Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 6769, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819506

RESUMO

Adeno-associated virus (AAV)-mediated CRISPR-Cas9 editing holds promise to treat many diseases. The immune response to bacterial-derived Cas9 has been speculated as a hurdle for AAV-CRISPR therapy. However, immunological consequences of AAV-mediated Cas9 expression have thus far not been thoroughly investigated in large mammals. We evaluate Cas9-specific immune responses in canine models of Duchenne muscular dystrophy (DMD) following intramuscular and intravenous AAV-CRISPR therapy. Treatment results initially in robust dystrophin restoration in affected dogs but also induces muscle inflammation, and Cas9-specific humoral and cytotoxic T-lymphocyte (CTL) responses that are not prevented by the muscle-specific promoter and transient prednisolone immune suppression. In normal dogs, AAV-mediated Cas9 expression induces similar, though milder, immune responses. In contrast, other therapeutic (micro-dystrophin and SERCA2a) and reporter (alkaline phosphatase, AP) vectors result in persistent expression without inducing muscle inflammation. Our results suggest Cas9 immunity may represent a critical barrier for AAV-CRISPR therapy in large mammals.


Assuntos
Sistemas CRISPR-Cas/imunologia , Terapia Genética/efeitos adversos , Vetores Genéticos/imunologia , Músculo Esquelético/imunologia , Distrofia Muscular de Duchenne/terapia , Animais , Sistemas CRISPR-Cas/genética , Dependovirus/genética , Modelos Animais de Doenças , Cães , Distrofina/genética , Distrofina/imunologia , Edição de Genes/métodos , Genes Reporter/genética , Genes Reporter/imunologia , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Humanos , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/imunologia , Distrofia Muscular de Duchenne/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/imunologia
2.
Dis Model Mech ; 14(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34704592

RESUMO

Aged dystrophin-null canines are excellent models for studying experimental therapies for Duchenne muscular dystrophy, a lethal muscle disease caused by dystrophin deficiency. To establish the baseline, we studied the extensor carpi ulnaris (ECU) muscle in 15 terminal age (3-year-old) male affected dogs and 15 age/sex-matched normal dogs. Affected dogs showed histological and anatomical hallmarks of dystrophy, including muscle inflammation and fibrosis, myofiber size variation and centralized myonuclei, as well as a significant reduction of muscle weight, muscle-to-body weight ratio and muscle cross-sectional area. To rigorously characterize the contractile properties of the ECU muscle, we developed a novel in situ assay. Twitch and tetanic force, contraction and relaxation rate, and resistance to eccentric contraction-induced force loss were significantly decreased in affected dogs. Intriguingly, the time-to-peak tension and half-relaxation time were significantly shortened in affected dogs. Contractile kinetics predicted an unforeseen slow-to-fast myofiber-type switch, which we confirmed at the protein and transcript level. Our study establishes a foundation for studying long-term and late-stage therapeutic interventions in dystrophic canines. The unexpected myofiber-type switch highlights the complexity of muscle remodeling in dystrophic large mammals. This article has an associated First Person interview with the first author of the paper.


Assuntos
Distrofia Muscular Animal , Distrofia Muscular de Duchenne , Idoso , Animais , Modelos Animais de Doenças , Cães , Distrofina/metabolismo , Humanos , Masculino , Mamíferos , Contração Muscular , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia
3.
Vet Med Sci ; 7(3): 654-659, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33502125

RESUMO

The University of Missouri (MU) has established a colony of dystrophin-deficient dogs with a mixed breed background to mirror the variable pathologic effects of dystrophinopathies between persons of a given kindred to further the understanding of the genetic and molecular basis of the variable phenotype; thus to facilitate discovery of an effective therapeutic strategy. Herein we report the phenotype and genotype of a normal-appearing 10-month-old colony female that died suddenly. At necropsy examination, there were reduced skeletal and laryngeal muscle volume and mild dilatation of the oesophagus. Microscopic findings consisted of extensive degeneration and regeneration of the axial skeletal, tongue, oesophageal, and laryngeal muscles that were characterized by considerable central nucleation, individual fibre mineralization and interstitial fibrosis. The myocardial findings were limited to infiltration of adipose cells in the interstitium. The female dog was a compound heterozygote with one X chromosome carrying a point mutation in intron 6 of the dystrophin gene and the other X chromosome carrying a repetitive element insertion in intron 13 of the dystrophin gene. Although the direct cause of death was uncertain, it might likely be due to sudden cardiac death as has been seen in Duchenne muscular dystrophy patients. This case demonstrated dystrophinopathy in female dogs that have no ameliorating normal X chromosome.


Assuntos
Doenças do Cão/genética , Distrofina/deficiência , Distrofias Musculares/genética , Animais , Cães , Evolução Fatal , Feminino , Heterozigoto
4.
Mol Ther Methods Clin Dev ; 18: 664-678, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32775499

RESUMO

Vector production scale-up is a major barrier in systemic adeno-associated virus (AAV) gene therapy. Many scalable manufacturing methods have been developed. However, the potency of the vectors generated by these methods has rarely been compared with vectors made by transient transfection (TT), the most commonly used method in preclinical studies. In this study, we blindly compared therapeutic efficacy of an AAV9 micro-dystrophin vector generated by the TT method and scalable herpes simplex virus (HSV) system in a Duchenne muscular dystrophy mouse model. AAV was injected intravenously at 5 × 1014 (high), 5 × 1013 (medium), or 5 × 1012 (low) viral genomes (vg)/kg. Comparable levels of micro-dystrophin expression were observed at each dose in a dose-dependent manner irrespective of the manufacturing method. Vector biodistribution was similar in mice injected with either the TT or the HSV method AAV. Evaluation of muscle degeneration/regeneration showed equivalent protection by vectors made by either method in a dose-dependent manner. Muscle function was similarly improved in a dose-dependent manner irrespective of the vector production method. No apparent toxicity was observed in any mouse. Collectively, our results suggest that the biological potency of the AAV micro-dystrophin vector made by the scalable HSV method is comparable to that made by the TT method.

5.
J Clin Lipidol ; 14(4): 459-469.e0, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32593511

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are allelic X-linked recessive muscle diseases caused by mutations in the DMD gene, with DMD being the more severe form. We have recently shown that increased plasma low-density lipoprotein-associated cholesterol causes severe muscle wasting in the mdx mouse, a mild DMD model, which suggested that plasma lipids may play a critical role in DMD. We have also observed that loss of dystrophin in mice causes unexpected elevations in plasma lipoprotein levels. OBJECTIVE: The objectives of the study were to determine whether patients with DMD and BMD also present with clinically relevant plasma lipoprotein abnormalities and to mitigate the presence of confounders (medications and lifestyle) by analyzing the plasma from patients with DMD/BMD and unmedicated dogs with DMD, the most relevant model of DMD. METHODS: Levels of low-density lipoprotein-associated cholesterol, high-density lipoprotein cholesterol, and triglycerides were analyzed in patients with DMD and BMD and female carriers. Samples from unmedicated, ambulatory dogs with DMD, unaffected carriers, and normal controls were also analyzed. RESULTS: We report that 97% and 64% of all pediatric patients with DMD (33 of 36) and BMD (6 of 11) are dyslipidemic, along with an unusually high incidence in adult patients with BMD. All dogs with DMD showed plasma lipid abnormalities that progressively worsened with age. Most strikingly, unaffected carrier dogs also showed plasma lipid abnormalities similar to affected dogs with DMD. Dyslipidemia is likely not secondary to liver damage as unaffected carriers showed no plasma aminotransferase elevation. CONCLUSIONS: The high incidence of plasma lipid abnormalities in dystrophin-deficient plasma may depict a new type of genetic dyslipidemia. Abnormal lipid levels in dystrophinopathic samples in the absence of muscle damage suggest a primary state of dyslipidemia. Whether dyslipidemia plays a causal role in patients with DMD warrants further investigation, which could lead to new diagnostic and therapeutic options.


Assuntos
Doenças do Cão/sangue , Dislipidemias/complicações , Dislipidemias/genética , Lipídeos/sangue , Distrofia Muscular de Duchenne/sangue , Distrofia Muscular de Duchenne/complicações , Adulto , Animais , Criança , Cães , Feminino , Humanos , Masculino , Prevalência
6.
Mol Ther ; 27(9): 1568-1585, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31327755

RESUMO

CRISPR editing of muscle stem cells (MuSCs) with adeno-associated virus serotype-9 (AAV9) holds promise for sustained gene repair therapy for muscular dystrophies. However, conflicting evidence exists on whether AAV9 transduces MuSCs. To rigorously address this question, we used a muscle graft model. The grafted muscle underwent complete necrosis before regenerating from its MuSCs. We injected AAV9.Cre into Ai14 mice. These mice express tdTomato upon Cre-mediated removal of a floxed stop codon. About 28%-47% and 24%-89% of Pax7+ MuSCs expressed tdTomato in pre-grafts and regenerated grafts (p > 0.05), respectively, suggesting AAV9 efficiently transduced MuSCs, and AAV9-edited MuSCs renewed successfully. Robust MuSC transduction was further confirmed by delivering AAV9.Cre to Pax7-ZsGreen-Ai14 mice in which Pax7+ MuSCs are genetically labeled by ZsGreen. Next, we co-injected AAV9.Cas9 and AAV9.gRNA to dystrophic mdx mice to repair the mutated dystrophin gene. CRISPR-treated and untreated muscles were grafted to immune-deficient, dystrophin-null NSG.mdx4cv mice. Grafts regenerated from CRISPR-treated muscle contained the edited genome and yielded 2.7-fold more dystrophin+ cells (p = 0.015). Importantly, increased dystrophin expression was not due to enhanced formation of revertant fibers or de novo transduction by residual CRISPR vectors in the graft. We conclude that AAV9 effectively transduces MuSCs. AAV9 CRISPR editing of MuSCs may provide enduring therapy.


Assuntos
Dependovirus/genética , Distrofina/genética , Edição de Genes , Vetores Genéticos/genética , Mioblastos/metabolismo , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Modelos Animais de Doenças , Distrofina/química , Expressão Gênica , Técnicas de Transferência de Genes , Genes Reporter , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , RNA Guia de Cinetoplastídeos/genética , Regeneração , Células Satélites de Músculo Esquelético/metabolismo , Transdução Genética
7.
Methods Mol Biol ; 1937: 281-294, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30706404

RESUMO

Many diseases affect multiple tissues and/or organ systems, or affect tissues that are broadly distributed. For these diseases, an effective gene therapy will require systemic delivery of the therapeutic vector to all affected locations. Adeno-associated virus (AAV) has been used as a gene therapy vector for decades in preclinical studies and human trials. These studies have shown outstanding safety and efficacy of the AAV vector for gene therapy. Recent studies have revealed yet another unique feature of the AAV vector. Specifically, AAV can lead to bodywide gene transfer following a single intravascular injection. Here we describe the protocols for effective systemic delivery of AAV in both neonatal and adult mice and dogs. We also share lessons we learned from systemic gene therapy in the murine and canine models of Duchenne muscular dystrophy.


Assuntos
Dependovirus/genética , Vetores Genéticos/administração & dosagem , Transdução Genética/métodos , Administração Intravenosa , Animais , Animais Recém-Nascidos , Cães , Terapia Genética , Humanos , Camundongos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia
8.
Hum Gene Ther ; 30(5): 535-543, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30648435

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR) editing is being considered as a potential gene repair therapy to treat Duchenne muscular dystrophy, a dystrophin-deficient lethal muscle disease affecting all muscles in the body. A recent preliminary study from the Olson laboratory (Amoasii et al. Science 2018;362:89-91) showed robust dystrophin restoration in a canine Duchenne muscular dystrophy model following intramuscular or intravenous delivery of the CRISPR editing machinery by adeno-associated virus serotype 9. Despite the limitation of the small sample size, short study duration, and the lack of muscle function data, the Olson lab findings have provided important proof of principle for scaling up CRISPR therapy from rodents to large mammals. Future large-scale, long-term, and comprehensive studies are warranted to establish the safety and efficacy of CRISPR editing therapy in large mammals.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Distrofia Muscular de Duchenne/genética , Animais , Dependovirus/genética , Modelos Animais de Doenças , Cães , Vetores Genéticos/genética , Humanos , Distrofia Muscular de Duchenne/terapia , RNA Guia de Cinetoplastídeos
9.
JCI Insight ; 3(23)2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30518686

RESUMO

Adeno-associated virus-mediated (AAV-mediated) CRISPR editing is a revolutionary approach for treating inherited diseases. Sustained, often life-long mutation correction is required for treating these diseases. Unfortunately, this has never been demonstrated with AAV CRISPR therapy. We addressed this question in the mdx model of Duchenne muscular dystrophy (DMD). DMD is caused by dystrophin gene mutation. Dystrophin deficiency leads to ambulation loss and cardiomyopathy. We treated 6-week-old mice intravenously and evaluated disease rescue at 18 months. Surprisingly, nominal dystrophin was restored in skeletal muscle. Cardiac dystrophin was restored, but histology and hemodynamics were not improved. To determine the underlying mechanism, we evaluated components of the CRISPR-editing machinery. Intriguingly, we found disproportional guide RNA (gRNA) vector depletion. To test whether this is responsible for the poor outcome, we increased the gRNA vector dose and repeated the study. This strategy significantly increased dystrophin restoration and reduced fibrosis in all striated muscles at 18 months. Importantly, skeletal muscle function and cardiac hemodynamics were significantly enhanced. Interestingly, we did not see selective depletion of the gRNA vector after intramuscular injection. Our results suggest that gRNA vector loss is a unique barrier for systemic AAV CRISPR therapy. This can be circumvented by vector dose optimization.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Distrofina/genética , Edição de Genes , Distrofia Muscular de Duchenne/genética , Animais , Dependovirus , Modelos Animais de Doenças , Feminino , Fibrose , Terapia Genética , Vetores Genéticos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Mutação , Miocárdio/metabolismo , Miocárdio/patologia , Doenças Neuromusculares , RNA Guia de Cinetoplastídeos
10.
J Physiol ; 596(21): 5199-5216, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30152022

RESUMO

KEY POINTS: We developed a novel method to study sympatholysis in dogs. We showed abolishment of sarcolemmal nNOS, and reduction of total nNOS and total eNOS in the canine Duchenne muscular dystrophy (DMD) model. We showed sympatholysis in dogs involving both nNOS-derived NO-dependent and NO-independent mechanisms. We showed that the loss of sarcolemmal nNOS compromised sympatholysis in the canine DMD model. We showed that NO-independent sympatholysis was not affected in the canine DMD model. ABSTRACT: The absence of dystrophin in Duchenne muscular dystrophy (DMD) leads to the delocalization of neuronal nitric oxide synthase (nNOS) from the sarcolemma. Sarcolemmal nNOS plays an important role in sympatholysis, a process of attenuating reflex sympathetic vasoconstriction during exercise to ensure blood perfusion in working muscle. Delocalization of nNOS compromises sympatholysis resulting in functional ischaemia and muscle damage in DMD patients and mouse models. Little is known about the contribution of membrane-associated nNOS to blood flow regulation in dystrophin-deficient DMD dogs. We tested the hypothesis that the loss of sarcolemmal nNOS abolishes protective sympatholysis in contracting muscle of affected dogs. Haemodynamic responses to noradrenaline in the brachial artery were evaluated at rest and during contraction in the absence and presence of NOS inhibitors. We found sympatholysis was significantly compromised in DMD dogs, as well as in normal dogs treated with a selective nNOS inhibitor, suggesting that the absence of sarcolemmal nNOS underlies defective sympatholysis in the canine DMD model. Surprisingly, inhibition of all NOS isoforms did not completely abolish sympatholysis in normal dogs, suggesting sympatholysis in canine muscle also involves NO-independent mechanism(s). Our study established a foundation for using the dog model to test therapies aimed at restoring nNOS homeostasis in DMD.


Assuntos
Distrofia Muscular de Duchenne/fisiopatologia , Óxido Nítrico/metabolismo , Norepinefrina/farmacologia , Vasoconstrição , Vasoconstritores/farmacologia , Animais , Artéria Braquial/efeitos dos fármacos , Artéria Braquial/fisiopatologia , Cães , Feminino , Masculino , Distrofia Muscular de Duchenne/metabolismo , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Óxido Nítrico Sintase Tipo I/metabolismo
11.
PLoS One ; 13(6): e0198893, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29902280

RESUMO

BACKGROUND AND OBJECTIVE: Gait analysis is valuable for studying neuromuscular and skeletal diseases. Wearable motion sensors or inertial measurement units (IMUs) have become common for human gait analysis. Canines are important large animal models for translational research of human diseases. Our objective is to develop a method for accurate and reliable determination of the timing of each stride in dogs using a wearable IMU. METHODS: We built a wireless IMU sensor using off-the-shelf components. We also developed a MATLAB algorithm for data acquisition and stride timing determination. Stride parameters from 1,259 steps of three adult mixed breed dogs were determined across a range of six height-normalized speeds using the IMU system. The IMU results were validated by frame-by-frame manual counting of high-speed video recordings. RESULTS: Comparing IMU derived results with video revealed that the mean error ± standard deviation for stride, stance, and swing duration was 0.001 ± 0.025, -0.001 ± 0.030, and 0.001 ± 0.019 s respectively. A mean error ± standard deviation of 0.000 ± 0.020 and -0.008 ± 0.027 s was obtained for determining toe-off and toe-touch events respectively. Only one step was missed by the algorithm in the video dataset of 1,259 steps. CONCLUSION: We have developed and validated an IMU method for automatic canine gait analysis. Our method can be used for studying neuromuscular diseases in veterinary clinics and in translational research.


Assuntos
Monitorização Fisiológica/instrumentação , Caminhada/fisiologia , Tecnologia sem Fio/instrumentação , Animais , Automação , Cães
12.
Br J Pharmacol ; 175(2): 262-271, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28898923

RESUMO

BACKGROUND AND PURPOSE: Human parathyroid hormone (PTH) is critical for maintaining physiological calcium homeostasis and plays an important role in the formation and maintenance of the bone. Full-length PTH and a truncated peptide form are approved for treatment of hypoparathyroidism and osteoporosis respectively. Our initial goal was to develop an improved PTH therapy for osteoporosis, but clinical development was halted. The novel compound was then repurposed as an improved therapy for hypoparathyroidism. EXPERIMENTAL APPROACH: A longer-acting form of PTH was synthesised by altering the peptide to increase cell surface residence time of the bound ligand to its receptor. In vitro screening identified a compound, which was tested in an animal model of osteoporosis before entering human trials. This compound was subsequently tested in two independent animal models of hypoparathyroidism. KEY RESULTS: The peptide identified, LY627-2K, exhibited delayed internalization kinetics. In an ovariectomy-induced bone loss rat model, LY627-2K demonstrated improved vertebral bone mineral density and biomechanical properties at skeletal sites and a modest increase in serum calcium. In a Phase I clinical study, dose-dependent increases in serum calcium were reproduced. These observations prompted us to explore a second indication, hypoparathyroidism. In animal models of this disease, LY627-2K restored serum calcium, comparing favourably to treatment with wild-type PTH. CONCLUSIONS AND IMPLICATIONS: We summarize the repositioning of a therapeutic candidate with substantial preclinical and clinical data. Our results support its repurposing and continued development, from a common indication (osteoporosis) to a rare disease (hypoparathyroidism) by exploiting a shared molecular target. LINKED ARTICLES: This article is part of a themed section on Inventing New Therapies Without Reinventing the Wheel: The Power of Drug Repurposing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.2/issuetoc.


Assuntos
Reposicionamento de Medicamentos/métodos , Hipoparatireoidismo/tratamento farmacológico , Hormônio Paratireóideo/análogos & derivados , Animais , Densidade Óssea/efeitos dos fármacos , Cálcio/sangue , Feminino , Humanos , Hormônio Paratireóideo/farmacologia , Hormônio Paratireóideo/uso terapêutico , Ratos
13.
Hum Gene Ther ; 29(3): 299-311, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28793798

RESUMO

Dual adeno-associated virus (AAV) technology was developed in 2000 to double the packaging capacity of the AAV vector. The proof of principle has been demonstrated in various mouse models. Yet, pivotal evidence is lacking in large animal models of human diseases. Here we report expression of a 7-kb canine ΔH2-R15 mini-dystrophin gene using a pair of dual AAV vectors in the canine model of Duchenne muscular dystrophy (DMD). The ΔH2-R15 minigene is by far the most potent synthetic dystrophin gene engineered for DMD gene therapy. We packaged minigene dual vectors in Y731F tyrosine-modified AAV-9 and delivered to the extensor carpi ulnaris muscle of a 12-month-old affected dog at the dose of 2 × 1013 viral genome particles/vector/muscle. Widespread mini-dystrophin expression was observed 2 months after gene transfer. The missing dystrophin-associated glycoprotein complex was restored. Treatment also reduced muscle degeneration and fibrosis and improved myofiber size distribution. Importantly, dual AAV therapy greatly protected the muscle from eccentric contraction-induced force loss. Our data provide the first clear evidence that dual AAV therapy can be translated to a diseased large mammal. Further development of dual AAV technology may lead to effective therapies for DMD and many other diseases in human patients.


Assuntos
Dependovirus , Terapia Genética/métodos , Distrofia Muscular de Duchenne/terapia , Animais , Modelos Animais de Doenças , Cães , Distrofina , Humanos , Contração Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatologia , Recuperação de Função Fisiológica
14.
Artigo em Inglês | MEDLINE | ID: mdl-28398005

RESUMO

Duchenne muscular dystrophy (DMD) is a lethal X-linked childhood muscle wasting disease caused by mutations in the dystrophin gene. Nanobiotechnology-based therapies (such as synthetic nanoparticles and naturally existing viral and nonviral nanoparticles) hold great promise to replace and repair the mutated dystrophin gene and significantly change the disease course. While a majority of DMD nanotherapies are still in early preclinical development, several [such as adeno-associated virus (AAV)-mediated systemic micro-dystrophin gene therapy] are advancing for phase I clinical trials. Recent regulatory approval of Ataluren (a nonsense mutation read-through chemical) in Europe and Exondys51 (an exon-skipping antisense oligonucleotide drug) in the United States shall offer critical insight in how to move DMD nanotherapy to human patients. Progress in novel, optimized nano-delivery systems may further improve emerging molecular therapeutic modalities for DMD. Despite these progresses, DMD nanotherapy faces a number of unique challenges. Specifically, the dystrophin gene is one of the largest genes in the genome while nanoparticles have an inherent size limitation per definition. Furthermore, muscle is the largest tissue in the body and accounts for 40% of the body mass. How to achieve efficient bodywide muscle targeting in human patients with nanomedication remains a significant translational hurdle. New creative approaches in the design of the miniature micro-dystrophin gene, engineering of muscle-specific synthetic AAV capsids, and novel nanoparticle-mediated exon-skipping are likely to result in major breakthroughs in DMD therapy. WIREs Nanomed Nanobiotechnol 2018, 10:e1472. doi: 10.1002/wnan.1472 This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Assuntos
Distrofia Muscular de Duchenne/terapia , Nanomedicina , Animais , Modelos Animais de Doenças , Terapia Genética , Humanos , Camundongos
15.
Mol Ther Methods Clin Dev ; 6: 216-230, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28932757

RESUMO

Micro-dystrophins are highly promising candidates for treating Duchenne muscular dystrophy, a lethal muscle disease caused by dystrophin deficiency. Here, we report robust disease rescue in the severe DBA/2J-mdx model with a neuronal nitric oxide synthase (nNOS)-binding micro-dystrophin vector. 2 × 1013 vector genome particles/mouse of the vector were delivered intravenously to 10-week-old mice and were evaluated at 6 months of age. Saturated micro-dystrophin expression was detected in all skeletal muscles and the heart and restored the dystrophin-associated glycoprotein complex and nNOS. In skeletal muscle, therapy substantially reduced fibrosis and calcification and significantly attenuated inflammation. Centronucleation was significantly decreased in the tibialis anterior (TA) and extensor digitorum longus (EDL) muscles but not in the quadriceps. Muscle function was normalized in the TA and significantly improved in the EDL muscle. Heart histology and function were also evaluated. Consistent with the literature, DBA/2J-mdx mice showed myocardial calcification and fibrosis and cardiac hemodynamics was compromised. Surprisingly, similar myocardial pathology and hemodynamic defects were detected in control DBA/2J mice. As a result, interpretation of the cardiac data proved difficult due to the confounding phenotype in control DBA/2J mice. Our results support further development of this microgene vector for clinical translation. Further, DBA/2J-mdx mice are not good models for Duchenne cardiomyopathy.

17.
Sci Transl Med ; 7(276): 276ps3, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25717096

RESUMO

The portfolio of the National Center for Advancing Translational Sciences (NCATS) rare-diseases therapeutic development program comprises 28 research projects initiated at the preclinical stage. Historical data reveal substantially lower costs and higher success rates but longer preclinical timelines for the NCATS projects relative to the industry averages for early-stage translational medical research and development (R&D) typically cited in literature. Here, we evaluate the potential risks and rewards of investing in a portfolio of rare-disease therapeutics. Using a "megafund" financing structure, NCATS data, and valuation estimates from a panel of industry experts, we simulate a hypothetical megafund in which senior and junior debt yielded 5 and 8%, respectively. The simulated expected return to equity was 14.7%, corresponding to a modified internal rate of return of 21.6%. These returns and the likelihood of private-sector funding can be enhanced through third-party funding guarantees from philanthropies, patient advocacy groups, and government agencies.


Assuntos
Financiamento da Assistência à Saúde , Doenças Raras/economia , Pesquisa Translacional Biomédica/economia , Calibragem , Humanos , Apoio à Pesquisa como Assunto/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...