Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473792

RESUMO

Lindera erythrocarpa, a flowering plant native to eastern Asia, has been reported to have neuroprotective activity. However, reports on the specific bioactive compounds in L. erythrocarpa are finite. The aim of this study was to investigate the anti-neuroinflammatory and neuroprotective effects of the compounds isolated from L. erythrocarpa. Dihydropashanone, a compound isolated from L. erythrocarpa extract, was found to have protected mouse hippocampus HT22 cells from glutamate-induced cell death. The antioxidant and anti-inflammatory properties of dihydropashanone in mouse microglial BV2 and HT22 cells were explored in this study. The results reveal that dihydropashanone inhibits lipopolysaccharide-induced inflammatory response and suppresses the activation of nuclear factor (NF)-κB in BV2 cells. In addition, dihydropashanone reduced the buildup of reactive oxygen species in HT22 cells and induced activation of the nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase (HO)-1 signaling pathway in BV2 and HT22 cells. Our results suggest that dihydropashanone reduces neuroinflammation by decreasing NF-κB activation in microglia cells and protects neurons from oxidative stress via the activation of the Nrf2/HO-1 pathway. Thus, our data suggest that dihydropashanone offers a broad range of applications in the treatment of neurodegenerative illnesses.


Assuntos
Lindera , Doenças Neurodegenerativas , Camundongos , Animais , Lindera/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Anti-Inflamatórios/farmacologia , NF-kappa B/metabolismo
2.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542316

RESUMO

Nardostachys jatamansi is widely used as a traditional medicine in Asian countries. Numerous recent studies have reported the biological activities of its secondary metabolites and extracts. In this study, a total of 14 components were isolated, including cycloolivil and 2-(3'-hydroxy-5'-ethoxyphenyl)-3-hydroxylmethyl-7-methoxy-2,3-dihydrobenzofuran-5-carboxylic acid, which were first discovered in N. jatamansi. The isolated compounds were investigated for their anti-inflammatory effects on HaCaT keratinocytes and their potential to alleviate skin inflammation. The results of the screening revealed that cycloolivil and 4ß-hydroxy-8ß-methoxy-10-methylene-2,9-dioxatricyclo[4.3.1.03,7]decane reduced the production of inflammatory cytokines induced by TNF-α/IFN-γ, such as IL-6, IL-8, and RANTES, in keratinocytes. This study focused on exploring the biological effects of cycloolivil, and the results suggested that cycloolivil inhibits the expression of COX-2 proteins. Further mechanistic evaluations confirmed that the anti-inflammatory effects of cycloolivil were mediated by blockage of the NF-κB and JAK/STAT signaling pathways. These results suggest that cycloolivil isolated from N. jatamansi could be used to treat skin inflammatory diseases.


Assuntos
NF-kappa B , Nardostachys , Fenóis , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Nardostachys/metabolismo , Interferon gama/metabolismo , Queratinócitos/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo
3.
Cell Chem Biol ; 31(5): 1011-1022.e6, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38183989

RESUMO

Methyl ketone (MK)-ascarosides represent essential components of several pheromones in Caenorhabditis elegans, including the dauer pheromone, which triggers the stress-resistant dauer larval stage, and the male-attracting sex pheromone. Here, we identify an acyl-CoA thioesterase, ACOT-15, that is required for the biosynthesis of MK-ascarosides. We propose a model in which ACOT-15 hydrolyzes the ß-keto acyl-CoA side chain of an ascaroside intermediate during ß-oxidation, leading to decarboxylation and formation of the MK. Using comparative metabolomics, we identify additional ACOT-15-dependent metabolites, including an unusual piperidyl-modified ascaroside, reminiscent of the alkaloid pelletierine. The ß-keto acid generated by ACOT-15 likely couples to 1-piperideine to produce the piperidyl ascaroside, which is much less dauer-inducing than the dauer pheromone, asc-C6-MK (ascr#2, 1). The bacterial food provided influences production of the piperidyl ascaroside by the worm. Our work shows how the biosynthesis of MK- and piperidyl ascarosides intersect and how bacterial food may impact chemical signaling in the worm.


Assuntos
Caenorhabditis elegans , Feromônios , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Feromônios/metabolismo , Feromônios/biossíntese , Feromônios/química , Proteínas de Caenorhabditis elegans/metabolismo , Tioléster Hidrolases/metabolismo
4.
Molecules ; 28(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37959718

RESUMO

Neuroinflammation activated by microglia affects inflammatory pain development. This study aimed to explore the anti-inflammatory properties and mechanisms of 1,6,7-trihydroxy-2-(1,1-dimethyl-2-propenyl)-3-methoxyxanthone (THMX) from Cudrania tricuspidata in microglia activation-mediated inflammatory pain. In RAW 264.7 and BV2 cells, THMX has been shown to reduce lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and pro-inflammatory mediators and cytokines, including nitric oxide (NO), prostaglandin (PG) E2, interleukin (IL)-6, and tumor necrosis factor alpha (TNF-α). THMX also decreased LPS-induced phosphorylation of mitogen-activated protein kinase (MAPK) and the activation of p65 nuclear factor kappa B (NF-κB). Interestingly, THMX also activated heme oxygenase (HO)-1 expression. These findings suggest that THMX is a promising biologically active compound against inflammation through preventing MAPKs and NF-ĸB and activating HO-1 signaling pathways.


Assuntos
Moraceae , NF-kappa B , NF-kappa B/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Transdução de Sinais , Microglia/metabolismo , Interleucina-6/metabolismo , Dor/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ciclo-Oxigenase 2/metabolismo
5.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108731

RESUMO

Linderone is a major compound in Lindera erythrocarpa and exhibits anti-inflammatory effects in BV2 cells. This study investigated the neuroprotective effects and mechanisms of linderone action in BV2 and HT22 cells. Linderone suppressed lipopolysaccharide (LPS)-induced inducible nitric oxide synthase, cyclooxygenase-2, and pro-inflammatory cytokines (e.g., tumor necrosis factor alpha, interleukin-6, and prostaglandin E-2) in BV2 cells. Linderone treatment also inhibited the LPS-induced activation of p65 nuclear factor-kappa B, protecting against oxidative stress in glutamate-stimulated HT22 cells. Furthermore, linderone activated the translocation of nuclear factor E2-related factor 2 and induces the expression of heme oxygenase-1. These findings provided a mechanistic explanation of the antioxidant and anti-neuroinflammatory effects of linderone. In conclusion, our study demonstrated the therapeutic potential of linderone in neuronal diseases.


Assuntos
Lindera , NF-kappa B , NF-kappa B/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Lindera/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Linhagem Celular , Microglia/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo
6.
Int J Mol Sci ; 23(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35806130

RESUMO

Lindera erythrocarpa contains various constituents such as cyclopentenedione-, flavonoid-, and chalcone-type components. In this study, a novel bi-linderone derivative and 17 known compounds were isolated from the leaves of L. erythrocarpa by using various chromatographic methods. The structures of the components were determined from nuclear magnetic resonance and mass spectrometry data. All isolated compounds were tested for anti-inflammatory and anti-neuroinflammatory activities in lipopolysaccharide (LPS)-induced BV2 and RAW264.7 cells. Some of these compounds showed anti-inflammatory effects by inhibiting the nitric oxide (NO) produced by LPS. In particular, linderaspirone A (16), bi-linderone (17) and novel compound demethoxy-bi-linderone (18) showed significant inhibitory effects on the production of prostaglandin E2 (PGE2), tumor necrosis factor-α, and interleukin-6. The three compounds also inhibited the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), which are pro-inflammatory proteins, and the activation of nuclear factor κB (NF-κB). Therefore, linderaspirone A (16), bi-linderone (17), and demethoxy-bi-linderone (18) isolated from the leaves of L. erythrocarpa have therapeutic potential in neuroinflammatory diseases.


Assuntos
Lindera , Microglia , Anti-Inflamatórios/química , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Lindera/química , Lindera/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Microglia/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo
7.
Immunopharmacol Immunotoxicol ; 44(1): 67-75, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34821534

RESUMO

OBJECTIVE: The prenylated xanthones compounds, macluraxanthone B (MCXB) was isolated from the MeOH extracts of Cudrania tricuspidata. In this study, we investigated the effect of MCXB on inflammatory response. MATERIALS AND METHODS: Anti-inflammatory effects of MCXB were examined in lipopolysaccharide (LPS)-stimulated RAW264.7 and BV2 cells. We observed their anti-inflammatory effects by ELISA, western blot analysis, and immunofluorescence. RESULTS: MCXB significantly inhibited the LPS-stimulated production of nitric oxide (NO), prostaglandin E2 (PGE2), interleukin-6 (IL-6), and tumor necrosis factor (TNF)-α in RAW264.7 and BV2 cells. MCXB also reduced the LPS-induced expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 proteins. Incubating cells with MCXB prevented subsequent activation of the nuclear factor kappa B (NF-κB) signaling pathway by inhibiting the nuclear localization and DNA-binding activity of the p65 subunit induced by LPS. MCXB inhibited the phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 mitogen-activated protein kinases (MAPKs) in RAW264.7 and BV2 cells. MCXB induced the expression of heme oxygenase (HO)-1 protein, and the inhibitory effect of MCXB on nitric oxide production was partially reversed by a selective HO-1 inhibitor. DISCUSSION AND CONCLUSIONS: Our results suggested that the anti-inflammatory effect of MCXB is partly regulated by HO-1 induction. In conclusion, MCXB could be a useful candidate for the development of therapeutic and preventive agents to treat inflammatory diseases.


Assuntos
Lipopolissacarídeos , Xantonas , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Ciclo-Oxigenase 2/metabolismo , Lipopolissacarídeos/toxicidade , Sistema de Sinalização das MAP Quinases , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Transdução de Sinais , Xantonas/farmacologia
8.
Int J Mol Sci ; 22(14)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34299102

RESUMO

Aging is associated with immune disregulation and oxidative stress which lead to inflammation and neurodegenerative diseases. We have tried to identify the anti-neuroinflammatory and anti-inflammatory components of Coreopsis lanceolata L. The dried flowers of C. lanceolata were extracted with 70% EtOH, and the obtained extract was divided into CH2Cl2, EtOAc, n-BuOH, and H2O fractions. The CH2Cl2 fraction was separated using silica gel and C-18 column chromatography to yield phenylheptatriyne (1), 2'-hydroxy-3,4,4'-trimethoxychalcone (2), and 4',7-dimethoxyflavanone (3). Additionally, the EtOAc fraction was subjected to silica gel, C-18, and Sephadex LH-20 column chromatography to yield 8-methoxybutin (4) and leptosidin (5). All the compounds isolated from C. lanceolata inhibited the production of nitric oxide (NO) in LPS-induced BV2 and RAW264.7 cells. In addition, phenylheptatriyne and 4',7-dimethoxyflavanone reduced the secretion of inflammatory cytokines, tumor necrosis factor alpha (TNF-α), and interleukin (IL)-6. Among them, phenylheptatriyne was significantly downregulated in the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). Subsequently, phenylheptatriyne also effectively inhibited nuclear factor-kappa B (NF-κB) activation in LPS-stimulated BV2 and RAW264.7 cells. Based on these results, the anti-neuroinflammatory effect of phenylheptatriyne isolated from C. lanceolata was confirmed, which may exert a therapeutic effect in treatment of neuroinflammation-related diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Coreopsis/química , Flores/química , Inflamação/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Dinoprostona/metabolismo , Heme Oxigenase-1/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Microglia/metabolismo , Microglia/patologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Transdução de Sinais
9.
Artigo em Inglês | MEDLINE | ID: mdl-33976703

RESUMO

Nardostachys spp. have been widely used in Asia as a folk medicine. In particular, the extracts of Nardostachys jatamansi, a species that grows in China, India, and Tibet, have been used to treat mental disorders, hyperlipidemia, hypertension, and convulsions. In this investigation, the potential of 20% aqueous ethanol extract of N. jatamansi (NJ20) as a botanical drug was explored by chemically investigating its constituents and its anti-neuroinflammatory effects on lipopolysaccharide- (LPS-) induced in vitro and in vivo models. Nine secondary metabolites were isolated and identified from NJ20, and quantitative analysis of these metabolites revealed desoxo-narchinol A as the major constituent. In LPS-challenged cells, pretreatment with NJ20 inhibited the LPS-induced excessive production of proinflammatory mediators, such as nitric oxide, prostaglandin E2, interleukin- (IL-) 1ß, IL-6, and tumor necrosis factor-α. NJ20 also attenuated the overexpression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2. Additionally, pre-intraperitoneal injection of NJ20 downregulated the mRNA overexpression of IL-1ß, IL-6, and iNOS in the prefrontal cortex, hypothalamus, and hippocampus of the LPS-stimulated C57BL/c mouse model. Chemical and biological investigations of NJ20 revealed that it is a potential inhibitor of LPS-induced neuroinflammatory responses in microglial cells and mouse models. The major active constituent of NJ20, desoxo-narchinol A, demonstrated anti-neuroinflammatory effects. Hence, our findings indicate that NJ20 may be a promising herbal mixture for developing a functional product and/or herbal drug for treating neuroinflammatory diseases.

10.
Mol Med Rep ; 23(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33236160

RESUMO

Through searching for anti­neuroinflammatory metabolites from Nardostachys jatamansi extracts, nardostachin was revealed to exert anti­neuroinflammatory effects against lipopolysaccharide (LPS)­induced overproduction of nitric oxide and prostaglandin E2 in BV2 and rat primary microglial cells. Furthermore, nardostachin inhibited the production of inducible nitric oxide synthase and cyclooxygenase­2 as well as pro­inflammatory cytokines, including interleukin (IL)­1ß, IL­6, IL­12 and tumor necrosis factor­α in LPS­stimulated BV2 and rat primary microglial cells. In a mechanistic study, nardostachin exhibited inhibitory activity on the nuclear factor (NF)­κB signaling pathway in LPS­stimulated BV2 and rat primary microglial cells by repressing IκB­α phosphorylation and blocking NF­κB translocation. Furthermore, nardostachin exhibited inhibitory effects on LPS­induced phosphorylation of c­Jun N­terminal kinase (JNK) mitogen­activated protein kinase (MAPK). Additionally, nardostachin repressed protein expression of Toll­like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) in LPS­induced BV2 and rat primary microglial cells. These results suggested that nardostachin exerts anti­neuroinflammatory effects on LPS­induced BV2 and rat primary microglial cells by suppressing the TLR4­MyD88­NF­κB and JNK MAPK pathways.


Assuntos
Anti-Inflamatórios/farmacologia , Diterpenos/farmacologia , MAP Quinase Quinase 4/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Microglia/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Nardostachys/química , Receptor 4 Toll-Like/metabolismo , Animais , Anti-Inflamatórios/química , Linhagem Celular , Diterpenos/química , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Microglia/patologia , Ratos , Ratos Sprague-Dawley
11.
Inflammation ; 44(1): 104-115, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32766955

RESUMO

A prenylated flavonoid, cudraflavanone B, is isolated from Cudrania tricuspidata. In this study, we investigated its anti-inflammatory and anti-neuroinflammatory effects in lipopolysaccharide (LPS)-induced RAW264.7 and BV2 cells. In our initial study of the anti-inflammatory effects of cudraflavanone B the production of nitric oxide and prostaglandin E2 was attenuated in LPS-stimulated RAW264.7 and BV2 cells. These inhibitory effects were related to the downregulation of inducible nitric oxide synthase and cyclooxygenase-2. In addition, cudraflavanone B suppressed the production of pro-inflammatory cytokines such as interleukin-6 and tumor necrosis factor-α in LPS-induced RAW264.7 and BV2 cells. Moreover, the evaluation of the molecular mechanisms underlying the anti-inflammatory effects of cudraflavanone B revealed that the compound attenuated the nuclear factor-kappa B signaling pathway in LPS-induced RAW264.7 and BV2 cells. In addition, cudraflavanone B inhibited the phosphorylation of extracellular signal-regulated kinase mitogen-activated protein kinase signaling pathways in these LPS-stimulated cells. Thus, cudraflavanone B suppressed nuclear factor-κB, and extracellular signal-regulated kinase mitogen-activated protein kinase mediated inflammatory pathways, demonstrating its potential in the treatment of neuroinflammatory conditions.


Assuntos
Flavonoides/farmacologia , Mediadores da Inflamação/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Microglia/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Animais , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Flavonoides/isolamento & purificação , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Sistema de Sinalização das MAP Quinases/fisiologia , Macrófagos/metabolismo , Camundongos , Microglia/metabolismo , Moraceae , NF-kappa B/metabolismo , Casca de Planta , Células RAW 264.7
12.
Int J Mol Sci ; 21(14)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650596

RESUMO

Heme oxygenase (HO)-1 is a detoxifying phase II enzyme that plays a role in both inflammatory and oxidative stress responses. Curdrania tricuspidata is widespread throughout East Asia and is used as a therapeutic agent in traditional medicine. We investigated whether treatment with sixteen flavonoid or xanthone compounds from C. tricuspidata could induce HO-1 expression in HT22 hippocampal cells, RAW264.7 macrophage, and BV2 microglia. In these compounds, kuwanon C showed the most remarkable HO-1 expression effects. In addition, treatment with kuwanon C reduced cytoplasmic nuclear erythroid 2-related factor (Nrf2) expression and increased Nrf2 expression in the nucleus. Significant inhibition of glutamate-induced oxidative injury and induction of reactive oxygen species (ROS) occurred when HT22 hippocampal cells were pretreated with kuwanon C. The levels of inflammatory mediator and cytokine, which increased following lipopolysaccharide (LPS) stimulation, were suppressed in RAW264.7 macrophage and BV2 microglia after kuwanon C pretreatment. Kuwanon C also attenuated p65 DNA binding and translocation into the nucleus in LPS-induced RAW264.7 and BV2 cells. The anti-inflammatory, anti-neuroinflammatory, and neuroprotective effects of kuwanon C were reversed when co-treatment with HO-1 inhibitor of tin protoporphyrin-IX (SnPP). These results suggest that the neuroprotective and anti-inflammatory effects of kuwanon C are regulated by HO-1 expression.


Assuntos
Anti-Inflamatórios/farmacologia , Derivados de Benzeno/farmacologia , Heme Oxigenase-1/metabolismo , Hipocampo/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Microglia/efeitos dos fármacos , Moraceae/química , Fármacos Neuroprotetores/farmacologia , Animais , Linhagem Celular , Citocinas/metabolismo , Flavonoides/farmacologia , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , Microglia/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neuroproteção/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Xantonas/farmacologia
13.
Mol Immunol ; 114: 620-628, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31542607

RESUMO

Acute pancreatitis (AP) is a severe inflammatory condition of the pancreas, with no specific treatment available. We have previously reported that Nardostachys jatamansi (NJ) ameliorates cerulein-induced AP. However, the specific compound responsible for this inhibitory effect has not been identified. Therefore, in the present study, we focused on a single compound, 8α-hydroxypinoresinol (HP), from NJ. The aim of this study was to determine the effect of HP on the development of pancreatitis in mice and to explore the underlying mechanism(s). AP was induced by the injection of cerulein (50 µg/kg/h) for 6 h. HP (0.5, 5 or 10 mg/kg, i.p.) was administered 1 h prior to and 1, 3 or 5 h after the first cerulein injection, with vehicle- and DMSO-treated groups as controls. Blood samples were collected to determine serum levels of amylase, lipase, and cytokines. The pancreas was removed for morphological examination, myeloperoxidase (MPO) assays, cytokine assays, and assessment of nuclear factor (NF)-κB activation. The lungs were removed for morphological examination and MPO assays. Administration of HP dramatically improved pancreatic damage and pancreatitis-associated lung damage and also reduced amylase and lipase activities in serum. Moreover, administration of HP reduced the production of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 in the pancreas and serum during AP. In addition, the administration of HP inhibited degradation of inhibitory κ-Bα (Iκ-Bα), NF-κB p65 translocation into nucleus and NF-κB binding activity in the pancreas. Our results suggest that HP exerted therapeutic effects on pancreatitis and these beneficial effects may be due to the inhibition of NF-κB activation.


Assuntos
Ceruletídeo/farmacologia , Furanos/farmacologia , Lignanas/farmacologia , Nardostachys/química , Pâncreas/efeitos dos fármacos , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Animais , Citocinas/metabolismo , Feminino , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas/metabolismo , Pancreatite/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
Neurotox Res ; 35(1): 230-243, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30168019

RESUMO

We previously reported that desoxo-narchinol A and narchinol B from Nardostachys jatamansi DC (Valerianaceae) inhibited the production of nitric oxide (NO) and prostaglandin E2 (PGE2), and the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 protein in lipopolysaccharide (LPS)-stimulated BV2 and primary microglial cells. In this study, we aimed to elucidate the molecular mechanism underlying the anti-neuroinflammatory effects of desoxo-narchinol A and narchinol B. These two compounds inhibited the nuclear factor (NF)-κB pathway, by repressing the phosphorylation and degradation of inhibitor kappa B (IκB)-α, nuclear translocation of the p65/p50 heterodimer, and DNA-binding activity of the p65 subunit. Furthermore, both compounds induced heme oxygenase-1 (HO-1) protein expression, which was mediated by the activation of nuclear transcription factor erythroid-2-related factor 2 (Nrf2). Activation of the Nrf2/HO-1 pathway by desoxo-narchinol A was shown to be regulated by increased phosphorylation of p38 and extracellular signal-regulated kinase (ERK), whereas only p38 was involved in narchinol B-induced activation of the Nrf2/HO-1 pathway. In addition, phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling was also involved in the activation of HO-1 by desoxo-narchinol A and narchinol B. These compounds also increased the phosphorylation of glycogen synthase kinase 3 beta (GSK3ß) at serine-9 residue, following phosphorylation of Akt. The anti-neuroinflammatory effect of desoxo-narchinol A and narchinol B was partially blocked by a selective HO-1 inhibitor, suggesting that this effect is partly mediated by HO-1 induction. In addition, both compounds also induced HO-1 protein expression in rat-derived primary microglial cells, which was correlated with their anti-neuroinflammatory effects in LPS-stimulated primary microglial cells. In conclusion, desoxo-narchinol A and narchinol B are potential candidates for the development of preventive agents for the regulation of neuroinflammation in neurodegenerative diseases.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Naftóis/farmacologia , Nardostachys , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Sesquiterpenos/farmacologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/química , Células Cultivadas , Dinoprostona/metabolismo , Heme Oxigenase-1/metabolismo , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Estrutura Molecular , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Naftóis/química , Fármacos Neuroprotetores/química , Óxido Nítrico/metabolismo , Extratos Vegetais/química , Ratos , Sesquiterpenos/química , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
15.
Molecules ; 23(9)2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30227591

RESUMO

Nardostachys jatamansi contains various types of sesquiterpenoids that may play an important role in the potency of plant's anti-inflammatory effects, depending on their structure. In this study, five new sesquiterpenoids, namely kanshone L (1), kanshone M (2), 7-methoxydesoxo-narchinol (3), kanshone N (4), and nardosdaucanol (5), were isolated along with four known terpenoids (kanshone D (6), nardosinanone G (7), narchinol A (8), and nardoaristolone B (9)) from the rhizomes and roots of Nardostachys jatamansi. Their structures were determined by analyzing 1D and 2D NMR and MS data. Among the nine sesquiterpenoids, compounds 3, 4, and 8 were shown to possess dose-dependent inhibitory effects against lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production in BV2 microglial cells. Furthermore, compounds 3, 4, and 8 exhibited anti-neuroinflammatory effects by inhibiting the production of pro-inflammatory mediators, including prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) proteins, as well as pro-inflammatory cytokines, such as interleukin (IL)-1ß, IL-12 and tumor necrosis factor-α (TNF-α), in LPS-stimulated BV2 microglial cells. Moreover, these compounds were shown to inhibit the activation of the NF-κB signaling pathway in LPS-stimulated BV2 microglial cells by suppressing the phosphorylation of IκB-α and blocking NF-κB translocation. In conclusion, five new and four known sesquiterpenoids were isolated from Nardostachys jatamansi, and compounds 3, 4, and 8 exhibited anti-neuroinflammatory effects in LPS-stimulated BV2 microglial cells through inhibiting of NF-κB signaling pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Metaboloma , Microglia/metabolismo , Microglia/patologia , Nardostachys/química , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Ciclo-Oxigenase 2/metabolismo , Citocinas/genética , Citocinas/metabolismo , Dinoprostona/biossíntese , Proteínas I-kappa B/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Espectroscopia de Ressonância Magnética , Camundongos , Microglia/efeitos dos fármacos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Nitritos/análise , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sesquiterpenos/química
16.
Pharm Biol ; 56(1): 192-200, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29521141

RESUMO

CONTEXT: Cudrania tricuspidata Bureau (Moraceae) is an important source of traditional Korean and Chinese medicines used to treat neuritis and inflammation. OBJECTIVE: The anti-neuroinflammatory effects of cudraflavanone A isolated from a chloroform fraction of C. tricuspidata were investigated in LPS-induced BV2 cells. MATERIALS AND METHODS: Cudraflavanone A was isolated from the root of C. tricuspidata, and its structure was determined by MS and NMR data. Cytotoxicity of the compound was examined by MTT assay, indicating no cytotoxicity at 5-40 µM of cudraflavanone A. NO concentration was measured by the Griess reaction, and the levels of PGE2, cytokines and COX-2 enzyme activity were measured by each ELISA kit. The mRNA levels of cytokines were analysed by quantitative-PCR. The expression of iNOS, COX-2, HO-1, NF-κB, MAPKs and Nrf2 was detected by Western blot. RESULTS: Cudraflavanone A had no major effect on cell viability at 40 µM indicating 91.5% viability. It reduced the production of NO (IC50 = 22.2 µM), PGE2 (IC50 = 20.6 µM), IL-1ß (IC50 = 24.7 µM) and TNF-α (IC50 = 33.0 µM) in LPS-stimulated BV2 cells. It also suppressed iNOS protein, IL-1ß and TNF-α mRNA expression. These effects were associated with the inactivation of NF-κB, JNK and p38 MAPK pathways. This compound mediated its anti-neuroinflammatory effects by inducing HO-1 protein expression via increased nuclear translocation of Nrf2. DISCUSSION AND CONCLUSIONS: The present study suggests a potent effect of cudraflavanone A to prevent neuroinflammatory diseases. Further investigation is necessary to elucidate specific molecular mechanism of cudraflavanone A.


Assuntos
Anti-Inflamatórios/farmacologia , Flavanonas/farmacologia , Mediadores da Inflamação/antagonistas & inibidores , Moraceae , Casca de Planta , Extratos Vegetais/farmacologia , Raízes de Plantas , Animais , Anti-Inflamatórios/isolamento & purificação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Clorofórmio/farmacologia , Relação Dose-Resposta a Droga , Flavanonas/isolamento & purificação , Mediadores da Inflamação/metabolismo , Camundongos , Extratos Vegetais/isolamento & purificação
17.
J Antibiot (Tokyo) ; 71(6): 557-563, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463888

RESUMO

Two new meroterpenoid-type fungal metabolites, furanoaustinol (1) and 7-acetoxydehydroaustinol (2), were isolated from the ethyl acetate extract of a marine-derived fungal strain Penicillium sp. SF-5497, along with eight (3-10) known meroterpenoids. Their structures were elucidated mainly based on the analysis of their NMR (1D and 2D) and MS data. Particularly, the novel meroterpenoid, furanoaustinol (1), belonging to the austin group, was identified to possess an unprecedented hexacyclic ring system. Biological evaluation of these compounds revealed that furanoaustinol (1) weakly inhibited the activity of protein tyrosine phosphatase 1B in a dose-dependent manner with an IC50 value of 77.2 µM. In addition, 7-acetoxydehydroaustinol (2) and four other known meroterpenoids (5, 7, 9, and 10) weakly suppressed the overproduction of nitric oxide in lipopolysaccharide-challenged BV2 microglial cells with IC50 values of 61.0, 30.1, 58.3, 37.6, and 40.2 µM, respectively.


Assuntos
Penicillium/química , Terpenos/isolamento & purificação , Relação Dose-Resposta a Droga , Fermentação , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Microglia/efeitos dos fármacos , Microglia/metabolismo , Estrutura Molecular , Óxido Nítrico/biossíntese , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/antagonistas & inibidores
18.
Neurotox Res ; 33(2): 337-352, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28836188

RESUMO

Dalbergia odorifera T. Chen (Leguminosae) grows in Central and South America, Africa, Madagascar, and Southern Asia. D. odorifera possesses many useful pharmacological properties, such as antioxidative and anti-inflammatory activities in various cell types. 4-Methoxydalbergione (MTD) and 4'-hydroxy-4-methoxydalbergione (HMTD) were isolated from the EtOH extract of D. odorifera by several chromatography methods. The chemical structures were elucidated by nuclear magnetic resonance (NMR) and mass spectrum (MS). Anti-inflammatory and cytoprotective effects were examined using BV2 microglial cells and murine hippocampus. MTD and HMTD were demonstrated to induce heme oxygenase (HO)-1 protein levels through the nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) in BV2 microglial cells, while only MTD upregulated HO-1 in HT22 cells. MTD and HMTD induced HO-1 expression through JNK MAPK pathway in BV2 cells, whereas only MTD activated the ERK and p38 pathways in HT22 cells. MTD was also shown to activated MTD and HMTD suppressed lipopolysaccharide-stimulated nitric oxide (NO) and prostaglandin E2 production by inhibiting inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in a dose-dependent manner. Furthermore, MTD and HMTD attenuated pro-inflammatory cytokine productions. These anti-inflammatory effects were found to be mediated through the nuclear factor-kappa B (NF-κB) pathway. MTD exhibited neuroprotective effects on glutamate-induced neurotoxicity by promoting HO-1 in HT22 cells. The anti-inflammatory and cytoprotective effects of MTD and HMTD were partially reversed by an HO inhibitor tin protoporphyrin IX. In addition, MTD and HMTD inhibited pro-inflammatory cytokines and NF-κB pathway in primary rat microglia. These findings suggest that MTD and HMTD have therapeutic potential against neurodegenerative diseases accompanied by microglial activation and/or oxidative cellular injury.


Assuntos
Benzoquinonas/farmacologia , Heme Oxigenase-1/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Microglia/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Linhagem Celular , Dalbergia/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Lipopolissacarídeos/farmacologia , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos
19.
Bioorg Med Chem Lett ; 28(2): 140-144, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29221883

RESUMO

Two new nardosinone-type sesquiterpenoids, namely kanshone J (1) and kanshone K (2) along with seven known terpenoids (3-9) were isolated from the rhizomes and roots of Nardostachys jatamansi DC (Valerianaceae). The structures of these compounds were determined mainly by analysis of 1D-, 2D-NMR and MS data. In addition, the absolute configuration of compound 1 was assigned by application of the modified Mosher's method. In an initial assay to evaluate their anti-neuroinflammatory effects, compounds 1-5 and 9 exhibited dose-dependent inhibitory effects on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in BV2 cells, with IC50 values ranging from 2.43 to 46.54 µM. Particularly, desoxo-narchinol A (3) and narchinol B (4) significantly inhibited LPS-induced NO overproduction in BV2 cells with IC50 values of 3.48 ±â€¯0.47 and 2.43 ±â€¯0.23 µM, respectively. Furthermore, compounds 3 and 4 exhibited anti-neuroinflammatory effects by inhibiting the production of pro-inflammatory mediators, including prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) proteins, and pro-inflammatory cytokines, such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α (TNF)-α, in LPS-stimulated BV2 and primary microglial cells.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Nardostachys/química , Sesquiterpenos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Relação Dose-Resposta a Droga , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Estrutura Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Relação Estrutura-Atividade
20.
Phytomedicine ; 36: 8-17, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29157831

RESUMO

BACKGROUND: Grapes are among the most widely consumed plants and are used as a folk medicine. Vitis species have been traditionally used as anti-inflammatory, analgesic, and memory-enhancing agents, but, their biological activities of discarded grape leaves are not completely understood. PURPOSE: We investigated the effects of alcoholic aqueous leaf extract of Vitis labruscana (LEVL) in a mouse model of memory impairment and tried to ascertain its mechanism. We also evaluated its effects in SH-SY5Y cells. METHODS: LEVL (50, 100, and 150 mg/kg) was administered to ICR mice once daily for 7 days. Memory impairment was induced with intraperitoneal scopolamine injections (1 mg/kg) and measured with the Y-maze test and a passive avoidance task. LEVL-induced signaling was evaluated in SH-SY5Y cells and mouse hippocampi. RESULTS: We first identified quercetin-3-O-glucuronide as LEVL's major component. We then showed that LEVL promoted phosphorylation of Akt, extracellular regulated kinase (ERK), and cyclic AMP response element binding protein (CREB) and proliferation of SH-SY5Y cells. Oral LEVL administration (100 mg/kg) for 7 days significantly reversed scopolamine-induced reductions of spontaneous alternation in the Y-maze test and scopolamine-induced shortening of latency times in the passive avoidance task's retention trial. Consistent with the cell experiment results, LEVL restored scopolamine-decreased phosphorylation of Akt, ERK, and CREB and scopolamine-reduced expression of brain-derived neuroprotective factor expression in mouse hippocampi. CONCLUSION: Our results suggest that LEVL promotes phosphorylation of Akt, ERK, and CREB in the hippocampus and ameliorates scopolamine-induced memory impairment in mice.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Transtornos da Memória/tratamento farmacológico , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Vitis/química , Animais , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hipocampo/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Memória/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Camundongos Endogâmicos ICR , Fosforilação , Extratos Vegetais/química , Folhas de Planta/química , Escopolamina/efeitos adversos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...