Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 15(1): 80, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31844289

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Nat Nanotechnol ; 14(12): 1123-1128, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31686006

RESUMO

Superconductivity in monolayer transition metal dichalcogenides is characterized by Ising-type pairing induced via a strong Zeeman-type spin-orbit coupling. When two transition metal dichalcogenides layers are coupled, more exotic superconducting phases emerge, which depend on the ratio of Ising-type protection and interlayer coupling strength. Here, we induce superconductivity in suspended MoS2 bilayers and unveil a coupled superconducting state with strong Ising-type spin-orbit coupling. Gating the bilayer symmetrically from both sides by ionic liquid gating varies the interlayer interaction and accesses electronic states with broken local inversion symmetry while maintaining the global inversion symmetry. We observe a strong suppression of the Ising protection that evidences a coupled superconducting state. The symmetric gating scheme not only induces superconductivity in both atomic sheets but also controls the Josephson coupling between the layers, which gives rise to a dimensional crossover in the bilayer.

3.
Phys Rev Lett ; 119(14): 147002, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-29053311

RESUMO

By dual gating a few-layer MoS_{2} flake, we induce spatially separated electronic states showing superconductivity and Shubnikov-de Haas (SdH) oscillations. While the highly confined superconductivity forms at the K/K^{'} valleys of the topmost layer, the SdH oscillations are contributed by the electrons residing in the Q/Q^{'} valleys of the rest of the bottom layers, which is confirmed by the extracted Landau level degeneracy of 3, electron effective mass of 0.6m_{e}, and carrier density of 5×10^{12} cm^{-2}. Mimicking conventional heterostructures, the interaction between the heteroelectronic states can be electrically manipulated, which enables "bipolarlike" superconducting transistor operation. The off-on-off switching pattern can be continuously accessed at low temperatures by a field effect depletion of carriers with a negative back gate bias and the proximity effect between the top superconducting layer and the bottom metallic layers that quenches the superconductivity at a positive back gate bias.

4.
Science ; 350(6266): 1353-7, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26563134

RESUMO

The Zeeman effect, which is usually detrimental to superconductivity, can be strongly protective when an effective Zeeman field from intrinsic spin-orbit coupling locks the spins of Cooper pairs in a direction orthogonal to an external magnetic field. We performed magnetotransport experiments with ionic-gated molybdenum disulfide transistors, in which gating prepared individual superconducting states with different carrier dopings, and measured an in-plane critical field B(c2) far beyond the Pauli paramagnetic limit, consistent with Zeeman-protected superconductivity. The gating-enhanced B(c2) is more than an order of magnitude larger than it is in the bulk superconducting phases, where the effective Zeeman field is weakened by interlayer coupling. Our study provides experimental evidence of an Ising superconductor, in which spins of the pairing electrons are strongly pinned by an effective Zeeman field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...