Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 461
Filtrar
1.
Physiol Meas ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38772401

RESUMO

OBJECTIVE: This paper aims to investigate the possibility of detecting tonic-clonic seizures (TCSs) with behind-the-ear, two-channel wearable electroencephalography (EEG), and to evaluate its added value to non-EEG modalities in TCS detection. METHODS: We included 27 participants with a total of 44 TCSs from the European multicenter study SeizeIT2. The wearable Sensor Dot (SD; Byteflies) was used to measure behind-the-ear EEG, electromyography (EMG), electrocardiography (ECG), accelerometry (ACC) and gyroscope (GYR). We evaluated automatic unimodal detection of TCSs, using sensitivity, precision, false positive rate (FPR) and F1-score. Subsequently, we fused the different modalities and again assessed performance. Algorithm-labeled segments were then provided to two experts, who annotated true positive TCSs, and discarded false positives (FPs). RESULTS: Wearable EEG outperformed the other single modalities with a sensitivity of 100% and a FPR of 10.3/24h. The combination of wearable EEG and EMG proved most clinically useful, delivering a sensitivity of 97.7%, an FPR of 0.4/24h, a precision of 43%, and an F1-score of 59.7%. The highest overall performance was achieved through the fusion of wearable EEG, EMG, and ACC, yielding a sensitivity of 90.9%, an FPR of 0.1/24h, a precision of 75.5%, and an F1-score of 82.5%. CONCLUSIONS: In TCS detection with a wearable device, combining EEG with EMG, ACC or both resulted in a remarkable reduction of FPR, while retaining a high sensitivity. SIGNIFICANCE: Adding wearable EEG could further improve TCS detection, relative to extracerebral-based systems.

2.
Front Pharmacol ; 15: 1345380, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751789

RESUMO

Periprosthetic osteolysis (PPO) is the most common cause of joint arthroplasty failure. Its progression involves both biological and mechanical factors. Osteoclastogenesis induced by wear from debris-cell interactions, ultimately leading to excessive bone erosion, is considered the primary cause of PPO; therefore, targeting osteoclasts is a promising treatment approach. Currently available drugs have various side effects and limitations. Artemisinic acid (ArA) is a sesquiterpene isolated from the traditional herb Artemisia annua L. that has various pharmacological effects, such as antimalarial, anti-inflammatory, and antioxidant activities. Therefore, this study was aimed at investigating the effect of ArA on osteoclast formation and bone resorption function in vitro, as well as wear particle-induced osteolysis in vivo, and to explore its molecular mechanism of action. Here, we report that ArA inhibits RANKL-stimulated osteoclast formation and function. Mechanistically, ArA suppresses intracellular reactive oxygen species levels by activating the antioxidant response via nuclear factor erythroid-2-related factor 2 (Nrf2) pathway upregulation. It also inhibits the mitogen-activated kinases (MAPK) and nuclear factor-κB (NF-κB) pathways, as well as the transcription and expression of NFATc1 and c-Fos. In vivo experiments demonstrated that ArA reduces osteoclast formation and alleviates titanium particle-induced calvarial osteolysis. Collectively, our study highlights that ArA, with its osteoprotective and antioxidant effects, is a promising therapeutic agent for preventing and treating PPO and other osteoclast-mediated osteolytic diseases.

3.
ChemSusChem ; : e202301847, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727018

RESUMO

Organic electrode materials are promising to be applied in sodium ion batteries (SIBs) due to their low cost and easily modified molecular structures. Nevertheless, low conductivity and high solubility in electrolytes still limit the development of organic electrodes. In this work, a carboxylate small molecule (BDTTS) based on tetrathiafulvalene is developed as anode material for SIBs. BDTTS has a large rigid π-conjugated planar structure, which may reduce solubility in the electrolyte, meanwhile facilitating charge transporting. Experimental results and theoretical calculations both support that apart from the four carbonyl groups, the sulfur atoms on tetrathiafulvalene also provide additional active sites during the discharge/charge process. Therefore, the additional active sites can well compensate for the capacity loss caused by the large molecular weight. The as-synthesized BDTTS electrode renders an excellent capacity of 230 mAh g-1 at a current density of 50 mA g-1 and an excellent long-life performance of 128 mAh g-1 at 2C after 500 cycles. This work enriches the study on organic electrodes for high-performance SIBs and paves the way for further development and utilization of organic electrodes.

4.
Phytomedicine ; 129: 155691, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38744232

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease with few therapeutic options currently available. Traditional Chinese medicine has been used for thousands of years and exhibited remarkable advantages against such complicated disease for its "multi-component, multi-target and multi-pathway" characteristics. Compound Shouwu Jiangzhi Granule (CSJG) is a clinical empirical prescription for the treatment of NAFLD, but its pharmacological mechanism remains unknown. METHODS: The clinical efficacy of CSJG was retrospectively analyzed in NAFLD patients by comparing blood biomarkers levels and liver MR images before and after CSJG treatment. Then, high-fat/high-fructose (HFHF) diet-induced NAFLD mice were used to further confirm CSJG's effect against hepatic lipid accumulation through hepatic lipid determination and histopathological staining of liver samples. Next, the ingredients of CSJG were determined, and network pharmacology analysis was performed to predict potential targets of CSJG, followed by quantitative PCR (qPCR) and western blotting for verification. Then, lipidomics study was carried out to further explore the anti-NAFLD mechanism of CSJG from the perspective of triacylglyceride (TAG) synthesis but not free fatty acid (FFA) synthesis. The enzymes involved in this process were assayed by qPCR and western blotting. The potential interactions between the key enzymes of TAG synthesis and the active ingredients of CSJG were analyzed by molecular docking. RESULTS: CSJG attenuated blood lipid levels and hepatic fat accumulation in both NAFLD patients and mice. Although network pharmacology analysis revealed the FFA synthesis pathway, CSJG only slightly affected it. Through lipidomics analysis, GSJG was found to significantly block the synthesis of diglycerides (DAGs) and TAGs in the liver, with decreased DGAT2 and increased PLD1 protein expression, which diverted DAGs from the synthesis of TAGs to the production of PEs, PCs and PAs and thus lowed TAGs level. Molecular docking suggested that rhein, luteolin and liquiritigenin from CSJG might be involved in this regulation. CONCLUSION: Clinical and experimental evidence demonstrated that CSJG is a promising agent for the treatment of NAFLD. CSJG regulated TAGs synthesis to alleviate hepatic lipid accumulation. Rhein, luteolin and liquiritigenin from CSJG might play a role in it.

5.
Int Orthop ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563992

RESUMO

PURPOSE: Although the principles of hip reconstruction are consistent, due to lack of reliable anatomical landmarks, how to decide the acetabular cup reaming centre intraoperatively in Crowe IV patients with developmental dysplasia of the hip (DDH) remains unclear. This study aims to address this question. METHODS: Fifty-eight Crowe IV patients were enrolled from 2017 to 2019. By examining our previous clinical data, we analyzed the anatomical morphology of Crowe IV acetabulum and proposed a method of locating intraoperative reaming centering for implantation of a standard-sized acetabular cup, which is the upper two thirds of the posterior border of the true acetabulum. All patients included in this study were reamed according to this method. The average postoperative follow-up was 4.1 years (3-5 years). The position of the centre of rotation (COR), cup coverage (CC), and optimal range of joint motion (ROM) were examined by 3D computer simulation measurement. Postoperative complications and hip Harris score were collected and analyzed. RESULTS: The morphology of the type IV DDH true acetabulum was mostly triangular. The intraoperative reaming centre were centered on the upper two thirds of the posterior border of the true acetabulum. The postoperative 3D CC was 80.20% ± 7.63% (64.68-90.24%, 44-48-mm cup size). The patients' mean Harris score improved from 39.7 ± 20.4 preoperatively to 91.5 ± 8.12 at the last follow-up. CONCLUSION: Our study demonstrated that satisfactory CC and clinical results could be achieved by implanting a standard-sized cup with the reaming centre on the upper two thirds of the posterior border of the true acetabulum.

6.
Front Pharmacol ; 15: 1362857, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567356

RESUMO

Introduction: Ischemic stroke is the second most common chronic disease worldwide and is associated with high morbidity and mortality. Thromboembolism and platelet aggregation are the most characteristic features of stroke. Other than aspirin, no standard, accepted, or effective treatment for acute ischemic stroke has been established. Consequently, it is essential to identify novel therapeutic compounds for this condition. Methods: In this study, novel ozagrel/paeonol-containing codrugs were synthesized and characterized using 1H-NMR, 13C-NMR, and mass spectroscopy. Their antiplatelet aggregation activity was evaluated, with compound PNC3 found to exhibit the best effect. Subsequently, studies were conducted to assess its neuroprotective effect, pharmacokinetic properties and model its binding mode to P2Y12 and TXA2, two proteins critical for platelet aggregation. Results: The results indicated that PNC3 has good bioavailability and exerts protective effects against oxygen-glucose deprivation injury in PC12 cells. Molecular docking analysis further demonstrated that the compound interacts with residues located in the active binding sites of the target proteins. Conclusion: The codrugs synthesized in this study display promising pharmacological activities and have the potential for development as an oral formulation.

7.
Neurology ; 102(9): e209299, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38598742

RESUMO

BACKGROUND AND OBJECTIVES: Stroke attributable to nonoptimal temperature needs more attention with dramatic climate change. The aim of this study was to estimate the global burden and distribution characteristics of the burden. METHODS: In this ecological study, we collected data from the Climate Research Unit Gridded Time Series, the World Bank databases, and the Global Burden of Diseases study to estimate the distribution of burden. We used the joinpoint model, decomposition analysis, age-period-cohort model, panel data analysis, and health inequality analysis to assess the different types of stroke burden attributable to different climatic conditions. RESULTS: The burden of stroke attributable to nonoptimal temperature continued to grow, and aging was a key factor in this increase. In 2019, 521,031 (95% uncertainty interval [UI] 402,433-663,996) deaths and 9,423,649 (95% UI 7,207,660-12,055,172) disability-adjusted life years [DALYs] attributable to stroke due to nonoptimal temperature were recorded globally. Globally, men (age-standardized mortality rate [ASMR] 7.70, 95% UI 5.80-9.73; age-standardized DALY rate [ASDR] 139.69, 95% UI 102.96-178.54 in 2019) had a heavier burden than women (ASMR 5.89, 95% UI 4.50-7.60; ASDR 96.02, 95% UI 72.62-123.85 in 2019). Central Asia (ASMR 18.12, 95% UI 13.40-24.53; ASDR 327.35, 95% UI 240.24-440.61 in 2019) had the heaviest burden at the regional level. In the national level, North Macedonia (ASMR 32.97, 95% UI 20.57-47.44 in 2019) and Mongolia (ASDR 568.54, 95% UI 242.03-1,031.14 in 2019) had the highest ASMR/ASDR, respectively. Low temperature currently contributes to the main burden (deaths 474,002, 95% UI 355,077-606,537; DALYs 8,357,198, 95% UI 6,186,217-10,801,911 attributable to low temperature vs deaths 48,030, 95% UI 5,630-104,370; DALYs 1,089,329, 95% UI 112,690-2,375,345 attributable to high temperature in 2019). However, the burden due to high temperature has increased rapidly, especially among people aged older than 10 years, and was disproportionately concentrated in low sociodemographic index (SDI) regions such as Africa. In addition, the rapid increase in the stroke burden due to high temperature in Central Asia also requires special attention. DISCUSSION: This is the first study to assess the global stroke burden attributed to nonoptimal temperature. The dramatic increase in the burden due to high temperature requires special attention, especially in low-SDI countries.


Assuntos
Carga Global da Doença , Acidente Vascular Cerebral , Masculino , Humanos , Feminino , Idoso , Temperatura , Disparidades nos Níveis de Saúde , Anos de Vida Ajustados por Qualidade de Vida , Saúde Global , Acidente Vascular Cerebral/epidemiologia
8.
Nanomicro Lett ; 16(1): 168, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573346

RESUMO

Currently, the microwave absorbers usually suffer dreadful electromagnetic wave absorption (EMWA) performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss. Consequently, the development of high-performance EMWA materials with good impedance matching and strong loss ability in wide temperature spectrum has emerged as a top priority. Herein, due to the high melting point, good electrical conductivity, excellent environmental stability, EM coupling effect, and abundant interfaces of titanium nitride (TiN) nanotubes, they were designed based on the controlling kinetic diffusion procedure and Ostwald ripening process. Benefiting from boosted heterogeneous interfaces between TiN nanotubes and polydimethylsiloxane (PDMS), enhanced polarization loss relaxations were created, which could not only improve the depletion efficiency of EMWA, but also contribute to the optimized impedance matching at elevated temperature. Therefore, the TiN nanotubes/PDMS composite showed excellent EMWA performances at varied temperature (298-573 K), while achieved an effective absorption bandwidth (EAB) value of 3.23 GHz and a minimum reflection loss (RLmin) value of - 44.15 dB at 423 K. This study not only clarifies the relationship between dielectric loss capacity (conduction loss and polarization loss) and temperature, but also breaks new ground for EM absorbers in wide temperature spectrum based on interface engineering.

9.
STAR Protoc ; 5(2): 102976, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38635398

RESUMO

Biological functions of glycans are intimately linked to fine details in branches and linkages, which make structural identification extremely challenging. Here, we present a protocol for automated N-glycan sequencing using multi-stage mass spectrometry (MSn). We describe steps for release/purification and derivation of glycans and procedures for MSn scanning. We then detail "glycan intelligent precursor selection" to computationally guide MSn experiments. The protocol can be used for both discrete individual glycans and isomeric glycan mixtures. For complete details on the use and execution of this protocol, please refer to Sun et al.,1 Huang et al.,2 and Huang et al.3.

10.
J Transl Med ; 22(1): 392, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685026

RESUMO

BACKGROUND: Epidemiological evidence links a close correlation between long-term exposure to air pollutants and autoimmune diseases, while the causality remained unknown. METHODS: Two-sample Mendelian randomization (TSMR) was used to investigate the role of PM10, PM2.5, NO2, and NOX (N = 423,796-456,380) in 15 autoimmune diseases (N = 14,890-314,995) using data from large European GWASs including UKB, FINNGEN, IMSGC, and IPSCSG. Multivariable Mendelian randomization (MVMR) was conducted to investigate the direct effect of each air pollutant and the mediating role of common factors, including body mass index (BMI), alcohol consumption, smoking status, and household income. Transcriptome-wide association studies (TWAS), two-step MR, and colocalization analyses were performed to explore underlying mechanisms between air pollution and autoimmune diseases. RESULTS: In TSMR, after correction of multiple testing, hypothyroidism was causally associated with higher exposure to NO2 [odds ratio (OR): 1.37, p = 9.08 × 10-4] and NOX [OR: 1.34, p = 2.86 × 10-3], ulcerative colitis (UC) was causally associated with higher exposure to NOX [OR: 2.24, p = 1.23 × 10-2] and PM2.5 [OR: 2.60, p = 5.96 × 10-3], rheumatoid arthritis was causally associated with higher exposure to NOX [OR: 1.72, p = 1.50 × 10-2], systemic lupus erythematosus was causally associated with higher exposure to NOX [OR: 4.92, p = 6.89 × 10-3], celiac disease was causally associated with lower exposure to NOX [OR: 0.14, p = 6.74 × 10-4] and PM2.5 [OR: 0.17, p = 3.18 × 10-3]. The risky effects of PM2.5 on UC remained significant in MVMR analyses after adjusting for other air pollutants. MVMR revealed several common mediators between air pollutants and autoimmune diseases. Transcriptional analysis identified specific gene transcripts and pathways interconnecting air pollutants and autoimmune diseases. Two-step MR revealed that POR, HSPA1B, and BRD2 might mediate from air pollutants to autoimmune diseases. POR pQTL (rs59882870, PPH4=1.00) strongly colocalized with autoimmune diseases. CONCLUSION: This research underscores the necessity of rigorous air pollutant surveillance within public health studies to curb the prevalence of autoimmune diseases.


Assuntos
Poluentes Atmosféricos , Doenças Autoimunes , Estudo de Associação Genômica Ampla , Humanos , Doenças Autoimunes/genética , Poluentes Atmosféricos/efeitos adversos , Análise da Randomização Mendeliana , Predisposição Genética para Doença , Material Particulado/efeitos adversos
11.
Sci Total Environ ; 928: 172336, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38614350

RESUMO

Nitrous acid (HONO) is an important precursor of the hydroxyl radical (OH) and plays a vital role in atmospheric photochemistry and nitrogen cycling. Soil emissions have been considered as a potential source of HONO. Lately, the HONO emission via soil-atmosphere exchange (ESA-exchange) from soil nitrite has been validated and quantified through chamber experiments, but has not been assessed in the real atmosphere. We coupled ESA-exchange and the other seven potential sources of HONO (i.e., traffic, indoor and soil bacterial emissions, heterogeneous reactions on ground and aerosol surfaces, nitrate photolysis, and acid displacement) into the Weather Research and Forecasting model with Chemistry (WRF-Chem), and found that diurnal variations of the soil emission flux at the Wangdu site were well simulated. During the non-fertilization period, ESA-exchange contributed ∼28 % and âˆ¼35 % of nighttime and daytime HONO, respectively, and enhanced the net ozone (O3) production rate by ∼8 % across the North China Plain (NCP). During the preintensive/intensive fertilization period, the maximum ESA-Exchange contributions attained ∼70 %/83 % of simulated HONO in the afternoon across the NCP, definitely asserting its dominance in HONO production. ESA-Exchange enhanced the OH production rate via HONO photolysis by ∼3.5/7.0 times, and exhibited an increase rate of ∼13 %/20 % in the net O3 production rate across the NCP. The total enhanced O3 due to the eight potential HONO sources ranged from ∼2 to 20 ppb, and ESA-exchange produced O3 enhancements of ∼1 to 6 ppb over the three periods. Remarkably, the average contribution of ESA-exchange to the total O3 enhancements remained ∼30 %. This study suggests that ESA-exchange should be included in three-dimensional chemical transport models and more field measurements of soil HONO emission fluxes and soil nitrite levels are urgently required.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38457319

RESUMO

Tonic-clonic seizures (TCSs) pose a significant risk for sudden unexpected death in epilepsy (SUDEP). Previous research has highlighted the potential of multimodal wearable seizure detection systems in accurately detecting TCSs through continuous monitoring, enabling timely alarms and potentially preventing SUDEP. However, such multimodal systems carry a higher risk of sensor malfunction. In this paper, we propose a cyclic transformer approach to address these challenges. The cyclic transformer learns a robust representation by performing circular modal translations between the source and target modalities. It leverages back-translation as regularization technique to enhance the discriminative power of the learned representation. Notably, the proposed cyclic transformer is trained on paired multimodal data but requires only a single source modality during deployment. This characteristic ensures the robustness of the cyclic transformer to perturbations or missing information in the target modality. Experimental results demonstrate that the proposed cyclic transformer achieves competitive performance compared with existing multimodal systems. While both approaches were trained using EEG and EMG data, the cyclic transformer exclusively employs EEG data for testing, diverging from the state-of-the-art's utilization of both EEG and EMG data during test. This showcases the effectiveness of the cyclic transformer in multimodal TCSs detection, offering a promising approach for enhancing the accuracy and robustness of seizure detection systems while mitigating the risks associated with sensor malfunction.

13.
Front Plant Sci ; 15: 1367773, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481397

RESUMO

Microorganisms are important members of seagrass bed ecosystems and play a crucial role in maintaining the health of seagrasses and the ecological functions of the ecosystem. In this study, we systematically quantified the assembly processes of microbial communities in fragmented seagrass beds and examined their correlation with environmental factors. Concurrently, we explored the relative contributions of species replacement and richness differences to the taxonomic and functional ß-diversity of microbial communities, investigated the potential interrelation between these components, and assessed the explanatory power of environmental factors. The results suggest that stochastic processes dominate community assembly. Taxonomic ß-diversity differences are governed by species replacement, while for functional ß-diversity, the contribution of richness differences slightly outweighs that of replacement processes. A weak but significant correlation (p < 0.05) exists between the two components of ß-diversity in taxonomy and functionality, with almost no observed significant correlation with environmental factors. This implies significant differences in taxonomy, but functional convergence and redundancy within microbial communities. Environmental factors are insufficient to explain the ß-diversity differences. In conclusion, the assembly of microbial communities in fragmented seagrass beds is governed by stochastic processes. The patterns of taxonomic and functional ß-diversity provide new insights and evidence for a better understanding of these stochastic assembly rules. This has important implications for the conservation and management of fragmented seagrass beds.

14.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119716, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38547933

RESUMO

BACKGROUND: The carcinogenic transcription factor c-Myc is the most aggressive oncogene, which drive malignant transformation and dissemination of triple-negative breast cancer (TNBC). Recruitment of many cofactors, especially WDR5, a protein that nucleates H3K4me chromatin modifying complexes, play a pivotal role in regulating c-Myc-dependent gene transcription, a critical process for c-Myc signaling to function in a variety of biological and pathological contexts. For this reason, interrupting the interaction between c-Myc and the transcription cofactor WDR5 may become the most promising new strategy for treating c-Myc driven TNBC. METHODS: Immunoprecipitation and mass spectrometry (IP-MS) is used to screen proteins that bind c-Myc/WDR5 interactions. The interaction of METTL3 with c-Myc/WDR5 in breast cancer tissues and TNBC cells was detected by Co-IP and immunofluorescence. Subsequently, we further analyzed the influence of METTL3 expression on c-Myc/WDR5 protein expression and its interaction stability by Western blot and Co-IP. The correlation between METTL3 and c-Myc pathway was analyzed by ChIP-seq sequencing and METTL3 knockdown transcriptome data. The effect of METTL3 expression on c-Myc transcriptional activity was detected by ChIP-qPCR and Dual Luciferase Reporter. At the same time, the overexpression vector METTL3-MUT (m6A) was constructed, which mutated the methyltransferase active site (Aa395-398, DPPW/APPA), and further explored whether the interaction between METTL3 and c-Myc/WDR5 was independent of methyltransferase activity. In addition, we also detected the changes of METTL3 expression on TNBC's sensitivity to small molecule inhibitors such as JQ1 and OICR9429 by CCK8, Transwell and clonal formation assays. Finally, we further verified our conclusions in spontaneous tumor formation mouse MMTV-PyMT and nude mouse orthotopic transplantation tumor models. RESULTS: METTL3 was found to bind mainly to c-Myc/WDR5 protein in the nucleus. It enhances the stability of c-Myc/WDR5 interaction through its methyltransferase independent mechanism, thereby enhancing the transcriptional activity of c-Myc on downstream glucose metabolism genes. Notably, the study also confirmed that METTL3 can directly participate in the transcription of glucose metabolism genes as a transcription factor, and knockdown METTL3 enhances the drug sensitivity of breast cancer cells to small molecule inhibitors JQ1 and OICR9429. The study was further confirmed by spontaneous tumor formation mouse MMTV-PyMT and nude mouse orthotopic transplantation tumor models. CONCLUSION: METTL3 binds to the c-Myc/WDR5 protein complex and promotes glycolysis, which plays a powerful role in promoting TNBC progression. Our findings further broaden our understanding of the role and mechanism of action of METTL3, and may open up new therapeutic avenues for effective treatment of TNBC with high c-Myc expression.

15.
BMC Cancer ; 24(1): 321, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454345

RESUMO

BACKGROUND: Definitive concurrent chemoradiotherapy (dCCRT) is the gold standard for the treatment of locally advanced esophageal squamous cell carcinoma (ESCC). However, the potential benefits of consolidation chemotherapy after dCCRT in patients with esophageal cancer remain debatable. Prospective randomized controlled trials comparing the outcomes of dCCRT with or without consolidation chemotherapy in patients with ESCC are lacking. In this study, we aim to generate evidence regarding consolidation chemotherapy efficacy in patients with locally advanced, inoperable ESCC. METHODS: This is a multicenter, prospective, open-label, phase-III randomized controlled trial comparing non-inferiority of dCCRT alone to consolidation chemotherapy following dCCRT. In total, 600 patients will be enrolled and randomly assigned in a 1:1 ratio to receive either consolidation chemotherapy after dCCRT (Arm A) or dCCRT alone (Arm B). Overall survival will be the primary endpoint, whereas progression-free survival, locoregional progression-free survival, distant metastasis-free survival, and treatment-related toxicity will be the secondary endpoints. DISCUSSION: This study aid in further understanding the effects of consolidation chemotherapy after dCCRT in patients with locally advanced, inoperable ESCC. TRIAL REGISTRATION: ChiCTR1800017646.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Quimiorradioterapia , Quimioterapia de Consolidação , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/radioterapia , Carcinoma de Células Escamosas do Esôfago/terapia , Carcinoma de Células Escamosas do Esôfago/patologia , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto , Ensaios Clínicos Fase III como Assunto , Estudos de Equivalência como Asunto
16.
Orthop Surg ; 16(5): 1101-1108, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38509013

RESUMO

BACKGROUND: Preoperative evaluation of femoral anteversion to predict postoperative stem anteversion aids the selection of an appropriate prosthesis and optimizes the combined anteversion in total hip arthroplasty (THA) for developmental dysplasia of the hip (DDH). The conventional prediction methods are based on the femoral anteversion measurement at the location of the femoral head and/or neck. However, varied differences between femoral anteversion and postoperative stem anteversion were demonstrated. This study investigated the predictive role of a new method based on the principle of sagittal three-point fixation. METHODS: From January 2017 to December 2018, a total of 133 DDH hips that underwent THA were retrospectively analyzed. There were 76 Crowe type I, 27 type II, and 30 type III hips. The single-wedge stem was used in 49 hips, and the double-wedge stem was used in 84 hips. Preoperative native femoral anteversion at the femoral head-neck junction, anterior cortex anteversion at 2 levels of the lesser trochanter, posterior cortex anteversion at 5 levels of the femoral neck, and postoperative stem anteversion were measured using two-dimensional computed tomography. Predictive anteversion by the new method was calculated as the average anteversion formed by the anterior cortex at the lesser trochanter and the posterior cortex at the femoral neck. RESULTS: For hips with different neck heights, different Crowe types, different stem types, or different femoral anteversions, native femoral anteversion showed widely varied differences and correlations with stem anteversion, with differences ranging from -1.27 ± 8.33° to -13.67 ± 9.47° and correlations ranging from 0.122 (p = 0.705, no correlation) to 0.813. Predictive anteversion formed by the anterior cortex at the lesser trochanter proximal base and posterior cortex 10 mm above the lesser trochanter proximal base showed no significant difference with stem anteversion, with less varied differences (0.92 ± 7.52°) and good to excellent correlations (r = 0.826). CONCLUSION: Adopting our new method, predictive anteversion, measured as the average anteversion of the anterior cortex at the lesser trochanter proximal base and posterior cortex 10 mm above the lesser trochanter proximal base, predicted postoperative stem anteversion more reliably than native femoral anteversion.


Assuntos
Artroplastia de Quadril , Displasia do Desenvolvimento do Quadril , Prótese de Quadril , Humanos , Artroplastia de Quadril/métodos , Feminino , Masculino , Estudos Retrospectivos , Pessoa de Meia-Idade , Displasia do Desenvolvimento do Quadril/cirurgia , Displasia do Desenvolvimento do Quadril/diagnóstico por imagem , Idoso , Adulto , Tomografia Computadorizada por Raios X , Desenho de Prótese
17.
Int J Environ Health Res ; : 1-11, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38357761

RESUMO

This study aimed to explore how air pollution and green space influence ICE recurrence and whether they might interact with each other. A case-cross design was used in this study, which was carried out in Tianjin, China. A total of 8306 patients with recurrent ICE were collected from 2019 to 2020. The maximum effects of PM2.5, PM10, SO2, NO2, CO were 1.012 (95%CI: 1.004, 1.019), 1.010 (95%CI: 1.004, 1.016), 1.035 (95%CI: 0.982, 1.091), 1.067 (95%CI: 1.043, 1.091) and 1.012 (95%CI: 1.004, 1.021) , respectively, and the risk was higher in males and in the 50-60 age group. In the stratification of greening, it was found that air pollution except O3 had the highest risk of ICE recurrence for those with lower green space. Our study found that air pollution (except O3) can increase the risk of ICE recurrence, and this risk can be reduced by increasing green space.

18.
Small Methods ; : e2301631, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38419597

RESUMO

A universal platform is developed for dropletizing single cell plate-based multiomic assays, consisting of three main pillars: a miniaturized open Heterogeneous Hydrogel reactor (abbreviated HetHydrogel) for multi-step biochemistry, its tunable permeability that allows Tn5 tagmentation, and single cell droplet barcoding. Through optimizing the HetHydrogel manufacturing procedure, the chemical composition, and cell permeation conditions, simultaneous high-throughput mitochondrial DNA genotyping and chromatin profiling at the single-cell level are demonstrated using a mixed-species experiment. This platform offers a powerful way to investigate the genotype-phenotype relationships of various mtDNA mutations in biological processes. The HetHydrogel platform is believed to have the potential to democratize droplet technologies, upgrading a whole range of plate-based single cell assays to high throughput format.

20.
Acta Biomater ; 177: 525-537, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360291

RESUMO

TiO2 nanotube topography, as nanomechanical stimulation, can significantly promote osteogenesis and improve the osteointegration on the interface of implants and bone tissue. However, the underlying mechanism has not been fully elucidated. XB130 is a member of the actin filament-associated protein family and is involved in the regulation of cytoskeleton and tyrosine kinase-mediated signalling as an adaptor protein. Whether XB130 is involved in TiO2 nanotubes-induced osteogenic differentiation and how it functions in mechano-biochemical signalling transduction remain to be elucidated. In this study, the role of XB130 on TiO2 nanotube-induced osteogenesis and mechanotransduction was systematically investigated. TiO2 nanotube topography was fabricated via anodic oxidation and characterized. The osteogenic effect was significantly accelerated by the TiO2 nanotube surface in vitro and vivo. XB130 was significantly upregulated during this process. Moreover, XB130 overexpression significantly promoted osteogenic differentiation, whereas its knockdown inhibited it. Filamentous actin depolymerization could change the expression and distribution of XB130, thus affecting osteogenic differentiation. Mechanistically, XB130 could interact with Src and result in the activation of the downstream PI3K/Akt/GSK-3ß/ß-catenin pathway, which accounts for the regulation of osteogenesis. This study for the first time showed that the enhanced osteogenic effect of TiO2 nanotubes could be partly due to the filamentous actin and XB130 mediated mechano-biochemical signalling transduction, which might provide a reference for guiding the design and modification of prostheses to promote bone regeneration and osseointegration. STATEMENT OF SIGNIFICANCE: TiO2 nanotubes topography can regulate cytoskeletal rearrangement and thus promote osteogenic differentiation of BMSCs. However, how filamentous actin converts mechanical stimulus into biochemical activity remains unclear. XB130 is a member of actin filament-associated protein family and involves in the regulation of tyrosine kinase-mediated signalling. Therefore, we hypothesised that XB130 might bridge the mechano-biochemical signalling transduction during TiO2 nanotubes-induced osteogenic differentiation. For the first time, this study shows that TiO2 nanotubes enhance osteogenesis through filamentous actin and XB130 mediated mechanotransduction, which provides new theoretical basis for guiding the design and modification of prostheses to promote bone regeneration and osseointegration.


Assuntos
Nanotubos , Osteogênese , Actinas , Glicogênio Sintase Quinase 3 beta/farmacologia , Mecanotransdução Celular , Fosfatidilinositol 3-Quinases , Citoesqueleto de Actina , Nanotubos/química , Proteínas Tirosina Quinases , Diferenciação Celular , Titânio/farmacologia , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...