Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Blood ; 143(10): 845-857, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38096370

RESUMO

ABSTRACT: Protease activated receptors (PARs) are cleaved by coagulation proteases and thereby connect hemostasis with innate immune responses. Signaling of the tissue factor (TF) complex with factor VIIa (FVIIa) via PAR2 stimulates extracellular signal-regulated kinase (ERK) activation and cancer cell migration, but functions of cell autonomous TF-FVIIa signaling in immune cells are unknown. Here, we show that myeloid cell expression of FVII but not of FX is crucial for inflammatory cell recruitment to the alveolar space after challenge with the double-stranded viral RNA mimic polyinosinic:polycytidylic acid [Poly(I:C)]. In line with these data, genetically modified mice completely resistant to PAR2 cleavage but not FXa-resistant PAR2-mutant mice are protected from lung inflammation. Poly(I:C)-stimulated migration of monocytes/macrophages is dependent on ERK activation and mitochondrial antiviral signaling (MAVS) but independent of toll-like receptor 3 (TLR3). Monocyte/macrophage-synthesized FVIIa cleaving PAR2 is required for integrin αMß2-dependent migration on fibrinogen but not for integrin ß1-dependent migration on fibronectin. To further dissect the downstream signaling pathway, we generated PAR2S365/T368A-mutant mice deficient in ß-arrestin recruitment and ERK scaffolding. This mutation reduces cytosolic, but not nuclear ERK phosphorylation by Poly(I:C) stimulation, and prevents macrophage migration on fibrinogen but not fibronectin after stimulation with Poly(I:C) or CpG-B, a single-stranded DNA TLR9 agonist. In addition, PAR2S365/T368A-mutant mice display markedly reduced immune cell recruitment to the alveolar space after Poly(I:C) challenge. These results identify TF-FVIIa-PAR2-ß-arrestin-biased signaling as a driver for lung infiltration in response to viral nucleic acids and suggest potential therapeutic interventions specifically targeting TF-VIIa signaling in thrombo-inflammation.


Assuntos
Fator VIIa , Monócitos , Animais , Camundongos , Fator VIIa/metabolismo , Monócitos/metabolismo , Tromboplastina/metabolismo , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Transdução de Sinais/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibrinogênio/metabolismo , beta-Arrestinas/metabolismo
2.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069229

RESUMO

Lacticaseibacillus rhamnosus CRL1505 beneficially modulates the inflammation-coagulation response during respiratory viral infections. This study evaluated the capacity of the peptidoglycan obtained from the CRL1505 strain (PG-Lr1505) to modulate the immuno-coagulative response triggered by the viral pathogen-associated molecular pattern poly(I:C) in the respiratory tract. Adult BALB/c mice were nasally treated with PG-Lr1505 for two days. Treated and untreated control mice were then nasally challenged with poly(I:C). Mice received three doses of poly(I:C) with a 24 h rest period between each administration. The immuno-coagulative response was studied after the last administration of poly(I:C). The challenge with poly(I:C) significantly increased blood and respiratory pro-inflammatory mediators, decreased prothrombin activity (PT), and increased von Willebrand factor (vWF) levels in plasma. Furthermore, tissue factor (TF), tissue factor pathway inhibitor (TFPI), and thrombomodulin (TM) expressions were increased in the lungs. PG-Lr1505-treated mice showed significant modulation of hemostatic parameters in plasma (PT in %, Control = 71.3 ± 3.8, PG-Lr1505 = 94.0 ± 4.0, p < 0.01) and lungs. Moreover, PG-Lr1505-treated mice demonstrated reduced TF in F4/80 cells from lungs, higher pro-inflammatory mediators, and increased IL-10 compared to poly(I:C) control mice (IL-10 in pg/mL, Control = 379.1 ± 12.1, PG-Lr1505 = 483.9 ± 11.3, p < 0.0001). These changes induced by PG-Lr1505 correlated with a significant reduction in lung tissue damage. Complementary in vitro studies using Raw 264.7 cells confirmed the beneficial effect of PG-Lr1505 on poly(I:C)-induced inflammation, since increased IL-10 expression, as well as reduced damage, production of inflammatory mediators, and hemostatic parameter expressions were observed. In addition, protease-activated receptor-1 (PAR1) activation in lungs and Raw 264.7 cells was observed after TLR3 stimulation, which was differentially modulated by PG-Lr1505. The peptidoglycan from L. rhamnosus CRL1505 is able to regulate inflammation, the procoagulant state, and PAR1 activation in mice and macrophages in the context of the activation of TLR3 signaling pathways, contributing to a beneficial modulation of inflammation-hemostasis crosstalk.


Assuntos
Hemostáticos , Lacticaseibacillus rhamnosus , Animais , Camundongos , Interleucina-10 , Peptidoglicano/farmacologia , Citocinas/metabolismo , Receptor PAR-1 , Receptor 3 Toll-Like , Pulmão/metabolismo , Inflamação , Mediadores da Inflamação
3.
Appl Microbiol Biotechnol ; 104(24): 10669-10683, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33079228

RESUMO

Previously, we demonstrated that Lactobacillus casei CRL431, a well-known immunomodulatory bacterium, beneficially regulates coagulation activation, fibrin formation in lung, and the pro-inflammatory state induced by protein malnourishment and pneumococcal infection. In this study, we deepen in the understanding of the mechanisms involved in the immunoregulatory activity of L. casei CRL431 during a nutritional repletion process by evaluating (a) platelet and endothelial activation, (b) tissue factor (TF) expression, and (c) protease-activated receptor (PAR) activation in an experimental bacterial respiratory infection model in malnourished mice. Our findings demonstrate for the first time that the repletion diet supplemented with L. casei CRL431 was effective to normalize platelet counts in blood, modulate platelet activation and their recruitment into the lung, and regulate local and systemic TF expression and endothelial activation, which were affected by malnourishment. Streptococcus pneumoniae challenge induced local and systemic increase of platelet counts, PARs activation, P-selectin and TF expression, as well as endothelial activation in both well-nourished and malnourished mice. Malnourished animals evidenced the highest alterations of the parameters evaluated while the mice fed with the probiotic bacterium had similar behavior to normal controls but with lower PAR activation in lung. These results demonstrate that supplementation of repletion diet with L. casei CRL431 is effective to modulate alterations induced by malnourishment and pneumococcal infection, restraining coagulation activation, the inflammatory process, and lung damage. These observations contribute to set the basis for the application of probiotic functional foods to modulate the inflammation-hemostasis interactions altered by malnourishment or bacterial respiratory infections. KEY POINTS: • Pneumococcal infection increases pro-coagulant state induced by protein malnourishment. • Repletion with L. casei CRL431 modulates platelet, TF, and endothelial activation. • L. casei CRL431 improves immune-coagulative response in protein malnourishment.


Assuntos
Hemostáticos , Lacticaseibacillus casei , Desnutrição , Infecções Pneumocócicas , Probióticos , Infecções Respiratórias , Animais , Hemostasia , Camundongos , Streptococcus pneumoniae
4.
PLoS One ; 13(11): e0206661, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30395582

RESUMO

Respiratory tract infections and invasive disease caused by Streptococcus pneumoniae in high-risk groups are a major global health problem. Available human vaccines have reduced immunogenicity and low immunological memory in these populations, as well as high cost as a public health strategy in poor communities. In addition, no single pneumococcal protein antigen has been able to elicit protection comparable to that achieved using protein-polysaccharide conjugate vaccines. In this context, chimeric pneumococcal proteins raise as potential good vaccine candidates because of their simplicity of production and reduced cost. The aim of this work was to study whether the nasal immunization of infant mice with the recombinant chimeric pneumococcal protein (PSFP) was able to improve resistance to S. pneumoniae, and whether the immunomodulatory strain Lactobacillus rhamnosus CRL1505 or its cell wall (CW1505) could be used as effective mucosal adjuvants. Our results showed that the nasal immunization with PSPF improved pneumococcal-specific IgA and IgG levels in broncho-alveolar lavage (BAL), reduced lung bacterial counts, and avoided dissemination of pneumococci into the blood. Of interest, immunization with PSPF elicited cross-protective immunity against different pneumococcal serotypes. It was also observed that the nasal immunization of infant mice with PSPF+CW1505 significantly increased the production of pneumococcal-specific IgA and IgG in BAL, as well as IgM and IgG in serum when compared with PSPF alone. PSPF+CW1505 immunization also improved the reduction of pneumococcal lung colonization and its dissemination in to the bloodstream when compared to PSPF alone. Our results suggest that immunization with PSPF together with the cell wall of the immunomodulatory strain L. rhamnosus CRL1505 as a mucosal adjuvant could be an interesting alternative to improve protection against pneumococcal infection in children.


Assuntos
Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Administração Intranasal , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/administração & dosagem , Proteínas de Bactérias/administração & dosagem , Proteínas de Bactérias/imunologia , Parede Celular/imunologia , Criança , Proteção Cruzada , Citocinas/sangue , Humanos , Imunidade nas Mucosas , Imunização , Lacticaseibacillus rhamnosus/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Masculino , Camundongos , Infecções Pneumocócicas/microbiologia , Vacinas Pneumocócicas/imunologia , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/prevenção & controle , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/imunologia , Streptococcus pneumoniae/imunologia
5.
Front Immunol ; 8: 948, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28848552

RESUMO

Several research works have demonstrated that beneficial microbes with the capacity to modulate the mucosal immune system (immunobiotics) are an interesting alternative to improve the outcome of bacterial and viral respiratory infections. Among the immunobiotic strains with the capacity to beneficially modulate respiratory immunity, Lactobacillus rhamnosus CRL1505 has outstanding properties. Although we have significantly advanced in demonstrating the capacity of L. rhamnosus CRL1505 to improve resistance against respiratory infections as well as in the cellular and molecular mechanisms involved in its beneficial activities, the potential protective ability of this strain or its immunomodulatory cellular fractions in the context of a secondary bacterial pneumonia has not been addressed before. In this work, we demonstrated that the nasal priming with non-viable L. rhamnosus CRL1505 or its purified peptidoglycan differentially modulated the respiratory innate antiviral immune response triggered by toll-like receptor 3 activation in infant mice, improving the resistance to primary respiratory syncytial virus (RSV) infection, and secondary pneumococcal pneumonia. In association with the protection against RSV-pneumococcal superinfection, we found that peptidoglycan from L. rhamnosus CRL1505 significantly improved lung CD3+CD4+IFN-γ+, and CD3+CD4+IL-10+ T cells as well as CD11c+SiglecF+IFN-ß+ alveolar macrophages with the consequent increases of IFN-γ, IL-10, and IFN-ß in the respiratory tract. Our results also showed that the increase of these three cytokines is necessary to achieve protection against respiratory superinfection since each of them are involved in different aspect of the secondary pneumococcal pneumonia that have to be controlled in order to reduce the severity of the infectious disease: lung pneumococcal colonization, bacteremia, and inflammatory-mediated lung tissue injury.

6.
Inflamm Res ; 65(10): 771-83, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27279272

RESUMO

OBJECTIVE: Intestinal intraepithelial lymphocytes (IELs) play critical roles in disrupting epithelial homeostasis after Toll-like receptor (TLR)-3 activation with genomic rotavirus dsRNA or the synthetic dsRNA analog poly(I:C). The capacity of immunobiotic Lactobacillus rhamnosus CRL1505 (Lr1505) or Lactobacillus plantarum CRL1506 (Lp1506) to beneficially modulate IELs response after TLR3 activation was investigated in vivo using a mice model. RESULTS: Intraperitoneal administration of poly(I:C) induced inflammatory-mediated intestinal tissue damage through the increase of inflammatory cells (CD3(+)NK1.1(+), CD3(+)CD8αα(+), CD8αα(+)NKG2D(+)) and pro-inflammatory mediators (TNF-α, IL-1ß, IFN-γ, IL-15, RAE1, IL-8). Increased expression of intestinal TLR3, MDA5, and RIG-I was also observed after poly(I:C) challenge. Treatment with Lr1505 or Lp1506 prior to TLR3 activation significantly reduced the levels of TNF-α, IL-15, RAE1, and increased serum and intestinal IL-10. Moreover, CD3(+)NK1.1(+), CD3(+)CD8αα(+), and CD8αα(+)NKG2D(+) cells were lower in lactobacilli-treated mice when compared to controls. The immunomodulatory capacities of lactobacilli allowed a significant reduction of intestinal tissue damage. CONCLUSIONS: This work demonstrates the reduction of TLR3-mediated intestinal tissue injury by immunobiotic lactobacilli through the modulation of intraepithelial lymphocytes response. It is a step forward in the understanding of the cellular mechanisms involved in the antiviral capabilities of immunobiotic strains.


Assuntos
Enterite/terapia , Lacticaseibacillus rhamnosus , Lactobacillus plantarum , Probióticos/uso terapêutico , Receptor 3 Toll-Like/agonistas , Animais , Líquido Ascítico/citologia , Aspartato Aminotransferases/sangue , Citocinas/sangue , Citocinas/metabolismo , Enterite/induzido quimicamente , Enterite/metabolismo , Enterite/patologia , Secreções Intestinais/metabolismo , Intestinos/citologia , Intestinos/patologia , L-Lactato Desidrogenase/sangue , Contagem de Leucócitos , Linfócitos/imunologia , Masculino , Camundongos Endogâmicos BALB C , Poli I-C
7.
Front Immunol ; 7: 633, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066442

RESUMO

Influenza virus (IFV) is a major respiratory pathogen of global importance, and the cause of a high degree of morbidity and mortality, especially in high-risk populations such as infants, elderly, and immunocompromised hosts. Given its high capacity to change antigenically, acquired immunity is often not effective to limit IFV infection and therefore vaccination must be constantly redesigned to achieve effective protection. Improvement of respiratory and systemic innate immune mechanisms has been proposed to reduce the incidence and severity of IFV disease. In the last decade, several research works have demonstrated that microbes with the capacity to modulate the mucosal immune system (immunobiotics) are a potential alternative to beneficially modulate the outcome of IFV infection. This review provides an update of the current status on the modulation of respiratory immunity by orally and nasally administered immunobiotics, and their beneficial impact on IFV clearance and inflammatory-mediated lung tissue damage. In particular, we describe the research of our group that investigated the influence of immunobiotics on inflammation-coagulation interactions during IFV infection. Studies have clearly demonstrated that hostile inflammation is accompanied by dysfunctional coagulation in respiratory IFV disease, and our investigations have proved that some immunobiotic strains are able to reduce viral disease severity through their capacity to modulate the immune-coagulative responses in the respiratory tract.

8.
Inflamm Res ; 64(8): 589-602, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26072063

RESUMO

OBJECTIVE: To evaluate the effect of the nasal administration of live and heat-killed Lactobacillus rhamnosus CRL1505 (Lr1505) on immune-coagulative response during influenza virus (IFV) infection to improve survival and reduce lung injury. METHODS: Six-week-old BALB/c mice were treated with live or heat-killed Lr1505 by the nasal route during two consecutive days. Treated and untreated control mice were then nasally challenged with IFV. RESULTS: Both viable and non-viable Lr1505 protected infected mice by reducing pulmonary injury and lung viral loads trough several mechanisms: (a) Inflammatory cytokines were efficiently regulated allowing higher clearance of virus and reduction of inflammatory lung tissue damage, associated to higher levels of the regulatory cytokine IL-10. (b) The antiviral immune response was enhanced with improved levels of type I interferons, CD4(+)IFN-γ(+) lymphocytes, and lung CD11c(+)CD11b(low)CD103(+) and CD11c(+)CD11b(high)CD103(-) dendritic cells. (c) The procoagulant state was reversed mainly by down-regulating tissue factor expression and restoring thrombomodulin levels in lung. The capacity of Lr1505 to improve the outcome of IFV infection would be related to its ability to beneficially modulate lung TLR3-triggered immune response. CONCLUSIONS: Our work is the first to demonstrate the ability of an immunobiotic strain to beneficially modulate inflammation-coagulation interactions during IFV infection. Interestingly, non-viable L. rhamnosus CRL1505 was as effective as the viable strain to beneficially modulate respiratory antiviral immune response.


Assuntos
Lesão Pulmonar Aguda/imunologia , Fatores Imunológicos/farmacologia , Lacticaseibacillus rhamnosus , Infecções por Orthomyxoviridae/imunologia , Probióticos/farmacologia , Lesão Pulmonar Aguda/sangue , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/virologia , Administração Intranasal , Animais , Coagulação Sanguínea , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/sangue , Citocinas/imunologia , Contagem de Leucócitos , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos Endogâmicos BALB C , Orthomyxoviridae , Infecções por Orthomyxoviridae/sangue , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Contagem de Plaquetas , Poli I-C/farmacologia
9.
PLoS One ; 9(10): e110027, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25329163

RESUMO

We have previously demonstrated that Lactobacillus reuteri CRL1098 soluble factors were able to reduce TNF-α production by human peripheral blood mononuclear cells. The aims of this study were to determine whether L. reuteri CRL1098 soluble factors were able to modulate in vitro the inflammatory response triggered by LPS in murine macrophages, to gain insight into the molecular mechanisms involved in the immunoregulatory effect, and to evaluate in vivo its capacity to exert anti-inflammatory actions in acute lung injury induced by LPS in mice. In vitro assays demonstrated that L. reuteri CRL1098 soluble factors significantly reduced the production of pro-inflammatory mediators (NO, COX-2, and Hsp70) and pro-inflammatory cytokines (TNF-α, and IL-6) caused by the stimulation of macrophages with LPS. NF-kB and PI3K inhibition by L. reuteri CRL1098 soluble factors contributed to these inhibitory effects. Inhibition of PI3K/Akt pathway and the diminished expression of CD14 could be involved in the immunoregulatory effect. In addition, our in vivo data proved that the LPS-induced secretion of the pro-inflammatory cytokines, inflammatory cells recruitment to the airways and inflammatory lung tissue damage were reduced in L. reuteri CRL1098 soluble factors treated mice, providing a new way to reduce excessive pulmonary inflammation.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Extratos Celulares/farmacologia , Limosilactobacillus reuteri/química , Macrófagos/efeitos dos fármacos , Lesão Pulmonar Aguda/etiologia , Animais , Anti-Inflamatórios/uso terapêutico , Extratos Celulares/uso terapêutico , Linhagem Celular , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/sangue , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/metabolismo
10.
Microbiol Immunol ; 58(7): 416-26, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24888715

RESUMO

The present study evaluated the effect of nasally given Lactobacillus rhamnosus CRL1505 on the immunocoagulative response during pneumococcal infection in immunocompetent mice. In addition, we aimed to gain insight into the mechanism involved in the immunomodulatory effect of the L. rhamnosus CRL1505 strain by evaluating the role of TLR2. Results showed that nasally given L. rhamnosus CRL1505 effectively regulates inflammation and hemostatic alterations during the pneumococcal infection. Immunobiotic treatment significantly reduced permeability of the bronchoalveolar-capillary barrier, and general cytotoxicity, decreasing lung tissue damage. The CRL1505 strain improved the production of TNF-α, IFN-γ, and IL-10 after pneumococcal challenge. In addition, increased TM and TF expressions were found in lungs of L. rhamnosus CRL1505-treated mice. Moreover, we demonstrated, for the first time, that the TLR2 signaling pathway has a role in the induction of IFN-γ and IL-10 and in the reduction of TF. The results also allow us to speculate that a PRR, other than TLR2, may mediate the immunobiotic activity of L. rhamnosus CRL1505 and could explain changes in TNF-α and TM.


Assuntos
Coagulação Sanguínea , Imunomodulação , Lacticaseibacillus rhamnosus/imunologia , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/metabolismo , Streptococcus pneumoniae/imunologia , Receptor 2 Toll-Like/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/citologia , Citocinas/metabolismo , Modelos Animais de Doenças , Contagem de Leucócitos , Masculino , Camundongos , Pneumonia Pneumocócica/sangue
11.
Int Immunopharmacol ; 19(1): 161-73, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24394565

RESUMO

The exacerbated disease due to immune- and coagulative-mediated pulmonary injury during acute respiratory viruses infection results in severe morbidity and mortality. Identifying novel approaches to modulate virus-induced inflammation-coagulation interactions could be important alternatives for treating acute respiratory viruses infections. In this study we investigated the effect of the probiotic strain Lactobacillus rhamnosus CRL1505 on lung TLR3-mediated inflammation, and its ability to modulate inflammation-coagulation interaction during respiratory viral infection. Our findings reveal for the first time that a probiotic bacterium is able to influence lung immune-coagulative reaction triggered by TLR3 activation, by modulating the production of proinflammatory and anti-inflammatory cytokines as well as expression of tissue factor and thrombomodulin in the lung. We also demonstrated that the preventive treatment with the probiotic bacteria beneficially modulates the fine tune balance between clearing respiratory viruses (respiratory syncytial virus and influenza virus) and controlling immune-coagulative responses in the lung, allowing normal lung function to be maintained in the face of a viral attack. Our data also pinpoint a crucial role for IL-10 in the immune protection induced by L. rhamnosus CRL1505 during respiratory viral infections. These observations might be helpful to propose new preventive or therapeutic approaches to better control virus-inflammatory lung damage using probiotic functional foods.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Lacticaseibacillus rhamnosus , Probióticos/farmacologia , Animais , Antitrombina III/imunologia , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Chlorocebus aethiops , Citocinas/imunologia , Cães , Alphainfluenzavirus , Contagem de Leucócitos , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/sangue , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Peptídeo Hidrolases/imunologia , Pneumonia/sangue , Pneumonia/induzido quimicamente , Pneumonia/imunologia , Poli I-C , Infecções por Vírus Respiratório Sincicial/sangue , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano , Células Vero
12.
Nutr. hosp ; 28(6): 2157-2164, nov.-dic. 2013. ilus, tab
Artigo em Inglês | IBECS | ID: ibc-120425

RESUMO

Introduction: It has been demonstrated that the alterations caused by nutrient deficiency can be reverted by adequate nutritional repletion. Objective: To perform comparative studies between human and cow milks in order to evaluate the impact of both milks on the recovery of blood and bone marrow cells affected in malnourished mice. Method: Weaned mice were malnourished after consuming a protein free diet for 21 days. Malnourished mice received cow or human milk (CM or HM) for 7 or 14 consecutive days. During the period of administration of milk, the mice consumed the protein free diet ad libitum. The malnourished control (MNC) group received only protein free diet whereas the well-nourished control (WNC) mice consumed the balanced conventional diet. Results and Discussion: Both milks normalized serum albumin levels and improved thymus weight. Human milk was less effective than cow milk to increase body weight and serum transferrin levels. In contrast, human milk was more effective than cow milk to increase the number of leukocytes (WNC: 6.90 ± 1.60a; MNC: 2.80 ± 0.90b; CM 7d: 3.74 ± 1.10b; HM 7d: 7.16 ± 1.90a; CM 14d: 4.35 ± 1.20b; HM 14d: 6.75 ± 1.20a (109/L);p < 0.05) and lymphocytes (WNC: 5.80 ± 0.36a; MNC: 1.80 ± 0.40b; CM 7d: 2.50 ± 0.30b; HM 7d: 4.20 ± 0.50c; CM 14d: 3.30 ± 0.31d; HM 14d: 4.70 ± 0.28c (109/L);p < 0.05) in peripheral blood. Both milks induced an increment in mitotic pool cells in bone marrow and α-naphthyl butyrate esterase positive cells in peripheral blood. They also normalized phagocytic function in blood neutrophils and oxidative burst in peritoneal cells. Conclusion: Both milks were equally effective to exert favorable effects on the number of the bone marrow cells and the functions of the blood and peritoneal cells involved in immune response. However, only human milk normalized the number of leukocytes and increased the number of neutrophils in peripheral blood (AU)


Introducción: Las alteraciones causadas por la deficiencia de nutrientes pueden ser revertidas por un aporte nutricional adecuado. Objetivos: Realizar estudios comparativos entre leche humana y leche de vaca para evaluar su impacto en la recuperación de las células de sangre y de médula ósea afectadas en ratones desnutridos. Métodos: Los ratones fueron desnutridos al recibir una dieta libre de proteínas durante 21 días a partir del destete. Posteriormente, estos ratones desnutridos recibieron leche de vaca (LV) o leche humana (LH) durante 7 o 14 días consecutivos, mientras continuaban consumiendo la dieta libre de proteínas ad libitum. El grupo control de desnutrición (CD) sólo recibió la dieta libre de proteínas mientras que los ratones controles bien nutridos (CBN) consumieron la dieta balanceada convencional. Resultados y Discusión: Ambas leches normalizaron los niveles de albumina sérica e incrementaron el peso del timo. La leche humana fue menos efectiva que la leche de vaca para incrementar el peso corporal y los niveles de transferrina en suero. Sin embargo, la leche humana fue más efectiva para incrementar el número de leucocitos (CBN: 6,90 ± 1,60a; CD: 2,80 ± 0,90b; LV 7d: 3,74 ± 1,10b; LH 7d: 7,16 ± 1,90a; LV 14d: 4,35 ± 1,20b; LH 14d: 6,75 ± 1,20a (109/L);p < 0,05) y linfocitos (CBN: 5,80 ± 0,36a; CD: 1,80 ± 0,40b; LV 7d: 2,50 ± 0,30b; LH 7d: 4,20 ± 0,50c; LV 14d: 3,30 ± 0,31d; LH 14d: 4,70 ± 0,28c (109/L); p < 0,05) en sangre periférica. Ambas leches indujeron un incremento de las células del compartimiento mitótico de médula ósea y de las células ±-naftil butirato esterasa positivas en sangre periférica. Además, normalizaron la función fagocítica en neutrófilos de sangre periférica y el estallido oxidativo en las células peritoneales. Conclusiones: Ambas leches fueron igualmente efectivas para ejercer efectos favorables en el número de las células de la médula ósea y en las funciones de las células peritoneales y de la sangre involucradas en la respuesta inmune. Sin embargo, sólo la leche humana normalizó el número de leucocitos e incrementó el número de neutrófilos en sangre periférica (AU)


Assuntos
Animais , Camundongos , Desnutrição/dietoterapia , Substitutos do Leite Humano , Leite Humano , Modelos Animais de Doenças , Células da Medula Óssea , Imunidade nas Mucosas/imunologia , Leucócitos , Neutrófilos
13.
Can J Microbiol ; 59(10): 684-93, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24102222

RESUMO

This work evaluated the effect of orally or nasally administered Lactobacillus rhamnosus CRL1505 on the resistance of immunocompromised protein-malnourished mice to pneumococcal infection. In particular, we aimed to gain knowledge of the mechanism involved in the immunomodulatory effect of L. rhamnosus CRL1505 in malnourished hosts by evaluating its impact on the immuno-coagulative response. Malnutrition significantly increased lung tissue damage caused by Streptococcus pneumoniae infection. Lung damage was associated with a deregulated activation of coagulation and an altered inflammatory response. Pneumococcal colonization of lung and bacteremia were significantly reduced (p < 0.05) in malnourished mice receiving the CRL1505 strain. Moreover, mice repleted with supplemental L. rhamnosus CRL1505 showed the least alteration of the alveolar-capillary barrier and cell damage in lungs after the infectious challenge, especially when the CRL1505 strain was administered by nasal route. Besides, mice treated with L. rhamnosus CRL1505 showed an improved respiratory innate immune response and a lower activation of coagulation. The results of this work indicate that L. rhamnosus CRL1505 is able to beneficially modulate the inflammation-coagulation interaction after respiratory infections in malnourished hosts.


Assuntos
Hospedeiro Imunocomprometido , Lacticaseibacillus rhamnosus , Desnutrição/imunologia , Infecções Pneumocócicas/imunologia , Probióticos/administração & dosagem , Administração Intranasal , Animais , Imunidade Inata , Pulmão/imunologia , Masculino , Camundongos , Streptococcus pneumoniae/imunologia
14.
BMC Immunol ; 14: 40, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23947615

RESUMO

BACKGROUND: Some studies have shown that nasally administered immunobiotics had the potential to improve the outcome of influenza virus infection. However, the capacity of immunobiotics to improve protection against respiratory syncytial virus (RSV) infection was not investigated before. OBJECTIVE: The aims of this study were: a) to evaluate whether the nasal administration of Lactobacillus rhamnosus CRL1505 (Lr05) and L. rhamnosus CRL1506 (Lr06) are able to improve respiratory antiviral defenses and beneficially modulate the immune response triggered by TLR3/RIG-I activation; b) to investigate whether viability of Lr05 or Lr06 is indispensable to modulate respiratory immunity and; c) to evaluate the capacity of Lr05 and Lr06 to improve the resistance of infant mice against RSV infection. RESULTS: Nasally administered Lr05 and Lr06 differentially modulated the TLR3/RIG-I-triggered antiviral respiratory immune response. Lr06 administration significantly modulated the production of IFN-α, IFN-ß and IL-6 in the response to poly(I:C) challenge, while nasal priming with Lr05 was more effective to improve levels of IFN-γ and IL-10. Both viable Lr05 and Lr06 strains increased the resistance of infant mice to RSV infection while only heat-killed Lr05 showed a protective effect similar to those observed with viable strains. CONCLUSIONS: The present work demonstrated that nasal administration of immunobiotics is able to beneficially modulate the immune response triggered by TLR3/RIG-I activation in the respiratory tract and to increase the resistance of mice to the challenge with RSV. Comparative studies using two Lactobacillus rhamnosus strains of the same origin and with similar technological properties showed that each strain has an specific immunoregulatory effect in the respiratory tract and that they differentially modulate the immune response after poly(I:C) or RSV challenges, conferring different degree of protection and using distinct immune mechanisms. We also demonstrated in this work that it is possible to beneficially modulate the respiratory defenses against RSV by using heat-killed immunobiotics.


Assuntos
Imunidade/imunologia , Lacticaseibacillus rhamnosus/fisiologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vírus Sinciciais Respiratórios/imunologia , Sistema Respiratório/imunologia , Sistema Respiratório/virologia , Administração Intranasal , Animais , Citocinas/biossíntese , Resistência à Doença , Feminino , Humanos , Lesão Pulmonar/microbiologia , Lesão Pulmonar/patologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Imunológicos , Poli I-C , Receptores de Reconhecimento de Padrão/metabolismo , Sistema Respiratório/patologia
15.
Nutr Hosp ; 28(6): 2157-64, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24506396

RESUMO

INTRODUCTION: It has been demonstrated that the alterations caused by nutrient deficiency can be reverted by adequate nutritional repletion. OBJECTIVE: To perform comparative studies between human and cow milks in order to evaluate the impact of both milks on the recovery of blood and bone marrow cells affected in malnourished mice. METHOD: Weaned mice were malnourished after consuming a protein free diet for 21 days. Malnourished mice received cow or human milk (CM or HM) for 7 or 14 consecutive days. During the period of administration of milk, the mice consumed the protein free diet ad libitum. The malnourished control (MNC) group received only protein free diet whereas the wellnourished control (WNC) mice consumed the balanced conventional diet. RESULTS AND DISCUSSION: Both milks normalized serum albumin levels and improved thymus weight. Human milk was less effective than cow milk to increase body weight and serum transferrin levels. In contrast, human milk was more effective than cow milk to increase the number of leukocytes (WNC: 6.90 ± 1.60a; MNC: 2.80 ± 0.90b; CM 7d: 3.74 ± 1.10b; HM 7d: 7.16 ± 1.90a; CM 14d: 4.35 ± 1.20b; HM 14d: 6.75 ± 1.20a (109/L); p < 0.05) and lymphocytes (WNC: 5.80 ± 0.36a; MNC: 1.80 ± 0.40b; CM 7d: 2.50 ± 0.30b; HM 7d: 4.20 ± 0.50c; CM 14d: 3.30 ± 0.31d; HM 14d: 4.70 ± 0.28c (109/L); p < 0.05) in peripheral blood. Both milks induced an increment in mitotic pool cells in bone marrow and α-naphthyl butyrate esterase positive cells in peripheral blood. They also normalized phagocytic function in blood neutrophils and oxidative burst in peritoneal cells. CONCLUSION: Both milks were equally effective to exert favorable effects on the number of the bone marrow cells and the functions of the blood and peritoneal cells involved in immune response. However, only human milk normalized the number of leukocytes and increased the number of neutrophils in peripheral blood.


We studied the impact of human (HM) and cow (CM) milk on the recovery of blood and bone marrow cells in malnourished mice. Results: both milks normalized serum albumin levels and improved thymus weight. HM was less effective than CM to increase body weight and serum transferrin levels. In contrast, HM was more effective than CM to increase the number of leukocytes and lymphocytes in peripheral blood. Both milks induced an increment in mitotic pool cells in bone marrow and α-naphthyl butyrate esterase positive cells in peripheral blood. They also normalized phagocytic function in blood neutrophils and oxidative burst in peritoneal cells. Conclusion: both milks were equally effective to exert favorable effects on the number of the bone marrow cells and the functions of the blood and peritoneal cells involved in immune response. However, only HM normalized the number of leukocytes and increased the number of neutrophils in peripheral blood.


Assuntos
Células Sanguíneas/efeitos dos fármacos , Células da Medula Óssea/efeitos dos fármacos , Desnutrição/patologia , Leite Humano , Leite , Adulto , Animais , Bovinos , Feminino , Humanos , Desnutrição/metabolismo , Camundongos
16.
J Med Microbiol ; 62(Pt 1): 145-154, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23065544

RESUMO

We studied the systemic effects of the intranasal administration of Lactobacillus casei on the immuno-coagulative response in pneumoccocal infection in immunocompromised mice. Weaned mice consumed a protein-free diet (PFD) for 21 days and were therefore malnourished. Malnourished mice were fed a balanced conventional diet (BCD) for 7 days (BCD group) or a BCD for 7 days with nasal administration of viable L. casei on days 6 and 7 (BCD+LcN group). The malnourished control mice (MNC) received a PFD, whereas the well-nourished control mice (WNC) continually consumed a BCD. At the end of the treatment period, the mice were infected with Streptococcus pneumoniae. At different times after infection, we analysed the following parameters: global coagulation system, activation of coagulation, coagulation inhibitors, platelet count, leukocyte count and myeloperoxidase (MPO) activity, total proteins, albumin and acute phase proteins (APPs). The MNC group showed greater impairment in the coagulation tests and an increase in the positive APPs. These parameters were normalized by the L. casei treatment. However, the number of leukocytes, decreased by malnutrition, was improved only by the administration of L. casei. After infection, the BCD+LcN group showed similar results to those of the WNC group for most of the haemostatic parameters. The BCD+LcN group did not show significant variations in the prothrombin time or in the level of anticoagulant protein C, but showed higher levels of fibrinogen, platelets, albumin, leukocytes and MPO activity compared with the different experimental groups. The intranasal administration of L. casei was effective in modulating the pro-inflammatory aspects of coagulation without affecting coagulation itself.


Assuntos
Lacticaseibacillus casei , Desnutrição/imunologia , Infecções Pneumocócicas/imunologia , Probióticos/uso terapêutico , Proteínas de Fase Aguda/metabolismo , Animais , Coagulação Sanguínea , Peso Corporal , Hospedeiro Imunocomprometido , Pulmão/microbiologia , Pulmão/patologia , Masculino , Desnutrição/terapia , Camundongos , Contagem de Plaquetas , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/patologia , Streptococcus pneumoniae
17.
Inflamm Res ; 61(7): 775-85, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22484840

RESUMO

OBJECTIVE AND DESIGN: The coagulation system is considered part of the defense machinery, but its excessive activation can lead to additional damage. We studied the effects of oral administration of Lactobacillus casei CRL 431--a probiotic bacterium--on the activation of coagulation and the relationship with inflammatory parameters during a respiratory infection in malnourished mice. MATERIALS AND METHODS: Malnourished Swiss albino mice were nourished with a balanced commercial diet (BCD) for 7 days or BCD with L. casei for the last 2 days (BCD + Lc). BCD, BCD + Lc, malnourished (MNC) and well-nourished controls (WNC) were infected with Streptococcus pneumoniae. Blood and bronchoalveolar lavage samples were obtained at different times post-infection. RESULTS AND CONCLUSIONS: Malnutrition altered most of the evaluated parameters before and after infection. The repletion diet with supplemental L. casei was the most effective in limiting coagulation activation and normalizing coagulation inhibition mechanisms. These findings will help develop further strategies to reduce the damaging effects of clotting and enhance its beneficial contribution to immune reactions.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Lacticaseibacillus casei , Desnutrição/sangue , Infecções Pneumocócicas/sangue , Probióticos/farmacologia , Animais , Testes de Coagulação Sanguínea , Proteínas Sanguíneas/análise , Líquido da Lavagem Broncoalveolar/imunologia , Proteína C-Reativa/análise , Hemostasia , Inflamação/sangue , Interleucina-10/sangue , Masculino , Camundongos , Albumina Sérica/análise , Streptococcus pneumoniae , Fator de Necrose Tumoral alfa/sangue
18.
Can J Physiol Pharmacol ; 89(1): 41-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21186376

RESUMO

Malnutrition induces a decrease in immunity that affects the ability of the organism to deal with an infectious challenge. The clotting system is considered a branch of immunity and its activation is important in the pathogenesis of an infectious disease. This work was conducted to determine coagulation modifications in malnourished hosts before and during infection. Weaned mice were malnourished via a protein-free diet. Well-nourished control mice (WNC) consumed a balanced conventional diet. Malnourished mice (MN) and WNC were challenged intranasally with Streptococcus pneumoniae. Blood, bronchoalveolar lavages (BAL), and lung samples were taken at different times post infection. The results were that MN showed altered hemostatic tests and fibrin(ogen) deposits in the lung. Thus, an increase in thrombin-antithrombin complexes (TATc) in plasma and BAL was observed. In the MN group, infection induced a rise in TATc in plasma and BAL and increased plasma fibrinogen and fibrin(ogen) deposits in the lung. A decrease in activated protein C and antithrombin in BAL and an early decrease followed by an increase in plasma Factor VIII were also observed. Thus, malnourishment induced a procoagulant state increased by infection. This is the first work that presents results of an exhaustive study of coagulation in malnourished hosts before and during an infection.


Assuntos
Coagulação Sanguínea/fisiologia , Modelos Animais de Doenças , Desnutrição/sangue , Desnutrição/complicações , Pneumonia Pneumocócica/etiologia , Deficiência de Proteína/complicações , Animais , Líquido da Lavagem Broncoalveolar/microbiologia , Hemostasia/fisiologia , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Pulmão/microbiologia , Masculino , Desnutrição/microbiologia , Camundongos , Pneumonia Pneumocócica/sangue , Pneumonia Pneumocócica/microbiologia , Deficiência de Proteína/sangue , Deficiência de Proteína/microbiologia
19.
J Inflamm (Lond) ; 6: 28, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19835595

RESUMO

BACKGROUND: We have previously demonstrated that Lactobacillus casei CRL 431 administration improved the resistance to pneumococcal infection in a mouse model. METHODS: This study examined the effects of the oral administration of Lactobacillus casei CRL 431 (L. casei) on the activation of coagulation and fibrinolytic systems as well as their inhibitors during a Streptococcus pneumoniae infection in mice. RESULTS: The alveolo-capillary membrane was damaged and the coagulation system was also activated by the infection. As a consequence, we could see fibrin(ogen) deposits in lung histological slices, increased levels of thrombin-antithrombin complex (TATc) in bronchoalveolar lavage (BAL) and plasma, decrease in prothrombin activity (PT) and prolonged activated partial thromboplastin time test (APTT) values. Factor VII (FVII) and factor X (FX) were decreased in plasma, whereas fibrinogen (F) and factor VIII (FVIII) were increased. The low levels of protein C (PC) in BAL and plasma proved damage on inhibitory activity. The infected animals showed reduced fibrinolytic activity, evidenced by an increase in plasminogen activation inhibitor-1 (PAI-1) in BAL and plasma. The pathogen induced an increase of TNF-alpha, IL-1beta and IL-6 in BAL and serum a few hours after challenge followed by a significant decrease until the end of the assayed period. IL-4 and IL-10 in BAL and serum were also augmented, especially at the end of the experiment. The animals treated with L. casei showed an improvement of alveolo-capillary membrane, lower fibrin(ogen) deposits in lung and decrease in TATc. APTT test and PT, FVII and FX activity were normalized. L. casei group showed lower F levels than control during whole experiment. In the present study no effect of L. casei on the recovery of the inhibitory activity was detected. However, L. casei was effective in reducing PAI-1 levels in BAL and in increasing anti-inflammatory ILs concentration. CONCLUSION: L. casei proved effective to regulate coagulation activation and fibrinolysis inhibition during infection, leading to a decrease in fibrin deposits in lung. This protective effect of L. casei would be mediated by the induction of higher levels of IL-4 and IL-10 which could regulate the anti-inflammatory, procoagulant and antifibrinolytic effects of TNF-alpha, IL-1beta and IL-6.

20.
J Med Food ; 12(4): 796-802, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19735179

RESUMO

This study determined whether cow or goat yogurt administration has a preventive effect on the hepatic damage undergone during an acute liver injury. Acute liver injury was induced by an intraperitoneal injection of d-galactosamine. Groups of mice were fed with cow or goat yogurt for 2 days or 7 days before the d-galactosamine injection. Blood and liver samples were obtained 12 hours after d-galactosamine inoculation. d-Galactosamine induced an increase in serum amino-transaminases, a reduction in the number of blood leukocytes, an enhancement in neutrophil myeloperoxidase activity, a recruitment of leukocytes toward the liver, an increase in cell death, and an alteration in prothrombin time, activated partial thromboplastin time, and fibrinogen levels. Treatment with cow or goat yogurt was effective at increasing leukocyte number and decrease myeloperoxidase activity. We also observed a decrease in leukocyte accumulation in the liver and a reduction in cell death. Activated partial thromboplastin time and fibrinogen were normalized, but prothrombin time only showed an improvement without reaching normal values. Cow or goat yogurts were effective at protecting against an experimental acute liver injury, especially when administered for 7 days.


Assuntos
Coagulação Sanguínea , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Leucócitos/metabolismo , Neutrófilos/metabolismo , Peroxidase/metabolismo , Probióticos , Iogurte , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Bovinos , Morte Celular , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Modelos Animais de Doenças , Fibrinogênio/metabolismo , Galactosamina , Cabras , Contagem de Leucócitos , Camundongos , Camundongos Endogâmicos BALB C , Infiltração de Neutrófilos , Tempo de Tromboplastina Parcial , Tempo de Protrombina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...