Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Alzheimers Dement ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38938161

RESUMO

INTRODUCTION: To investigate the role of a novel type of protein kinase C delta (PKCδ) in the neuroinflammation of Alzheimer's disease (AD). METHODS: We analyzed PKCδ and inflammatory cytokines levels in cerebrospinal fluid (CSF) of AD and normal controls, as well as their correlations. The cellular expression pattern of PKCδ and the effects of PKCδ modulation on microglia-mediated neuroinflammation were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR), western blot, RNA sequencing (RNA-seq), and immunofluorescence staining. RESULTS: PKCδ levels were increased dramatically in the CSF of AD patients and positively correlated with cytokines. PKCδ is expressed mainly in microglia in the brain. Amyloid beta (Aß) stimulation increased PKCδ expression and secretion, which led to upregulation of the nuclear factor kappa B (NF-κB) pathway and overproduction of proinflammatory cytokines. Downregulation or inhibition of PKCδ attenuated Aß-induced microglial responses and improved cognitive function in an AD mouse model. DISCUSSION: Our study identifies PKCδ as a potential biomarker and therapeutic target for microglia-mediated neuroinflammation in AD. HIGHLIGHTS: Protein kinase C delta (PKCδ) levels increase in cerebrospinal fluid (CSF) of patients with Alzheimer's disease (AD), and positively correlate with elevated inflammatory cytokines in human subjects. PKCδ is expressed mainly in microglia in vivo, whereas amyloid beta (Aß) stimulation increases PKCδ expression and secretion, causing upregulation of the nuclear factor kappa B (NF-κB) pathway and production of inflammatory cytokines. Downregulation or inhibition of PKCδ attenuates Aß-enhanced NF-κB signaling and cytokine production in microglia and improves cognitive function in AD mice. PKCδ serves as a potential biomarker and therapeutic target for microglia-mediated neuroinflammation in AD.

2.
Sensors (Basel) ; 24(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38931813

RESUMO

Electric pylons are crucial components of power infrastructure, requiring accurate detection and identification for effective monitoring of transmission lines. This paper proposes an innovative model, the EP-YOLOv8 network, which incorporates new modules: the DSLSK-SPPF and EMS-Head. The DSLSK-SPPF module is designed to capture the surrounding features of electric pylons more effectively, enhancing the model's adaptability to the complex shapes of these structures. The EMS-Head module enhances the model's ability to capture fine details of electric pylons while maintaining a lightweight design. The EP-YOLOv8 network optimizes traditional YOLOv8n parameters, demonstrating a significant improvement in electric pylon detection accuracy with an average mAP@0.5 value of 95.5%. The effective detection of electric pylons by the EP-YOLOv8 demonstrates its ability to overcome the inefficiencies inherent in existing optical satellite image-based models, particularly those related to the unique characteristics of electric pylons. This improvement will significantly aid in monitoring the operational status and layout of power infrastructure, providing crucial insights for infrastructure management and maintenance.

3.
iScience ; 27(6): 110006, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38868202

RESUMO

Apolipoprotein E (apoE) plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Microglia exhibit a substantial upregulation of apoE in AD-associated circumstances, despite astrocytes being the primary source of apoE expression and secretion in the brain. Although the role of astrocytic apoE in the brain has been extensively investigated, it remains unclear that whether and how apoE particles generated from astrocytes and microglia differ in biological characteristic and function. Here, we demonstrate the differences in size between apoE particles generated from microglia and astrocytes. Microglial apoE particles impair neurite growth and synapses, and promote neuronal senescence, whereas depletion of GPNMB (glycoprotein non-metastatic melanoma protein B) in microglial apoE particles mitigated these deleterious effects. In addition, human APOE4-expressing microglia are more neurotoxic than APOE3-bearing microglia. For the first time, these results offer concrete evidence that apoE particles produced by microglia are involved in neuronal senescence and toxicity.

4.
Sci Total Environ ; 929: 172651, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38653406

RESUMO

The widespread use of microplastics (MPs) has led to an increase in their discharge to wastewater treatment plants. However, the knowledge of impact of MPs on macro-performance and micro-ecology in simultaneous nitrification, denitrification, and phosphorus removal (SNDPR) systems is limited, hampering the understanding of potential risks posed by MPs. This study firstly comprehensively investigated the performance, species interactions, and community assembly under polystyrene (PS) and polyvinyl chloride (PVC) exposure in SNDPR systems. The results showed under PS (1, 10 mg/L) and PVC (1, 10 mg/L) exposure, total nitrogen removal was reduced by 3.38-10.15 %. PS and PVC restrained the specific rates of nitrite and nitrate reduction (SNIRR, SNRR), as well as the activities of nitrite and nitrate reductase enzymes (NIR, NR). The specific ammonia oxidation rate (SAOR) and activity of ammonia oxidase enzyme (AMO) were reduced only at 10 mg/L PVC. PS and PVC enhanced the size of co-occurrence networks, niche breadth, and number of key species while decreasing microbial cooperation by 5.85-13.48 %. Heterogeneous selection dominated microbial community assembly, and PS and PVC strengthened the contribution of stochastic processes. PICRUSt prediction further revealed some important pathways were blocked by PS and PVC. Together, the reduced TN removal under PS and PVC exposure can be attributed to the inhibition of SAOR, SNRR, and SNIRR, the restrained activities of NIR, NR, and AMO, the changes in species interactions and community assembly mechanisms, and the suppression of some essential metabolic pathways. This paper offers a new perspective on comprehending the effects of MPs on SNDPR systems.


Assuntos
Desnitrificação , Microplásticos , Nitrificação , Fósforo , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água , Fósforo/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Microbiota
5.
Bioresour Technol ; 399: 130643, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552855

RESUMO

This study proposed an efficient framework for optimizing the design and operation of combined systems of wastewater treatment plants (WWTP) and constructed wetlands (CW). The framework coupled a WWTP model with a CW model and used a multi-objective evolutionary algorithm to identify trade-offs between energy consumption, effluent quality, and construction cost. Compared to traditional design and management approaches, the framework achieved a 27 % reduction in WWTP energy consumption or a 44 % reduction in CW cost while meeting strict effluent discharge limits for Chinese WWTP. The framework also identified feasible decision variable ranges and demonstrated the impact of different optimization strategies on system performance. Furthermore, the contributions of WWTP and CW in pollutant degradation were analyzed. Overall, the proposed framework offers a highly efficient and cost-effective solution for optimizing the design and operation of a combined WWTP and CW system.


Assuntos
Eliminação de Resíduos Líquidos , Purificação da Água , Áreas Alagadas , Águas Residuárias , Aprendizado de Máquina
6.
Neuron ; 112(10): 1676-1693.e12, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38513667

RESUMO

Neuronal loss is the central issue in Alzheimer's disease (AD), yet no treatment developed so far can halt AD-associated neurodegeneration. Here, we developed a monoclonal antibody (mAb2A7) against 217 site-phosphorylated human tau (p-tau217) and observed that p-tau217 levels positively correlated with brain atrophy and cognitive impairment in AD patients. Intranasal administration efficiently delivered mAb2A7 into male PS19 tauopathic mouse brain with target engagement and reduced tau pathology/aggregation with little effect on total soluble tau. Further, mAb2A7 treatment blocked apoptosis-associated neuronal loss and brain atrophy, reversed cognitive deficits, and improved motor function in male tauopathic mice. Proteomic analysis revealed that mAb2A7 treatment reversed alterations mainly in proteins associated with synaptic functions observed in murine tauopathy and AD brain. An antibody (13G4) targeting total tau also attenuated tau-associated pathology and neurodegeneration but impaired the motor function of male tauopathic mice. These results implicate p-tau217 as a potential therapeutic target for AD-associated neurodegeneration.


Assuntos
Doença de Alzheimer , Anticorpos Monoclonais , Tauopatias , Proteínas tau , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Masculino , Camundongos , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Doença de Alzheimer/tratamento farmacológico , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/administração & dosagem , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Imunoterapia/métodos , Camundongos Transgênicos , Degeneração Neural/patologia , Degeneração Neural/tratamento farmacológico , Fosforilação , Proteínas tau/metabolismo , Tauopatias/tratamento farmacológico
7.
Ageing Res Rev ; 94: 102192, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38219962

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by cognitive impairment with few therapeutic options. Despite many failures in developing AD treatment during the past 20 years, significant advances have been achieved in passive immunotherapy of AD very recently. Here, we review characteristics, clinical trial data, and mechanisms of action for monoclonal antibodies (mAbs) targeting key players in AD pathogenesis, including amyloid-ß (Aß), tau and neuroinflammation modulators. We emphasized the efficacy of lecanemab and donanemab on cognition and amyloid clearance in AD patients in phase III clinical trials and discussed factors that may contribute to the efficacy and side effects of anti-Aß mAbs. In addition, we provided important information on mAbs targeting tau or inflammatory regulators in clinical trials, and indicated that mAbs against the mid-region of tau or pathogenic tau have therapeutic potential for AD. In conclusion, passive immunotherapy targeting key players in AD pathogenesis offers a promising strategy for effective AD treatment.


Assuntos
Doença de Alzheimer , Anticorpos Monoclonais Humanizados , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Peptídeos beta-Amiloides , Anticorpos Monoclonais/uso terapêutico , Imunização Passiva , Imunoterapia , Proteínas tau
8.
Biochem Biophys Res Commun ; 695: 149424, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38169186

RESUMO

Liver cancer is the fourth most lethal cancer, but the treatment options for liver cancer are usually limited. Metabolic reprogramming is a hallmark of malignancy, ensuring activated cell glycolysis and increased macromolecular precursors required for the proliferation and migration of exuberant cancer cells. MicroRNAs (miRNAs) have been reported to participate in cancer metabolic shifts mainly by directly silencing the expression of specific genes. Here, we identified miR-148a-3p as a negative regulator for glycometabolism and cell proliferation in liver cancer. miR-148a-3p directly targets the 3'UTR of transmembrane protein 54 (TMEM54), leading to the significant inhibition of lactate production, glucose consumption, intracellular ATP level and extracellular acidification rate (ECAR), as well as the repression of the proliferation and colony formation ability of liver cancer cells. miR-148a-3p expression is often down-regulated in liver cancer tissues. In addition, there was a negative correlation between the expression levels of miR-148a-3p and TMEM54 in liver cancer tissues. Moreover, the low miR-148a-3p expression levels or high TMEM54 expression levels were associated with poorer prognosis in hepatocellular carcinoma (HCC) patients. Together, these findings support that the miR-148a-3p/TMEM54 regulatory pathway regulates the glycometabolism and cell proliferation in liver cancer, which is a possible target for the diagnosis and treatment of liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , MicroRNAs/genética , MicroRNAs/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA