Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Nucleic Acids ; 32: 144-160, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37064776

RESUMO

Spinal muscular atrophy (SMA) is a neurodegenerative disease characterized by the selective loss of spinal motor neurons (MNs) and concomitant muscle weakness. Mutation of SMN1 is known to cause SMA, and restoring SMN protein levels via antisense oligonucleotide treatment is effective for ameliorating symptoms. However, this approach is hindered by exorbitant costs, invasive procedures, and poor treatment responses of some patients. Here, we seek to circumvent these hurdles by identifying reliable biomarkers that could predict treatment efficacy. We uncovered that MiR34 exhibits consistent downregulation during SMA progression in both human and rodent contexts. Importantly, Mir34 family-knockout mice display axon swelling and reduced neuromuscular junction (NMJ) endplates, recapitulating SMA pathology. Introducing MiR34a via scAAV9 improved the motor ability of SMNΔ7 mice, possibly by restoring NMJ endplate size. Finally, we observed a consistent decreasing trend in MiR34 family expression in the cerebrospinal fluid (CSF) of type I SMA patients during the loading phase of nusinersen treatment. Baseline CSF MiR34 levels before nusinersen injection proved predictive of patient motor skills 1 year later. Thus, we propose that MiR34 may serve as a biomarker of SMA since it is associated with the pathology and can help evaluate the therapeutic effects of nusinersen.

2.
J Physiol ; 601(22): 5011-5031, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35318675

RESUMO

Extended periods of bed rest and limb immobilization are required for healing post-injury or disease, yet disuse can result in significant muscle atrophy and decreased quality of life in older adults. Physical rehabilitation is commonly prescribed to recover these deficits, yet accumulation of reactive oxygen species and sustained rates of protein degradation persist during the rehabilitation period that can significantly delay or prevent recovery. Pericytes, considered the primary mesenchymal and vascular stromal cell in skeletal muscle, secrete beneficial factors that maintain baseline muscle mass, yet minimal information exists regarding the pericyte response to disuse and recovery. In the current study, single-cell RNA sequencing and functional assays were performed to demonstrate that pericytes in mouse skeletal muscle lose the capacity to synthesize antioxidants during disuse and recovery. This information was used to guide the design of a strategy in which healthy donor pericytes were stimulated with hydrogen peroxide (H2 O2 ) to produce small extracellular vesicles (sEVs) that effectively restored myofibre size in adult and aged muscle after disuse. Proteomic assessment detected 11 differentially regulated proteins in primed sEVs that may account for recovery of muscle, including proteins associated with extracellular matrix composition and anti-inflammatory and antioxidant processes. This study demonstrates that healthy H2 O2 -primed pericyte-derived sEVs effectively improve skeletal muscle recovery after immobilization, presenting a novel acellular approach to rebuild muscle mass in older adults after a period of disuse. KEY POINTS: Previous studies suggest that prolonged oxidative stress is a barrier to skeletal muscle recovery after a period of immobilization. In this study we demonstrate that muscle-resident perivascular stromal cells (pericytes) become dysfunctional and lack the capacity to mount an antioxidant defence after disuse in mice. Hydrogen peroxide treatment of healthy pericytes in vitro simulates the release of small extracellular vesicles (sEVs) that effectively recover skeletal muscle fibre size and extracellular matrix remodelling in young adult and aged mice after disuse. Pericyte-derived sEVs present a novel acellular strategy to recover skeletal muscle after disuse.


Assuntos
Peróxido de Hidrogênio , Qualidade de Vida , Camundongos , Animais , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo , Proteômica , Músculo Esquelético/fisiologia , Atrofia Muscular/metabolismo
3.
Connect Tissue Res ; 63(6): 590-602, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35229695

RESUMO

PURPOSE: Mechanical stimuli are essential for the maintenance of tendon tissue homeostasis. The study aims to elucidate the mechanobiological mechanisms underlying the maintenance of tenocyte homeostasis by cyclic mechanical stretch under high-glucose (HG) condition. MATERIALS AND METHODS: Primary tenocytes were isolated from rat Achilles tendon and 2D-cultured under HG condition. The in vitro effects of a single bout, 2-h cyclic biaxial stretch session (1 Hz, 8%) on primary rat tenocytes were explored through Flexcell system. Cell viability, tenogenic gene expression, intracellular calcium concentration, focal adhesion kinase (FAK) expression, and signaling pathway activation were analyzed in tenocytes with or without mechanical stretch. RESULTS: Mechanical stretch increased tenocyte proliferation and upregulated early growth response protein 1 (Egr1) expression. An increase in intracellular calcium was observed after 30 min of stretching. Mechanical stretch phosphorylated FAK, calmodulin-dependent protein kinase kinase 2 (CaMKK2), and 5' adenosine monophosphate-activated protein kinase (AMPK) in a time-dependent manner, and these effects were abrogated after blocking intracellular calcium. Inhibition of FAK, CaMKK2, and AMPK downregulated the expression of Egr1. In addition, mechanical stretch reinforced cytoskeletal organization via calcium (Ca2+)/FAK signaling. CONCLUSIONS: Our study demonstrated that mechanical stretch-induced calcium influx activated CaMKK2/AMPK signaling and FAK-cytoskeleton reorganization, thereby promoting the expression of Egr1, which may help maintain tendon cell characteristics and homeostasis in the context of diabetic tendinopathy.


Assuntos
Tendão do Calcâneo , Tenócitos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Tendão do Calcâneo/metabolismo , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/farmacologia , Animais , Cálcio/metabolismo , Células Cultivadas , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/farmacologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Glucose/metabolismo , Ratos , Estresse Mecânico , Tenócitos/metabolismo
4.
J Appl Physiol (1985) ; 132(4): 1020-1030, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35175105

RESUMO

Extended bed rest or limb immobilization can significantly reduce skeletal muscle mass and function. Recovery may be incomplete, particularly in older adults. Our laboratory recently reported that vascular mural cell (pericyte) quantity is compromised after immobilization and appropriate replacement immediately before remobilization can effectively recover myofiber size in mice. Identification of a single cell surface marker for isolation of the most therapeutic pericyte would streamline efforts to optimize muscle recovery. The purpose of this study was to compare the capacity for neural/glial antigen 2 (Cspg4/NG2+) and melanoma cell adhesion molecule (Mcam/CD146+) positive pericytes to uniquely recover skeletal muscle post-disuse. A single hindlimb from adult C57BL/6J mice was immobilized in full dorsiflexion via a surgical staple inserted through the center of the foot and body of the gastrocnemius. Fourteen days after immobilization, the staple was removed and pericytes, either NG2+CD45-CD31-[Lin-], CD146+NG2-Lin-, or CD146+Lin- pericytes, were injected into the atrophied tibialis anterior (TA) muscle. TA muscles were excised 14 days after transplantation and remobilization. Pericyte transplantation did not significantly improve muscle mass or myofiber cross-sectional area (CSA) after 14 days of remobilization. However, injection of CD146+ pericytes significantly increased Type IIa quantity, capillarization, and collagen remodeling compared with NG2+ pericytes (P < 0.05). Our results suggest that selection of pericytes based on CD146 rather than NG2 results in the isolation of therapeutic mural cells with high capacity to positively remodel skeletal muscle after a period of immobilization.NEW & NOTEWORTHY In this study, pericytes were isolated from mouse skeletal muscle based on cell surface marker expression of neural/glial antigen 2 (NG2) or melanoma cell adhesion molecule (Mcam/CD146) and then compared for the capacity to recover skeletal muscle after a period of immobilization in recipient mice. We report that CD146+Lin- pericytes exhibit higher capacity than NG2+Lin- pericytes to recover Type IIa fiber quantity, capillary content, and collagen turnover after disuse.


Assuntos
Músculo Esquelético , Pericitos , Animais , Capilares , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo
5.
Med Sci Sports Exerc ; 54(1): 89-97, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34468415

RESUMO

PURPOSE: Recently, it has been suggested that a cellular pathway composed of integrin, integrin-linked kinase (ILK), rapamycin-insensitive companion of mTOR (RICTOR), and Akt may facilitate long-term structural and functional adaptations associated with exercise, independent of the mTORC1 pathway. Therefore, we examined changes in integrin-ILK-RICTOR-Akt protein in vastus lateralis (VL) before and after 8 wk of eccentric cycling training (ECC), which was expected to increase muscle function and VL cross-sectional area (CSA). METHODS: Eleven men (23 ± 4 yr) completed 24 sessions of ECC with progressive increases in intensity and duration, resulting in a twofold increase in work from the first three (75.4 ± 14.1 kJ) to the last three sessions (150.7 ± 28.4 kJ). Outcome measures included lower limb lean mass, VL CSA, static strength, and peak and average cycling power output. These measures and VL samples were taken before and 4-5 d after the last training session. RESULTS: Significant (P < 0.05) increases in integrin-ß1 (1.64-fold) and RICTOR (2.99-fold) protein as well as the phosphorylated-to-total ILK ratio (1.70-fold) were found, but integrin-α7 and Akt did not change. Increases in lower limb, thigh, and trunk lean mass (2.8%-5.3%, P < 0.05) and CSA (13.3% ± 9.0%, P < 0.001) were observed. Static strength (18.1% ± 10.8%) and both peak (8.6% ± 10.5%) and average power output (7.4% ± 8.3%) also increased (P < 0.05). However, no significant correlations were found between the magnitude of increases in protein and the magnitude of increases in CSA, static strength, or power output. CONCLUSIONS: In addition to increased muscle mass, strength, and power, we demonstrate that ECC increases integrin-ß1 and RICTOR total protein and p-ILK/t-ILK, which may play a role in protection against muscle damage as well as anabolic signaling to induce muscle adaptations.


Assuntos
Ciclismo/fisiologia , Integrinas/metabolismo , Contração Muscular/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Músculo Quadríceps/fisiologia , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Adulto , Humanos , Masculino , Adulto Jovem
6.
J Gerontol A Biol Sci Med Sci ; 76(4): 586-590, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33284954

RESUMO

Anabolic resistance to a mechanical stimulus may contribute to the loss of skeletal muscle mass observed with age. In this study, young and aged mice were injected with saline or human LM-111 (1 mg/kg). One week later, the myotendinous junction of the gastrocnemius muscle was removed via myotenectomy (MTE), thus placing a chronic mechanical stimulus on the remaining plantaris muscle for 2 weeks. LM-111 increased α7B integrin protein expression and clustering of the α7B integrin near DAPI+ nuclei in aged muscle in response to MTE. LM-111 reduced CD11b+ immune cells, enhanced repair, and improved the growth response to loading in aged plantaris muscle. These results suggest that LM-111 may represent a novel therapeutic approach to prevent and/or treat sarcopenia.


Assuntos
Envelhecimento/fisiologia , Laminina/farmacologia , Músculo Esquelético , Sarcopenia , Envelhecimento/efeitos dos fármacos , Anabolizantes/farmacologia , Animais , Matriz Extracelular/fisiologia , Integrinas/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Condicionamento Físico Animal/fisiologia , Regeneração/efeitos dos fármacos , Sarcopenia/metabolismo , Sarcopenia/prevenção & controle , Sarcopenia/terapia
7.
ACS Nano ; 14(5): 5298-5313, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32243129

RESUMO

Stem cell transplantation has been a promising treatment for peripheral arterial diseases in the past decade. Stem cells act as living bioreactors of paracrine factors that orchestrate tissue regeneration. Prestimulated adipose-derived stem cells (ADSCs) have been proposed as potential candidates but have been met with challenges in activating their secretory activities for clinical use. Here, we propose that tethering the ADSC surface with nanoparticles releasing tumor necrosis factor α (TNFα), named nanostimulator, would stimulate cellular secretory activity in situ. We examined this hypothesis by complexing octadecylamine-grafted hyaluronic acid onto a liposomal carrier of TNFα. Hyaluronic acid increased the liposomal stability and association to CD44 on ADSC surface. ADSCs tethered with these TNFα carriers exhibited up-regulated secretion of proangiogenic vascular endothelial growth factor and immunomodulatory prosteoglandin E2 (PGE2) while decreasing secretion of antiangiogenic pigment epithelium-derived factors. Accordingly, ADSCs tethered with nanostimulators promoted vascularization in a 3D microvascular chip and enhanced recovery of perfusion, walking, and muscle mass in a murine ischemic hindlimb compared to untreated ADSCs. We propose that this surface tethering strategy for in situ stimulation of stem cells would replace the costly and cumbersome preconditioning process and expedite clinical use of stem cells for improved treatments of various injuries and diseases.


Assuntos
Células-Tronco , Fator A de Crescimento do Endotélio Vascular , Tecido Adiposo , Animais , Células Cultivadas , Inflamação , Camundongos , Músculos , Transplante de Células-Tronco
8.
Gene Ther ; 26(5): 165-176, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30814673

RESUMO

Mesenchymal stem cells (MSCs) have been applied in treating various diseases including myocardial infarction (MI) and achieved a bit of success; however, the decreased survival rate of MSCs after transplantation greatly limited the efficacy for cell therapy. How to improve the MSC survival rate in stem cell transplantation has undoubtedly become urgent and genetic engineering may be an ideal and feasible way. In this study, we explored the effects on MSCs survival and self-renewal by overexpression of integrin-linked kinase (ILK) in MSCs under hypoxic stimulation and aimed to reveal the molecular mechanisms from the point of paracrine function of MSCs. We first found that overexpression of ILK induced the expression and secretion of IL-6 increased significantly in MSCs under hypoxic stimulation, and the survival and self-renewal of MSCs exposed to hypoxia were enhanced after ILK overexpression. Then the activation of JAK2/STAT3 signaling was detected because of the increased IL-6, and an lncRNA, named lncTCF7, was upregulated remarkably, promoting the activation of Wnt pathway that was required for keeping cell viability and stemness of MSCs. Moreover, we further verified that inhibition of STAT3 signaling by WP1066 and silencing lncTCF7 expression eliminated the protective effects of ILK overexpression on cell survival and self-renewal of MSCs under hypoxic sitmulation. In conclusion, our results uncovered a novel function of ILK to promote MSC survival and self-renewal, suggesting more application potentials of MSC cell therapy on MI.


Assuntos
Proliferação de Células , Interleucina-6/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Via de Sinalização Wnt , Animais , Hipóxia Celular , Células Cultivadas , Células HEK293 , Humanos , Interleucina-6/genética , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Masculino , Células-Tronco Mesenquimais/fisiologia , Proteínas Serina-Treonina Quinases/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
9.
Int J Mol Sci ; 19(1)2017 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-29283422

RESUMO

Diabetes mellitus is associated with damage to tendons, which may result from cellular dysfunction in response to a hyperglycemic environment. Tenocytes express diminished levels of tendon-associated genes under hyperglycemic conditions. In contrast, mechanical stretch enhances tenogenic differentiation. However, whether hyperglycemia increases the non-tenogenic differentiation potential of tenocytes and whether this can be mitigated by mechanical stretch remains elusive. We explored the in vitro effects of high glucose and mechanical stretch on rat primary tenocytes. Specifically, non-tenogenic gene expression, adipogenic potential, cell migration rate, filamentous actin expression, and the activation of signaling pathways were analyzed in tenocytes treated with high glucose, followed by the presence or absence of mechanical stretch. We analyzed tenocyte phenotype in vivo by immunohistochemistry using an STZ (streptozotocin)-induced long-term diabetic mouse model. High glucose-treated tenocytes expressed higher levels of the adipogenic transcription factors PPARγ and C/EBPs. PPARγ was also highly expressed in diabetic tendons. In addition, increased adipogenic differentiation and decreased cell migration induced by high glucose implicated a fibroblast-to-adipocyte phenotypic change. By applying mechanical stretch to tenocytes in high-glucose conditions, adipogenic differentiation was repressed, while cell motility was enhanced, and fibroblastic morphology and gene expression profiles were strengthened. In part, these effects resulted from a stretch-induced activation of ERK (extracellular signal-regulated kinases) and a concomitant inactivation of Akt. Our results show that mechanical stretch alleviates the augmented adipogenic transdifferentiation potential of high glucose-treated tenocytes and helps maintain their fibroblastic characteristics. The alterations induced by high glucose highlight possible pathological mechanisms for diabetic tendinopathy. Furthermore, the beneficial effects of mechanical stretch on tenocytes suggest that an appropriate physical load possesses therapeutic potential for diabetic tendinopathy.


Assuntos
Adipócitos/efeitos dos fármacos , Diabetes Mellitus Experimental/terapia , Glucose/farmacologia , Mecanotransdução Celular/genética , Estresse Mecânico , Tenócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipócitos/patologia , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Animais , Fenômenos Biomecânicos , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Transdiferenciação Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Regulação da Expressão Gênica , Masculino , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Estreptozocina , Tendões/efeitos dos fármacos , Tendões/metabolismo , Tendões/patologia , Tenócitos/metabolismo , Tenócitos/patologia
10.
Sci Rep ; 7: 44199, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28266660

RESUMO

Diabetes mellitus (DM) is associated with higher risk of tendinopathy, which reduces tolerance to exercise and functional activities and affects lifestyle and glycemic control. Expression of tendon-related genes and matrix metabolism in tenocytes are essential for maintaining physiological functions of tendon. However, the molecular mechanisms involved in diabetic tendinopathy remain unclear. We hypothesized that high glucose (HG) alters the characteristics of tenocyte. Using in vitro 2-week culture of tenocytes, we found that expression of tendon-related genes, including Egr1, Mkx, TGF-ß1, Col1a2, and Bgn, was significantly decreased in HG culture and that higher glucose consumption occurred. Down-regulation of Egr1 by siRNA decreased Scx, Mkx, TGF-ß1, Col1a1, Col1a2, and Bgn expression. Blocking AMPK activation with Compound C reduced the expression of Egr1, Scx, TGF-ß1, Col1a1, Col1a2, and Bgn in the low glucose condition. In addition, histological examination of tendons from diabetic mice displayed larger interfibrillar space and uneven glycoprotein deposition. Thus, we concluded that high glucose alters tendon homeostasis through downregulation of the AMPK/Egr1 pathway and the expression of downstream tendon-related genes in tenocytes. The findings render a molecular basis of the mechanism of diabetic tendinopathy and may help develop preventive and therapeutic strategies for the pathology.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Tendão do Calcâneo/metabolismo , Regulação para Baixo/efeitos dos fármacos , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Glucose/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tenócitos/metabolismo , Tendão do Calcâneo/patologia , Animais , Glucose/metabolismo , Ratos , Ratos Sprague-Dawley , Tendinopatia/metabolismo , Tendinopatia/patologia , Tenócitos/patologia
11.
Opt Express ; 16(23): 18857-62, 2008 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-19581975

RESUMO

In this paper, we propose and experimentally investigate a simple self-injection Fabry-Perot laser scheme on each optical network unit (ONU) for 10 Gbps TDM passive optical networks (PONs). Based on the proposed four wavelength-multiplexed 2.5 Gbps lasers, the 10 Gbps uplink traffic can be achieved at a cost-effective way. The network architecture and performance have also been analyzed and discussed.


Assuntos
Redes de Comunicação de Computadores/instrumentação , Tecnologia de Fibra Óptica/instrumentação , Lasers , Refratometria/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Transdutores , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Micro-Ondas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...