally-sourced cellulose nanocrystals (CNCs) are elongated, birefringent nanoparticles that can undergo cholesteric self-assembly in water to produce vibrant, structurally colored films. As such, they are an ideal candidate for use as sustainable and cost-effective inks in the printing of scalable photonic coatings and bespoke patterns. However, the small volume and large surface area of a sessile CNC drop typically leads to rapid evaporation, resulting in microfilms with a coffee-stain-like morphology and very weak coloration. Here, it is demonstrated that inkjet printing of CNC drops directly through an immiscible oil layer can immediately inhibit water loss, resulting in reduced internal mass flows and greater time for cholesteric self-assembly. The color of each microfilm is determined by the initial composition of the drop, which can be tuned on-demand by exploiting the overprinting and coalescence of multiple smaller drops of different inks. This enables the production of multicolored patterns with complex optical behaviors, such as angle-dependent color and polarization-selective reflection. Finally, the array can be made responsive to stimuli (e.g., UV light, polar solvent) by the inclusion of a degradable additive. This suite of functional properties promotes inkjet-printed photonic CNC arrays for smart colorimetric labeling or optical anticounterfeiting applications.

2.
Adv Mater ; 34(12): e2109170, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35076132

RESUMO

Nano-enabled, bio-based, functional materials are key for the transition to a sustainable society as they can be used, owing to both their performance and nontoxicity, to gradually replace existing nonrenewable engineering materials. Cellulose nanocrystals (CNCs), produced by acid hydrolysis of cellulosic biomass, have been shown to possess distinct self-assembly, optical, and electromechanical properties, and are anticipated to play an important role in the fabrication of photonic, optoelectronic, and functional hybrid materials. To facilitate CNCs' technological viability, a method suitable for industrial exploitation is developed to produce photonic films possessing long-range chirality on conductive, rigid, or flexible, substrates within a few minutes. The approach is based on electrophoretic deposition (EPD)-induced self-assembly of CNCs, where photonic films of any size can be produced by controlling CNC surface properties and EPD parameters. CNC film coloration can be determined by the CNC aqueous suspension characteristics, while their reflected intensity can be tuned by changing the duration and number of electrodeposition cycles. EPD-induced self-assembly of CNCs is compatible with in situ reduction of gold precursors without the need to use additional reducing agents (some of which are considered toxic), thereby allowing the preparation of hybrid photonic films with tunable plasmonic response in a one-pot process.

4.
ACS Nano ; 15(5): 8780-8789, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33983711

RESUMO

Structural defects vary the optoelectronic properties of monolayer transition metal dichalcogenides, leading to concerted efforts to control defect type and density via materials growth or postgrowth passivation. Here, we explore a simple chemical treatment that allows on-off switching of low-lying, defect-localized exciton states, leading to tunable emission properties. Using steady-state and ultrafast optical spectroscopy, supported by ab initio calculations, we show that passivation of sulfur vacancy defects, which act as exciton traps in monolayer MoS2 and WS2, allows for controllable and improved mobilities and an increase in photoluminescence up to 275-fold, more than twice the value achieved by other chemical treatments. Our findings suggest a route for simple and rational defect engineering strategies for tunable and switchable electronic and excitonic properties through passivation.

5.
ACS Nano ; 14(11): 15374-15384, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33078943

RESUMO

Heterostructures of two-dimensional (2D) transition metal dichalcogenides (TMDs) and inorganic semiconducting zero-dimensional (0D) quantum dots (QDs) offer useful charge and energy transfer pathways, which could form the basis of future optoelectronic devices. To date, most have focused on charge transfer and energy transfer from QDs to TMDs, that is, from 0D to 2D. Here, we present a study of the energy transfer process from a 2D to 0D material, specifically exploring energy transfer from monolayer tungsten disulfide (WS2) to near-infrared emitting lead sulfide-cadmium sulfide (PbS-CdS) QDs. The high absorption cross section of WS2 in the visible region combined with the potentially high photoluminescence (PL) efficiency of PbS QD systems makes this an interesting donor-acceptor system that can effectively use the WS2 as an antenna and the QD as a tunable emitter, in this case, downshifting the emission energy over hundreds of millielectron volts. We study the energy transfer process using photoluminescence excitation and PL microscopy and show that 58% of the QD PL arises due to energy transfer from the WS2. Time-resolved photoluminescence microscopy studies show that the energy transfer process is faster than the intrinsic PL quenching by trap states in the WS2, thus allowing for efficient energy transfer. Our results establish that QDs could be used as tunable and high PL efficiency emitters to modify the emission properties of TMDs. Such TMD-QD heterostructures could have applications in light-emitting technologies or artificial light-harvesting systems or be used to read out the state of TMD devices optically in various logic and computing applications.

6.
Adv Mater ; 31(52): e1905151, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31736173

RESUMO

Hydroxypropyl cellulose (HPC) is a biocompatible cellulose derivative capable of self-assembling into a lyotropic chiral nematic phase in aqueous solution. This liquid crystalline phase reflects right-handed circular polarized light of a specific color as a function of the HPC weight fraction. Here, it is demonstrated that, by introducing a crosslinking agent, it is possible to drastically alter the visual appearance of the HPC mesophase in terms of the reflected color, the scattering distribution, and the polarization response, resulting in an exceptional matte appearance in solid-state films. By exploiting the interplay between order and disorder, a robust and simple methodology toward the preparation of polarization and angular independent color is developed, which constitutes an important step toward the development of real-world photonic colorants.

7.
Nano Lett ; 19(9): 6299-6307, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31419143

RESUMO

Many potential applications of monolayer transition metal dichalcogenides (TMDs) require both high photoluminescence (PL) yield and high electrical mobilities. However, the PL yield of as prepared TMD monolayers is low and believed to be limited by defect sites and uncontrolled doping. This has led to a large effort to develop chemical passivation methods to improve PL and mobilities. The most successful of these treatments is based on the nonoxidizing organic "superacid" bis(trifluoromethane)sulfonimide (TFSI) which has been shown to yield bright monolayers of molybdenum disulfide (MoS2) and tungsten disulfide (WS2) but with trap-limited PL dynamics and no significant improvements in field effect mobilities. Here, using steady-state and time-resolved PL microscopy we demonstrate that treatment of WS2 monolayers with oleic acid (OA) can greatly enhance the PL yield, resulting in bright neutral exciton emission comparable to TFSI treated monolayers. At high excitation densities, the OA treatment allows for bright trion emission, which has not been demonstrated with previous chemical treatments. We show that unlike the TFSI treatment, the OA yields PL dynamics that are largely trap free. In addition, field effect transistors show an increase in mobilities with the OA treatment. These results suggest that OA serves to passivate defect sites in the WS2 monolayers in a manner akin to the passivation of colloidal quantum dots with OA ligands. Our results open up a new pathway to passivate and tune defects in monolayer TMDs using simple "wet" chemistry techniques, allowing for trap-free electronic properties and bright neutral exciton and trion emission.

8.
Adv Mater ; 30(19): e1704477, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29250832

RESUMO

By controlling the interaction of biological building blocks at the nanoscale, natural photonic nanostructures have been optimized to produce intense coloration. Inspired by such biological nanostructures, the possibility to design the visual appearance of a material by guiding the hierarchical self-assembly of its constituent components, ideally using natural materials, is an attractive route for rationally designed, sustainable manufacturing. Within the large variety of biological building blocks, cellulose nanocrystals are one of the most promising biosourced materials, primarily for their abundance, biocompatibility, and ability to readily organize into photonic structures. Here, the mechanisms underlying the formation of iridescent, vividly colored materials from colloidal liquid crystal suspensions of cellulose nanocrystals are reviewed and recent advances in structural control over the hierarchical assembly process are reported as a toolbox for the design of sophisticated optical materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...