Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Anal Chim Acta ; 1326: 343150, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39260918

RESUMO

BACKGROUND: To minimize the impact of pesticide residues in food on human health, it is necessary to enhance their detection. Recently, many nanozyme-based colorimetric methods for pesticides detection have been developed, however, they often required the assistance of natural enzymes, which made the process and result of methods susceptible to the stability and activity of natural enzymes. To overcome these drawbacks, methods for direct detection of pesticides using nanozymes have been developed, and there are few studies in this field currently. Thus, it is of great research and practical significance to develop more nanozymes-based colorimetric methods for direct detection of pesticides. RESULTS: Dual colorimetric platforms based on Os-Rh nanozyme with excellent peroxidase-like activity were constructed for directly detection of glyphosate in this work. Results showed that glyphosate was able to sensitively and selectively inhibit the peroxidase-like activity of Os-Rh nanozyme through hindering the decomposition of H2O2 by Os-Rh nanozyme to produce HO∙. Based on this, the dual colorimetric platforms achieved highly sensitive detection for glyphosate over a wide linear concentration range (50-1000 µg L-1 in solution platform and 200-1000 µg L-1 in paper platform), with the detection limits of 28.37 µg L-1 in solution platform and 400 µg L-1 (naked-eye detection limit)/123.25 µg L-1 (gray scale detection limit) in paper platform, respectively. Moreover, the dual colorimetric platforms possessed satisfactory reliability and accuracy for practical applications, and has been successfully applied to the detection of real samples with the spiked recoveries of 92.78-102.75 % and RSD of 1.17-3.88 %. SIGNIFICANCE: The dual colorimetric platforms for glyphosate direct detection based on Os-Rh nanozyme developed in this work not only owned considerable practical application potential, but also could provide more inspirations and ideas for the rational design and development of colorimetric sensing methods for the rapid detection of pesticides based on nanozymes.


Assuntos
Colorimetria , Glicina , Glifosato , Colorimetria/métodos , Glicina/análogos & derivados , Glicina/análise , Glicina/química , Peroxidase/metabolismo , Peroxidase/química , Limite de Detecção , Peróxido de Hidrogênio/química
2.
Front Microbiol ; 15: 1447921, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39234550

RESUMO

Introduction: The relationships among microelements and soil microbial communities are essential for understanding the maintenance of soil's ecological functions and their effects on fruit quality in orchards. However, these relationships have not been adequately studied, despite the importance of microelements for the growth of microorganisms and plants. Methods: To address this research gap, we investigated the relationships among microelements (K, Ca, Na, Mg, Fe, Mn, Zn, and Cu), the diversity and composition of soil microbiomes, and fruit quality in loquat orchards. Results: We found that microelements explained more variations in microbial community structures than geographic position, basic soil properties, and macroelements, with 19.6-42.6% of bacterial, 4.3-27.7% of fungal, and 5.9-18.8% of protistan genera significantly correlated with microelements. Among the microelements, AMg and ACu were the most influential in determining the soil microbiome. The soil microbes exhibited varied threshold values for environmental breadth among the microelements, with the broadest range for AMg and the narrowest for AZn. Additionally, the microbes showed significant phylogenetic signals for all microelements, with an increasing divergence of soil microelements. The dominant community assembly shifted from homogeneous selection to stochastic, and then to heterogeneous selection. Moreover, microelements and the microbiome were the top two factors individually explaining 11.0 and 11.4% of fruit quality variation, respectively. Discussion: These results highlight the importance of microelement fertilization in orchard management and provide scientific guidance for improving fruit quality.

3.
Anal Chim Acta ; 1298: 342408, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462333

RESUMO

BACKGROUND: In vitro screening strategies based on the inhibition of α-glucosidase (GAA) activity have been widely used for the discovery of potential antidiabetic drugs, but they still face some challenges, such as poor enzyme stability, non-reusability and narrow range of applicability. To overcome these limitations, an in vitro screening method based on GAA@GOx@Cu-MOF reactor was developed in our previous study. However, the method was still not satisfactory enough in terms of construction cost, pH stability, organic solvent resistance and reusability. Thence, there is still a great need for the development of in vitro screening methods with lower cost and wider applicability. RESULTS: A colorimetric sensing strategy based on GAA/(Au-Au/IrO2)@Cu(PABA) cascade catalytic reactor, which constructed through simultaneous encapsulating Au-Au/IrO2 nanozyme with glucose oxidase-mimicking and peroxidase-mimicking activities and GAA in Cu(PABA) carrier with peroxidase-mimicking activity, was innovatively developed for in vitro screening of GAA inhibitors in this work. It was found that the reactor not only exhibited excellent thermal stability, pH stability, organic solvent resistance, room temperature storage stability, and reusability, but also possessed cascade catalytic performance, with approximately 12.36-fold increased catalytic activity compared to the free system (GAA + Au-Au/IrO2). Moreover, the in vitro GAA inhibitors screening method based on this reactor demonstrated considerable anti-interference performance and detection sensitivity, with a detection limit of 4.79 nM for acarbose. Meanwhile, the method owned good reliability and accuracy, and has been successfully applied to the in vitro screening of oleanolic acid derivatives as potential GAA inhibitors. SIGNIFICANCE: This method not only more effectively solved the shortcomings of poor stability, narrow scope of application, and non-reusability of natural enzymes in the classical method compared with our previous work, but also broaden the application scope of Au-Au/IrO2 nanozyme with glucose oxidase and peroxidase mimicking activities, and Cu(PABA) carrier with peroxidase mimicking activity, which was expected to be a new generation candidate method for GAA inhibitor screening.


Assuntos
Ácido 4-Aminobenzoico , Inibidores de Glicosídeo Hidrolases , Inibidores de Glicosídeo Hidrolases/farmacologia , Glucose Oxidase , Reprodutibilidade dos Testes , Colorimetria/métodos , Peroxidases , Solventes , Peróxido de Hidrogênio
4.
ACS Appl Mater Interfaces ; 15(14): 17675-17687, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37001053

RESUMO

Effective wound care and treatment require a quick and comprehensive assessment of healing status. Here, we develop a carbon dot-doped hydrogel sensor array in polydimethylsiloxane (PDMS) for simultaneous colorimetric detections of five wound biomarkers and/or wound condition indicators (pH, glucose, urea, uric acid, and total protein), leading to the holistic assessment of inflammation and infection. A biogenic carbon dot synthesized using an amino acid and a polymer precursor is doped in an agarose hydrogel matrix for constructing enzymatic sensors (glucose, urea, and uric acid) and dye-based sensors (pH and total protein). The encapsulated enzymes in such a matrix exhibit improved enzyme kinetics and stability compared to those in pure hydrogels. Such a matrix also provides stable colorimetric responses for all five sensors. The sensor array exhibits high accuracy (recovery rates of 91.5-113.1%) and clinically relevant detection ranges for all five wound markers. The sensor array is established for simulated wound fluids and validated with rat wound fluids from perturbed wound models. Distinct color patterns are obtained that can clearly distinguish healing vs nonhealing wounds visually and quantitatively. This hydrogel sensor array shows great potential for on-site wound sensing due to its long-term stability, lightweight, and flexibility.


Assuntos
Colorimetria , Hidrogéis , Ratos , Animais , Hidrogéis/química , Carbono/química , Ácido Úrico , Cicatrização , Ureia , Glucose
5.
Talanta ; 258: 124377, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36863068

RESUMO

A dual-mode biosensor constructed based on photoelectrochemical (PEC) and electrochemical (EC) property was developed for assaying circulating tumor DNA (ctDNA), which is commonly used for triple-negative breast cancer diagnosis. Ionic liquid functionalized two-dimensional Nd-MOF nanosheets were successfully synthesized through a template-assisted reagent substituting reaction. Nd-MOF nanosheets integrated with gold nanoparticles (AuNPs) were able to improve photocurrent response and supply active sites for assembling sensing elements. To achieve selective detection of ctDNA, thiol-functionalized capture probes (CPs) were immobilized on the Nd-MOF@AuNPs modified glassy carbon electrode surface, thereby generating a "signal-off" photoelectrochemical biosensor for ctDNA under visible light irradiation. After the recognition of ctDNA, ferrocene-labeled signaling probes (Fc-SPs) were introduced into the biosensing interface. After hybridization between ctDNA and Fc-SPs, the oxidation peak current of Fc-SPs generated from square wave voltammetry can be employed as a "signal-on" electrochemical signal for ctDNA quantification. Under the optimized conditions, a linear relationship was obtained to the logarithm of ctDNA concentration in between 1.0 fmol L-1 to 10 nmol L-1 for the PEC model and 1.0 fmol L-1 to 1.0 nmol L-1 for the EC model. The dual-mode biosensor can provide accurate results for ctDNA assays, effectively eliminating the probable occurrence of false-positive or false-negative results in single-model assays. By switching DNA probe sequences, the proposed dual-mode biosensing platform can serve as a strategy for detecting other DNAs and possesses broad applications in bioassay and early disease diagnosis.


Assuntos
Técnicas Biossensoriais , Líquidos Iônicos , Nanopartículas Metálicas , Ouro/química , Líquidos Iônicos/química , Nanopartículas Metálicas/química , DNA/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção
6.
Biosens Bioelectron ; 224: 115033, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36621082

RESUMO

Staphylococcus aureus is one of the most prevalent threats to public health. Rapid detection with high sensitivity and targeted killing is crucial to curb its spread. Herein, a metal-bearing nanocomposite, consisting of a bimetallic nanoparticle and a metal-organic framework (Au/Ir@Cu/Zn-MOF) was constructed. Upon conjugation with anti-S. aureus antibody, this nanocomposite (Ab-Au/Ir@Cu/Zn-MOF) was exploited for its dual functions, i.e. as a reporting probe in a lateral flow immunoassay and a high efficiency antibacterial reagent. Benefiting from the enrichment of Au/Ir NPs by the Cu/Zn-MOF, the Au/Ir@Cu/Zn-MOF-based lateral flow immunoassay sensor exhibited a visual limit of detection of 103 CFU/mL, which was100 times more sensitive than Au/Ir-based sensor. Moreover, the Ab-Au/Ir@Cu/Zn-MOF probe possessed synergistic photothermal-chemodynamic bactericidal effect that specifically targeted against S. aureus. Under a co-treatment by H2O2 (0.4 mM) and 808 nm near infrared irradiation (1 W/cm2, 5 min), complete sterilization of 5 × 105-106 CFU/mL S. aureus was achieved at a nanocomposite concentration as low as 6.25 µg/mL. The superior antibacterial efficiency was attributable to the three-fold properties of the Ab-Au/Ir@Cu/Zn-MOF probe: (1) enhanced multi-enzyme mimicking activities that promote reactive oxygen species generation, (2) high photothermal activity (efficiency of 53.70%), and (3) bacteria targeting ability via the antibody coating. By changing the antibody, this nanocomposite can be tailored to target a wide range of bacteria species, for detection and for precise antibacterial treatment.


Assuntos
Técnicas Biossensoriais , Imunoconjugados , Nanopartículas Metálicas , Peróxido de Hidrogênio , Bactérias , Anticorpos , Antibacterianos/farmacologia , Imunoensaio , Staphylococcus aureus , Zinco
7.
Anal Chem ; 94(51): 17835-17842, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36508733

RESUMO

The low photon energy and deep penetrating ability of near-infrared (NIR) light make it an ideal light source for a photoelectrochemical (PEC) immunosensing system. Absorption wavelengths of the metal-organic frameworks (MOFs) can be regulated by adjusting the metal ions and the conjugation degree of the ligands. Herein, an ionic liquid with a large conjugated structure was synthesized and was used as a ligand to coordinate with Nd ions to prepare Nd-MOF nanorods with a band gap of 1.26 eV. The Nd-MOF rods show a good photoabsorption property from 200 to 980 nm. A PEC platform was constructed by using Nd-MOF nanorods as the photoelectroactive element. A detachable double-stranded DNA labeled with alkaline phosphatase (ALP), which is specific to VEGF165, was immobilized onto the PEC sensing interface. After blocking unspecific active sites with bovine albumin, an NIR PEC aptasensing system was developed for VEGF165 detection. After being incubated in a mixture of VEGF165, l-ascorbic acid 2-phosphate (magnesium salt hydrate) (AAP), and chloroauric acid, the aptamers for VEGF165 were detached from the PEC aptasensing interface, thus resulting in the decrease of the charge-transfer resistance and the increase of the photocurrent response. The shedding of the aptamers also makes the ALP approach the electrode surface, thus catalyzing the reduction of AAP to produce ascorbic acid (AA). Subsequently, AA reduces in situ chloroauric acid to produce AuNPs on the Nd-MOF-based sensing interface. With the excellent conductivity and localized surface plasmon resonance effect, the AuNPs can accelerate the separation of electron-hole pairs generated from Nd-MOF nanorods, thus promoting the photoelectric conversion efficiency and achieving signal amplification. Under optimized conditions, the PEC responses were linearly related to the VEGF165 concentrations in the range of 0.01-100 ng mL-1 and exhibit a low detection limit of 3.51 pg mL-1 (S/N = 3). VEGF165 in human serum samples was detected by the NIR PEC aptasensor. Their concentrations were found to be well consistent with that obtained from ELISA. Furthermore, the PEC aptasensor demonstrated recoveries from 96.07 to 103.8%. The relative standard deviations were within 5%, indicating good accuracy and precision. The results further verify its practicability for clinical diagnosis.


Assuntos
Técnicas Biossensoriais , Líquidos Iônicos , Nanopartículas Metálicas , Nanotubos , Animais , Bovinos , Humanos , Ouro/química , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , Nanotubos/química , Técnicas Eletroquímicas/métodos , Limite de Detecção
8.
ACS Nano ; 16(12): 19840-19872, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36441973

RESUMO

Bacterial infections remain the leading cause of death worldwide today. The emergence of antibiotic resistance has urged the development of alternative antibacterial technologies to complement or replace traditional antibiotic treatments. In this regard, metal nanomaterials have attracted great attention for their controllable antibacterial functions that are less prone to resistance. This review discusses a particular family of stimuli-activable metal-bearing nanomaterials (denoted as SAMNs) and the associated on-demand antibacterial strategies. The various SAMN-enabled antibacterial strategies stem from basic light and magnet activation, with the addition of bacterial microenvironment responsiveness and/or bacteria-targeting selectivity and therefore offer higher spatiotemporal controllability. The discussion focuses on nanomaterial design principles, antibacterial mechanisms, and antibacterial performance, as well as emerging applications that desire on-demand and selective activation (i.e., medical antibacterial treatments, surface anti-biofilm, water disinfection, and wearable antibacterial materials). The review concludes with the authors' perspectives on the challenges and future directions for developing industrial translatable next-generation antibacterial strategies.


Assuntos
Infecções Bacterianas , Nanoestruturas , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Infecções Bacterianas/tratamento farmacológico , Biofilmes , Metais
9.
Polymers (Basel) ; 14(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36146034

RESUMO

Microplastics are harmful to both marine life and humans. Herein, a pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) technique for the detection of microplastics in aquatic shellfish is demonstrated. The organic matter in aquatic shellfish was removed by alkali digestion. Subsequently, using hexafluoroisopropanol as the extraction solvent, the extraction method was optimized. The influence of the digestion process on the nature of microplastics was investigated by analyzing the samples before and after the alkali treatment via infrared spectrometry, laser particle sizing, and scanning electron microscopy. Spiked recovery experiments and an analysis of actual samples were performed using PA6 and PA66 as analytes. A quantitative analysis of the characteristic ion fragment produced by high-temperature cracking was performed after chromatographic separation and mass spectrometry identification. The linear range of this method for PA6 and PA66 was 2-64 µg. The limits of detection of PA6 and PA66 were 0.2 and 0.6 µg, while the limits of quantitation were 0.6 and 2.0 µg, respectively. Recovery ranged from 74.4 to 101.62%, with a precision of 4.53-7.56%. The results suggest that the Py-GC/MS technique is suitable for the analysis and detection of trace microplastics in aquatic shellfish.

10.
Int J Anal Chem ; 2022: 7306597, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35971426

RESUMO

In order to understand and improve the degradation rate of formaldehyde, the study on the chemical structure and thermal properties of nano-titanium dioxide resin by free formaldehyde was proposed. In this research, nano-titanium dioxide was prepared by the low temperature hydrolysis method and characterized by using the scanning electron microscope (SEM) and X-ray diffraction (XRD). The degradation behavior of formaldehyde was studied by using the degradation rate of formaldehyde in the container as the evaluation index. The influence of the photocatalytic coating on the degradation rate of formaldehyde under different loading conditions, different temperatures, and different humidity was investigated. The experimental results show that the formaldehyde degradation rate of the photocatalytic coating prepared by loading 5 g nano-TiO2 into a 200 g emulsion system can reach 93% under the conditions of room temperature of 25°C, humidity of 50%, and UV lamp irradiation of 120 min. Conclusion. This study is obviously better than the commercial P25 nano-titanium dioxide degradation effect of formaldehyde.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA