Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Opt ; 29(1): 015004, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38283935

RESUMO

Significance: Diffuse correlation spectroscopy (DCS) is a powerful, noninvasive optical technique for measuring blood flow. Traditionally the blood flow index (BFi) is derived through nonlinear least-square fitting the measured intensity autocorrelation function (ACF). However, the fitting process is computationally intensive, susceptible to measurement noise, and easily influenced by optical properties (absorption coefficient µa and reduced scattering coefficient µs') and scalp and skull thicknesses. Aim: We aim to develop a data-driven method that enables rapid and robust analysis of multiple-scattered light's temporal ACFs. Moreover, the proposed method can be applied to a range of source-detector distances instead of being limited to a specific source-detector distance. Approach: We present a deep learning architecture with one-dimensional convolution neural networks, called DCS neural network (DCS-NET), for BFi and coherent factor (ß) estimation. This DCS-NET was performed using simulated DCS data based on a three-layer brain model. We quantified the impact from physiologically relevant optical property variations, layer thicknesses, realistic noise levels, and multiple source-detector distances (5, 10, 15, 20, 25, and 30 mm) on BFi and ß estimations among DCS-NET, semi-infinite, and three-layer fitting models. Results: DCS-NET shows a much faster analysis speed, around 17,000-fold and 32-fold faster than the traditional three-layer and semi-infinite models, respectively. It offers higher intrinsic sensitivity to deep tissues compared with fitting methods. DCS-NET shows excellent anti-noise features and is less sensitive to variations of µa and µs' at a source-detector separation of 30 mm. Also, we have demonstrated that relative BFi (rBFi) can be extracted by DCS-NET with a much lower error of 8.35%. By contrast, the semi-infinite and three-layer fitting models result in significant errors in rBFi of 43.76% and 19.66%, respectively. Conclusions: DCS-NET can robustly quantify blood flow measurements at considerable source-detector distances, corresponding to much deeper biological tissues. It has excellent potential for hardware implementation, promising continuous real-time blood flow measurements.


Assuntos
Aprendizado Profundo , Hemodinâmica , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Fluxo Sanguíneo Regional/fisiologia , Couro Cabeludo
2.
Methods Appl Fluoresc ; 11(2)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36863024

RESUMO

This paper reports a bespoke adder-based deep learning network for time-domain fluorescence lifetime imaging (FLIM). By leveraging thel1-norm extraction method, we propose a 1D Fluorescence Lifetime AdderNet (FLAN) without multiplication-based convolutions to reduce the computational complexity. Further, we compressed fluorescence decays in temporal dimension using a log-scale merging technique to discard redundant temporal information derived as log-scaling FLAN (FLAN+LS). FLAN+LS achieves 0.11 and 0.23 compression ratios compared with FLAN and a conventional 1D convolutional neural network (1D CNN) while maintaining high accuracy in retrieving lifetimes. We extensively evaluated FLAN and FLAN+LS using synthetic and real data. A traditional fitting method and other non-fitting, high-accuracy algorithms were compared with our networks for synthetic data. Our networks attained a minor reconstruction error in different photon-count scenarios. For real data, we used fluorescent beads' data acquired by a confocal microscope to validate the effectiveness of real fluorophores, and our networks can differentiate beads with different lifetimes. Additionally, we implemented the network architecture on a field-programmable gate array (FPGA) with a post-quantization technique to shorten the bit-width, thereby improving computing efficiency. FLAN+LS on hardware achieves the highest computing efficiency compared to 1D CNN and FLAN. We also discussed the applicability of our network and hardware architecture for other time-resolved biomedical applications using photon-efficient, time-resolved sensors.

3.
Sensors (Basel) ; 22(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36236390

RESUMO

Fluorescence lifetime imaging (FLIM) is a powerful tool that provides unique quantitative information for biomedical research. In this study, we propose a multi-layer-perceptron-based mixer (MLP-Mixer) deep learning (DL) algorithm named FLIM-MLP-Mixer for fast and robust FLIM analysis. The FLIM-MLP-Mixer has a simple network architecture yet a powerful learning ability from data. Compared with the traditional fitting and previously reported DL methods, the FLIM-MLP-Mixer shows superior performance in terms of accuracy and calculation speed, which has been validated using both synthetic and experimental data. All results indicate that our proposed method is well suited for accurately estimating lifetime parameters from measured fluorescence histograms, and it has great potential in various real-time FLIM applications.


Assuntos
Aprendizado Profundo , Algoritmos , Transferência Ressonante de Energia de Fluorescência/métodos , Microscopia de Fluorescência/métodos , Imagem Óptica/métodos
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1883-1886, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36085638

RESUMO

Convolutional neural networks (CNN) have revealed exceptional performance for fluorescence lifetime imaging (FLIM). However, redundant parameters and complicated topologies make it challenging to implement such networks on embedded hardware to achieve real-time processing. We report a lightweight, quantized neural architecture that can offer fast FLIM imaging. The forward-propagation is significantly simplified by replacing matrix multiplications in each convolution layer with additions and data quantization using a low bit-width. We first used synthetic 3-D lifetime data with given lifetime ranges and photon counts to assure correct average lifetimes can be obtained. Afterwards, human prostatic cancer cells incubated with gold nanoprobes were utilized to validate the feasibility of the network for real-world data. The quantized network yielded a 37.8% compression ratio without performance degradation. Clinical relevance - This neural network can be applied to diagnose cancer early based on fluorescence lifetime in a non-invasive way. This approach brings high accuracy and accelerates diagnostic processes for clinicians who are not experts in biomedical signal processing.


Assuntos
Computadores , Compressão de Dados , Humanos , Redes Neurais de Computação , Imagem Óptica , Processamento de Sinais Assistido por Computador
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1887-1890, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086288

RESUMO

Wide-field fluorescence lifetime imaging (FLIM) is a promising technique for biomedical and clinic applications. Integrating with CMOS single-photon avalanche diode (SPAD) sensor arrays can lead to cheaper and portable real-time FLIM systems. However, the FLIM data obtained by such sensor systems often have sophisticated noise features. There is still a lack of fast tools to recover lifetime parameters from highly noise-corrupted fluorescence signals efficiently. This paper proposes a smart wide-field FLIM system containing a 192×128 COMS SPAD sensor and a field-programmable gate array (FPGA) embedded deep learning (DL) FLIM processor. The processor adopts a hardware-friendly and light-weighted neural network for fluorescence lifetime analysis, showing the advantages of high accuracy against noise, fast speed, and low power consumption. Experimental results demonstrate the proposed system's superior and robust performances, promising for many FLIM applications such as FLIM-guided clinical surgeries, cancer diagnosis, and biomedical imaging.


Assuntos
Imagem Óptica , Fótons , Sistemas Computacionais , Microscopia de Fluorescência/métodos
6.
Sensors (Basel) ; 22(10)2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35632167

RESUMO

We present a fast and accurate analytical method for fluorescence lifetime imaging microscopy (FLIM), using the extreme learning machine (ELM). We used extensive metrics to evaluate ELM and existing algorithms. First, we compared these algorithms using synthetic datasets. The results indicate that ELM can obtain higher fidelity, even in low-photon conditions. Afterwards, we used ELM to retrieve lifetime components from human prostate cancer cells loaded with gold nanosensors, showing that ELM also outperforms the iterative fitting and non-fitting algorithms. By comparing ELM with a computational efficient neural network, ELM achieves comparable accuracy with less training and inference time. As there is no back-propagation process for ELM during the training phase, the training speed is much higher than existing neural network approaches. The proposed strategy is promising for edge computing with online training.


Assuntos
Algoritmos , Redes Neurais de Computação , Fluorescência , Humanos , Masculino
7.
Opt Express ; 30(7): 11479-11494, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35473091

RESUMO

We present a deep learning approach to obtain high-resolution (HR) fluorescence lifetime images from low-resolution (LR) images acquired from fluorescence lifetime imaging (FLIM) systems. We first proposed a theoretical method for training neural networks to generate massive semi-synthetic FLIM data with various cellular morphologies, a sizeable dynamic lifetime range, and complex decay components. We then developed a degrading model to obtain LR-HR pairs and created a hybrid neural network, the spatial resolution improved FLIM net (SRI-FLIMnet) to simultaneously estimate fluorescence lifetimes and realize the nonlinear transformation from LR to HR images. The evaluative results demonstrate SRI-FLIMnet's superior performance in reconstructing spatial information from limited pixel resolution. We also verified SRI-FLIMnet using experimental images of bacterial infected mouse raw macrophage cells. Results show that the proposed data generation method and SRI-FLIMnet efficiently achieve superior spatial resolution for FLIM applications. Our study provides a solution for fast obtaining HR FLIM images.


Assuntos
Aprendizado Profundo , Animais , Camundongos , Microscopia de Fluorescência/métodos , Imagem Óptica
8.
Biomed Opt Express ; 12(6): 3450-3462, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34221671

RESUMO

Measuring fluorescence lifetimes of fast-moving cells or particles have broad applications in biomedical sciences. This paper presents a dynamic fluorescence lifetime sensing (DFLS) system based on the time-correlated single-photon counting (TCSPC) principle. It integrates a CMOS 192 × 128 single-photon avalanche diode (SPAD) array, offering an enormous photon-counting throughput without pile-up effects. We also proposed a quantized convolutional neural network (QCNN) algorithm and designed a field-programmable gate array embedded processor for fluorescence lifetime determinations. The processor uses a simple architecture, showing unparallel advantages in accuracy, analysis speed, and power consumption. It can resolve fluorescence lifetimes against disturbing noise. We evaluated the DFLS system using fluorescence dyes and fluorophore-tagged microspheres. The system can effectively measure fluorescence lifetimes within a single exposure period of the SPAD sensor, paving the way for portable time-resolved devices and shows potential in various applications.

9.
Opt Express ; 29(13): 19278-19291, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34266040

RESUMO

Single-photon avalanche diodes (SPAD) are powerful sensors for 3D light detection and ranging (LiDAR) in low light scenarios due to their single-photon sensitivity. However, accurately retrieving ranging information from noisy time-of-arrival (ToA) point clouds remains a challenge. This paper proposes a photon-efficient, non-fusion neural network architecture that can directly reconstruct high-fidelity depth images from ToA data without relying on other guiding images. Besides, the neural network architecture was compressed via a low-bit quantization scheme so that it is suitable to be implemented on embedded hardware platforms. The proposed quantized neural network architecture achieves superior reconstruction accuracy and fewer parameters than previously reported networks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...