Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 946: 174468, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38969136

RESUMO

Floating treatment wetlands (FTW) are receiving growing interest as a phyto-technology. However, there are significant research gaps regarding the actual role of plant species and plant-microbiome interactions. In this study, the nutrient uptake of Equisetum hyemale was examined in FTW microcosms under the influence of abiotic stressors: As (3 mg/L) and Pb (3 mg/L) as well as Cl- (300 and 800 mg/L) in reference to a control during a short screening experiment. High removal efficiency of nutrients in water solutions, up to 88 % for TN and 93 % for PO4-P, was observed. However, PO4-P removal was inhibited in the As reactor, with a maximum efficiency of only 11 %. Lead and As were removed with high efficiency, reaching 98 % and 79 % respectively. At the same time only Pb was effectively bound to root biomass, reaching up to 51 %. Limited As accumulation of 0.5 % in plant roots suggests that microbial processes play a major role in its reduction. The development and structure of microbiome in the microcosms was analysed by means of 16S rRNA gene amplicon sequencing, proving that Pb was the most influential factor in terms of selection pressure on specified bacterial groups. In the As treatment, the emergence of a Serratia subpopulation was observed, while the Cl- treatment preserved a rhizobiome composition most closely resembling the control. This study indicates that E. hyemale is a suitable species for use in FTWs treating Pb polluted water that at the same time is capable to withstand periodic increases in salinity. E. hyemale exhibits low As binding in biomass; however, extended exposure might amplify this effect because of the slow-acting, but beneficial, mechanism of As uptake by roots and shoots. Microbiome analysis complements insights into mechanisms of FTW performance and impact of stress factors on bacterial structure and functions.


Assuntos
Equisetum , Microbiota , Poluentes Químicos da Água , Áreas Alagadas , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Eliminação de Resíduos Líquidos/métodos , Raízes de Plantas/microbiologia , Estresse Fisiológico , Nutrientes
2.
Sci Total Environ ; 949: 175074, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39079636

RESUMO

Exponential increases in energy consumption and wastewater have often irreversible environmental impacts. As a result, bio-electrochemical devices like microbial fuel cells (MFCs), which convert chemical energy in organic matter to electricity using exoelectrogenic bacteria, have gained interest. However, operational factors affecting efficiency and energy output need further study. This research investigated bioenergy production and COD, TN, and TP removal in mesoscale floating treatment wetlands (FTW-MFC) using Phragmites australis, Iris pseudacorus, and a mix of both. The Iris FTW-MFC achieved a high voltage peak of 2100 mV. The maximum power densities of 484 mW/m2, 1196 mW/m2, and 441 mW/m2 were observed for Phragmites, Iris, and mixed FTW-MFCs, respectively. Despite promising bioenergy yields, pollutant removal was unsatisfactory. A low area/height ratio (0.38 m2/0.8 m) and high loading rate (18.1 g/m2·d COD) boosted bioenergy output but hindered treatment performance and stressed plants, causing root decay. No significant pollutant removal differences were found between FTW-MFC and FTW. Higher relative plant growth rates occurred in the FTW-MFC. Microbial analysis shown that representatives of Pseudomonas and Clostridium species were consistently found across all samples, involved in both organic compound transformation and electricity generation, contributed to successful microscale results. A supporting microscale MFC experiment showed wastewater composition's impact on bioenergy yield and pollutant removal. Pre-inoculated reactors improved organic matter transformation and electricity generation, while aeration increased voltage and treatment performance. The role of plants requires further verification in future experiments.


Assuntos
Fontes de Energia Bioelétrica , Eliminação de Resíduos Líquidos , Águas Residuárias , Áreas Alagadas , Eliminação de Resíduos Líquidos/métodos , Eletrodos , Poaceae
3.
Sci Rep ; 13(1): 22417, 2023 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104172

RESUMO

Floating treatment wetlands (FTWs) are a sustainable solution to treat polluted water, but their role in chromium (Cr(III)) removal under neutral pH conditions remains poorly understood. This study evaluated the potential of FTWs planted with two perennial emergent macrophytes, Phragmites australis and Iris pseudacorus, to remove Cr(III) and nutrients (N and PO4-P) from water containing 7.5 mg/L TN, 1.8 mg/L PO4-P, and Cr(III) (500, 1000, and 2000 µg/L). Within 1 h of exposure, up to 96-99% of Cr was removed from the solution, indicating rapid precipitation. After 50 days, Phragmites bound 9-19% of added Cr, while Iris bound 5-22%. Both species accumulated Cr primarily in the roots (BCF > 1). Biomass production and growth development were inhibited in Cr treatments, but microscopic examination of plant roots revealed no histological changes at 500 and 1000 µg/L Cr, suggesting high resistance of the tested species. At 2000 µg/L Cr, both species exhibited disruptions in the arrangement of vessel elements in the stele and increased aerenchyma spaces in Phragmites. At the end of the experiment, 70-86% of TN and 54-90% of PO4-P were removed.


Assuntos
Cromo , Poluentes Químicos da Água , Cromo/metabolismo , Áreas Alagadas , Biodegradação Ambiental , Plantas/metabolismo , Poaceae/metabolismo , Água/metabolismo , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA