Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 6(9): 3423-3432, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37078387

RESUMO

Barnacles strongly attach to various underwater substrates by depositing and curing a proteinaceous cement that forms a permanent adhesive layer. The protein MrCP20 present within the calcareous base plate of the acorn barnacle Megabalanus rosa (M. rosa) was investigated for its role in regulating biomineralization and growth of the barnacle base plate, as well as the influence of the mineral on the protein structure and corresponding functional role. Calcium carbonate (CaCO3) growth on gold surfaces modified by 11-mercaptoundecanoic acid (MUA/Au) with or without the protein was followed using quartz crystal microbalance with dissipation monitoring (QCM-D), and the grown crystal polymorph was identified by Raman spectroscopy. It is found that MrCP20 either in solution or on the surface affects the kinetics of nucleation and growth of crystals and stabilizes the metastable vaterite polymorph of CaCO3. A comparative study of mass uptake calculated by applying the Sauerbrey equation to the QCM-D data and quantitative X-ray photoelectron spectroscopy determined that the final surface density of the crystals as well as the crystallization kinetics are influenced by MrCP20. In addition, polarization modulation infrared reflection-absorption spectroscopy of MrCP20 established that, during crystal growth, the content of ß-sheet structures in MrCP20 increases, in line with the formation of amyloid-like fibrils. The results provide insights into the molecular mechanisms by which MrCP20 regulates the biomineralization of the barnacle base plate, while favoring fibril formation, which is advantageous for other functional roles such as adhesion and cohesion.


Assuntos
Thoracica , Animais , Thoracica/química , Thoracica/metabolismo , Biomineralização , Cimentos de Resina/metabolismo , Amiloide/metabolismo
2.
Biosensors (Basel) ; 12(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36290935

RESUMO

We designed a magneto-plasmonic biosensor for the immunodetection of antigens in minute sample volume. Both spherical gold nanoparticles (AuNP) and magnetic beads (MB) were conjugated to goat anti-rabbit IgG antibody (Ab) capable of recognizing a model target, rabbit IgG (rIgG). The AuNP bioconjugate was used as the optical detection probe while the MB one was used as the capture probe. Addition of the target analyte followed by detection probe resulted in the formation of a sandwich immunocomplex which was separated from the unbound AuNP-Ab conjugate by application of an external magnetic field. The readout was executed either in a direct or in indirect way by measuring the UV-Visible spectrum of each fraction in a specially designed microcell. Dose-response curves were established from the optical signal of the immunocomplex and unbound AuNP-Ab conjugate fractions. Finally, the assay was transposed to a microfluidic cell specially designed to enable easy separation of the immunocomplex and AuNP-Ab conjugate fractions and subsequent analysis of the latter fraction and achieve the quantification of the analyte in the ng/mL concentration range.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ouro , Dispositivos Lab-On-A-Chip , Técnicas Biossensoriais/métodos , Imunoglobulina G , Imunoensaio/métodos
3.
J Phys Condens Matter ; 33(12)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33339007

RESUMO

This work reports about a novel approach for investigating surface processes during the early stages of galvanic corrosion of stainless steelin situby employing ultra-thin films and synchrotron x-radiation. Characterized by x-ray techniques and voltammetry, such films, sputter deposited from austenitic steel, were found representing useful replicas of the target material. Typical for stainless steel, the surface consists of a passivation layer of Fe- and Cr-oxides, a couple of nm thick, that is depleted of Ni. Films of ≈4 nm thickness were studiedin situin an electrochemical cell under potential control (-0.6 to +0.8 V vs Ag/AgCl) during exposure to 0.1 M KCl. Material transport was recorded with better than 1/10 monolayer sensitivity by x-ray spectroscopy. Leaching of Fe was observed in the cathodic range and the therefor necessary reduction of Fe-oxide appears to be accelerated by atomic hydrogen. Except for minor leaching, reduction of Ni, while expected from Pourbaix diagram, was not observed until at a potential of about +0.8 V Cr-oxide was removed from the steel film. After couple of minutes exposure at +0.8 V, the current in the electrochemical cell revealed a rapid pitting event that was simultaneously monitored by x-ray spectroscopy. Continuous loss of Cr and Ni was observed during the induction time leading to the pitting, suggesting a causal connection with the event. Finally, a spectroscopic image of a pit was recordedex situwith 50 nm lateral and 1 nm depth resolution by soft x-ray scanning absorption microscopy at the Fe L2,3-edges by using a 80 nm film on a SiN membrane, which is further demonstrating the usefulness of thin films for corrosion studies.

4.
J Chem Phys ; 152(2): 024709, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31941300

RESUMO

A novel method of measuring the core level binding energies of multiple sized nanoparticles on the same substrate is demonstrated using the early stage of Au nanoparticle growth on reduced r-TiO2(110). This method employed in situ scanning tunneling microscopy (STM) and microfocused X-ray photoemission spectroscopy. An STM tip-shadowing method was used to synthesize patterned areas of Au nanoparticles on the substrate with different coverages and sizes. Patterns were identified and imaged using a UV photoelectron emission microscope. The Au 4f core level binding energies of the nanoparticles were investigated as a function of Au nanoparticle coverage and size. A combination of initial and final state effects modifies the binding energies of the Au 4f core levels as the nanoparticle size changes. When single Au atoms and Au3 clusters are present, the Au 4f7/2 binding energy, 84.42 eV, is similar to that observed at a high coverage (1.8 monolayer equivalent), resulting from a cancellation of initial and final state effects. As the coverage is increased, there is a decrease in binding energy, which then increases at a higher coverage to 84.39 eV. These results are consistent with a Volmer-Weber nucleation-growth model of Au nanoparticles at oxygen vacancies, resulting in electron transfer to the nanoparticles.

5.
Nanoscale ; 11(2): 752-761, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30566167

RESUMO

Au-Cu bimetallic nanoparticles (NPs) grown on TiO2(110) have been followed in situ using grazing incidence X-ray diffraction and X-ray photoemission spectroscopy from their synthesis to their exposure to a CO/O2 mixture at low pressure (P < 10-5 mbar) and at different temperatures (300 K-470 K). As-prepared samples are composed of two types of alloyed NPs: randomly oriented and epitaxial NPs. Whereas the introduction of CO has no effect on the structure of the NPs, an O2 introduction triggers a Cu surface segregation phenomenon resulting in the formation of a Cu2O shell reducible by annealing the sample over 430 K. A selective re-orientation of the nanoparticles, induced by the exposure to a CO/O2 mixture, is observed where the randomly oriented NPs take advantage of the mobility induced by the Cu segregation to re-orient their Au-rich core relatively to the TiO2(110) substrate following specifically the orientation ((111)NPs//(110)TiO2) when others epitaxial relationships were observed on the as-prepared sample.

6.
J Phys Chem Lett ; 9(11): 3131-3136, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29768922

RESUMO

Elucidating the structure of the interface between natural (reduced) anatase TiO2 (101) and water is an essential step toward understanding the associated photoassisted water splitting mechanism. Here we present surface X-ray diffraction results for the room temperature interface with ultrathin and bulk water, which we explain by reference to density functional theory calculations. We find that both interfaces contain a 25:75 mixture of molecular H2O and terminal OH bound to titanium atoms along with bridging OH species in the contact layer. This is in complete contrast to the inert character of room temperature anatase TiO2 (101) in ultrahigh vacuum. A key difference between the ultrathin and bulk water interfaces is that in the latter water in the second layer is also ordered. These molecules are hydrogen bonded to the contact layer, modifying the bond angles.

7.
J Phys Chem B ; 122(2): 834-839, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28991476

RESUMO

Titanium dioxide is a promising candidate for photocatalytic H2 fuel production, and understanding water splitting on TiO2 surfaces is vital toward explaining and improving the generation of H2. In this work, we electron irradiate anatase TiO2(101) at room temperature to create metastable surface oxygen vacancies in order to investigate their ability to dissociate H2O. Our scanning tunneling microscopy investigations suggest that the surface oxygen vacancies can dissociate H2O by forming bridging OH species. This claim is supported by theoretical calculations from the literature and our previously published spectroscopic measurements.

8.
Nanoscale ; 8(36): 16475-85, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27603921

RESUMO

Direct observation of the promoting effect of hydration on the nucleation of gold and copper nanoparticles supported on partially reduced rutile TiO2 (110) is achieved by combined scanning tunneling microscopy experiments and density functional theory calculations. The experiments show a clear difference between the two metals. Gold nanoparticles grow at the vicinity of the surface hydroxyl domains, whereas the nucleation of copper is not substantially affected by hydration. The nucleation of gold on surface oxygen vacancies is observed although this is not the only preferential site. Theoretical calculations of the coadsorbed phases of gold, copper and hydroxyl species on stoichiometric and reduced TiO2 (110) surfaces under relevant conditions of temperature and pressure support the experimental interpretation. Surface hydration tends to stabilize significantly gold adsorption on the stoichiometric support, while its influence on copper adsorption is not pronounced. The theoretical analysis shows that the early stages of the nucleation on hydrated stoichiometric surfaces correspond to mono-hydroxylated metallic species co-chemisorbed with hydroxyl species, whereas those on hydrated reduced surfaces are metallic atoms bound to oxygen vacancies and weakly perturbed by surface hydration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA