Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCO Precis Oncol ; 7: e2300015, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37364231

RESUMO

PURPOSE: INFORM is an international pediatric precision oncology registry, prospectively collecting molecular and clinical data of children with recurrent, progressive, or very high-risk malignancies. We have previously identified a subgroup of patients with improved outcomes on the basis of molecular profiling. The present analysis systematically investigates progression-free survival (PFS) and overall survival (OS) of patients receiving matching targeted treatment (MTT) with the most frequently applied drug classes and its correlation with underlying molecular alterations. METHODS: A cohort of 519 patients with relapsed or refractory high-risk malignancies who had completed a follow-up of at least 2 years or shorter in the case of death or loss to follow-up was analyzed. Survival times were compared using the log-rank test. RESULTS: MTT with anaplastic lymphoma kinase (ALK), neurotrophic tyrosine receptor kinase (NTRK), and B-RAF kinase (BRAF) inhibitors showed significantly improved PFS (P = .012) and OS (P = .036) in comparison with conventional treatment or no treatment. However, analysis of the four most commonly applied MTT groups, mitogen-activated protein kinase (MEK- n = 19), cyclin-dependent kinase (CDK- n = 23), other kinase (n = 62), and mammalian-target of rapamycin (mTOR- n = 20) inhibitors, did not reveal differences in PFS or OS compared with conventional treatment or no treatment in patients with similar molecular pathway alterations. We did not observe differences in the type of pathway alterations (eg, copy number alterations, single-nucleotide variants, InDels, gene fusions) addressed by MTT. CONCLUSION: Patients with respective molecular alterations benefit from treatment with ALK, NTRK, and BRAF inhibitors as previously described. No survival benefit was observed with MTT for mutations in the MEK, CDK, other kinase, or mTOR signaling pathways. The noninterventional character of a registry has to be taken into account when interpreting these data and underlines the need for innovative interventional biomarker-driven clinical trials in pediatric oncology.


Assuntos
Antineoplásicos , Carcinoma , Animais , Humanos , Criança , Adolescente , Antineoplásicos/efeitos adversos , Proteínas Proto-Oncogênicas B-raf/genética , Medicina de Precisão , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Receptores Proteína Tirosina Quinases , Serina-Treonina Quinases TOR , Quinases de Proteína Quinase Ativadas por Mitógeno , Mamíferos
2.
Nucleic Acids Res ; 48(1): 316-331, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31777924

RESUMO

The Sleeping Beauty (SB) transposon is an advanced tool for genetic engineering and a useful model to investigate cut-and-paste DNA transposition in vertebrate cells. Here, we identify novel SB transposase mutants that display efficient and canonical excision but practically unmeasurable genomic re-integration. Based on phylogenetic analyses, we establish compensating amino acid replacements that fully rescue the integration defect of these mutants, suggesting epistasis between these amino acid residues. We further show that the transposons excised by the exc+/int- transposase mutants form extrachromosomal circles that cannot undergo a further round of transposition, thereby representing dead-end products of the excision reaction. Finally, we demonstrate the utility of the exc+/int- transposase in cassette removal for the generation of reprogramming factor-free induced pluripotent stem cells. Lack of genomic integration and formation of transposon circles following excision is reminiscent of signal sequence removal during V(D)J recombination, and implies that cut-and-paste DNA transposition can be converted to a unidirectional process by a single amino acid change.


Assuntos
Reprogramação Celular , Elementos de DNA Transponíveis , Células-Tronco Pluripotentes Induzidas/metabolismo , Transposases/genética , Substituição de Aminoácidos , Animais , Epistasia Genética , Engenharia Genética/métodos , Células HeLa , Células Hep G2 , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Mutação , Transposases/metabolismo
3.
Nat Biotechnol ; 37(12): 1502-1512, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31685959

RESUMO

The Sleeping Beauty (SB) transposon system is an efficient non-viral gene transfer tool in mammalian cells, but its broad use has been hampered by uncontrolled transposase gene activity from DNA vectors, posing a risk of genome instability, and by the inability to use the transposase protein directly. In this study, we used rational protein design based on the crystal structure of the hyperactive SB100X variant to create an SB transposase (high-solubility SB, hsSB) with enhanced solubility and stability. We demonstrate that hsSB can be delivered with transposon DNA to genetically modify cell lines and embryonic, hematopoietic and induced pluripotent stem cells (iPSCs), overcoming uncontrolled transposase activity. We used hsSB to generate chimeric antigen receptor (CAR) T cells, which exhibit potent antitumor activity in vitro and in xenograft mice. We found that hsSB spontaneously penetrates cells, enabling modification of iPSCs and generation of CAR T cells without the use of transfection reagents. Titration of hsSB to modulate genomic integration frequency achieved as few as two integrations per genome.


Assuntos
Engenharia Genética/métodos , Mutagênese Insercional/genética , Transposases/genética , Engenharia Celular/métodos , Linhagem Celular , Células Cultivadas , Células HeLa , Humanos , Proteínas Recombinantes de Fusão/genética , Células-Tronco
4.
Genes Dev ; 33(1-2): 90-102, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30567997

RESUMO

Piwi-interacting RNAs (piRNAs) engage Piwi proteins to suppress transposons and nonself nucleic acids and maintain genome integrity and are essential for fertility in a variety of organisms. In Caenorhabditis elegans, most piRNA precursors are transcribed from two genomic clusters that contain thousands of individual piRNA transcription units. While a few genes have been shown to be required for piRNA biogenesis, the mechanism of piRNA transcription remains elusive. Here we used functional proteomics approaches to identify an upstream sequence transcription complex (USTC) that is essential for piRNA biogenesis. The USTC contains piRNA silencing-defective 1 (PRDE-1), SNPC-4, twenty-one-U fouled-up 4 (TOFU-4), and TOFU-5. The USTC forms unique piRNA foci in germline nuclei and coats the piRNA cluster genomic loci. USTC factors associate with the Ruby motif just upstream of type I piRNA genes. USTC factors are also mutually dependent for binding to the piRNA clusters and forming the piRNA foci. Interestingly, USTC components bind differentially to piRNAs in the clusters and other noncoding RNA genes. These results reveal the USTC as a striking example of the repurposing of a general transcription factor complex to aid in genome defense against transposons.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica/genética , RNA Interferente Pequeno/genética , Motivos de Aminoácidos , Animais , Proteínas de Caenorhabditis elegans/genética , Genoma Helmíntico/genética , Ligação Proteica , Proteômica , RNA Interferente Pequeno/biossíntese
5.
Nucleic Acids Res ; 46(8): 4152-4163, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29635476

RESUMO

Transposable elements are efficient DNA carriers and thus important tools for transgenesis and insertional mutagenesis. However, their poor target sequence specificity constitutes an important limitation for site-directed applications. The insertion sequence IS608 from Helicobacter pylori recognizes a specific tetranucleotide sequence by base pairing, and its target choice can be re-programmed by changes in the transposon DNA. Here, we present the crystal structure of the IS608 target capture complex in an active conformation, providing a complete picture of the molecular interactions between transposon and target DNA prior to integration. Based on this, we engineered IS608 variants to direct their integration specifically to various 12/17-nt long target sites by extending the base pair interaction network between the transposon and the target DNA. We demonstrate in vitro that the engineered transposons efficiently select their intended target sites. Our data further elucidate how the distinct secondary structure of the single-stranded transposon intermediate prevents extended target specificity in the wild-type transposon, allowing it to move between diverse genomic sites. Our strategy enables efficient targeting of unique DNA sequences with high specificity in an easily programmable manner, opening possibilities for the use of the IS608 system for site-specific gene insertions.


Assuntos
Elementos de DNA Transponíveis , DNA Bacteriano/química , Pareamento de Bases , Sequência de Bases , Engenharia Genética , Helicobacter pylori/genética , Modelos Moleculares , Conformação de Ácido Nucleico , Transposases/química , Transposases/metabolismo
6.
Sci Rep ; 7(1): 9903, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28852099

RESUMO

The RNA-chaperone Hfq catalyses the annealing of bacterial small RNAs (sRNAs) with target mRNAs to regulate gene expression in response to environmental stimuli. Hfq acts on a diverse set of sRNA-mRNA pairs using a variety of different molecular mechanisms. Here, we present an unusual crystal structure showing two Hfq-RNA complexes interacting via their bound RNA molecules. The structure contains two Hfq6:A18 RNA assemblies positioned face-to-face, with the RNA molecules turned towards each other and connected via interdigitating base stacking interactions at the center. Biochemical data further confirm the observed interaction, and indicate that RNA-mediated contacts occur between Hfq-RNA complexes with various (ARN)X motif containing RNA sequences in vitro, including the stress response regulator OxyS and its target, fhlA. A systematic computational survey also shows that phylogenetically conserved (ARN)X motifs are present in a subset of sRNAs, some of which share similar modular architectures. We hypothesise that Hfq can co-opt RNA-RNA base stacking, an unanticipated structural trick, to promote the interaction of (ARN)X motif containing sRNAs with target mRNAs on a "speed-dating" fashion, thereby supporting their regulatory function.


Assuntos
Proteínas de Escherichia coli/química , Fator Proteico 1 do Hospedeiro/química , Conformação de Ácido Nucleico , RNA/química , Motivos de Aminoácidos , Sequência de Bases , Sítios de Ligação , Proteínas de Escherichia coli/metabolismo , Fator Proteico 1 do Hospedeiro/metabolismo , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , RNA/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Soluções/química , Relação Estrutura-Atividade
7.
Cell Rep ; 19(7): 1378-1393, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28514658

RESUMO

The development of neurons and vessels shares striking anatomical and molecular features, and it is presumably orchestrated by an overlapping repertoire of extracellular signals. CNS macrophages have been implicated in various developmental functions, including the morphogenesis of neurons and vessels. However, whether CNS macrophages can coordinately influence neurovascular development and the identity of the signals involved therein is unclear. Here, we demonstrate that activity of the cell surface receptor CD95 regulates neuronal and vascular morphogenesis in the post-natal brain and retina. Furthermore, we identify CNS macrophages as the main source of CD95L, and macrophage-specific deletion thereof reduces both neurovascular complexity and synaptic activity in the brain. CD95L-induced neuronal and vascular growth is mediated through src-family kinase (SFK) and PI3K signaling. Together, our study highlights a coordinated neurovascular development instructed by CNS macrophage-derived CD95L, and it underlines the importance of macrophages for the establishment of the neurovascular network during CNS development.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/citologia , Proteína Ligante Fas/metabolismo , Macrófagos/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Neuritos/metabolismo , Ligação Proteica , Retina/crescimento & desenvolvimento , Retina/metabolismo , Transdução de Sinais , Sinapses/metabolismo , Receptor fas/metabolismo , Quinases da Família src/metabolismo
8.
Nat Commun ; 7: 11126, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-27025571

RESUMO

Sleeping Beauty (SB) is a prominent Tc1/mariner superfamily DNA transposon that provides a popular genome engineering tool in a broad range of organisms. It is mobilized by a transposase enzyme that catalyses DNA cleavage and integration at short specific sequences at the transposon ends. To facilitate SB's applications, here we determine the crystal structure of the transposase catalytic domain and use it to model the SB transposase/transposon end/target DNA complex. Together with biochemical and cell-based transposition assays, our structure reveals mechanistic insights into SB transposition and rationalizes previous hyperactive transposase mutations. Moreover, our data enables us to design two additional hyperactive transposase variants. Our work provides a useful resource and proof-of-concept for structure-based engineering of tailored SB transposases.


Assuntos
Engenharia Genética , Mutação/genética , Transposases/química , Transposases/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Elementos de DNA Transponíveis , Modelos Moleculares , Mutagênese
9.
Cancer Cell ; 13(3): 235-48, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18328427

RESUMO

Invasion of surrounding brain tissue by isolated tumor cells represents one of the main obstacles to a curative therapy of glioblastoma multiforme. Here we unravel a mechanism regulating glioma infiltration. Tumor interaction with the surrounding brain tissue induces CD95 Ligand expression. Binding of CD95 Ligand to CD95 on glioblastoma cells recruits the Src family member Yes and the p85 subunit of phosphatidylinositol 3-kinase to CD95, which signal invasion via the glycogen synthase kinase 3-beta pathway and subsequent expression of matrix metalloproteinases. In a murine syngeneic model of intracranial GBM, neutralization of CD95 activity dramatically reduced the number of invading cells. Our results uncover CD95 as an activator of PI3K and, most importantly, as a crucial trigger of basal invasion of glioblastoma in vivo.


Assuntos
Neoplasias Encefálicas/metabolismo , Proteína Ligante Fas/metabolismo , Glioblastoma/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-yes/metabolismo , Transdução de Sinais , Receptor fas/metabolismo , Animais , Apoptose , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Glioblastoma/enzimologia , Glioblastoma/genética , Glioblastoma/imunologia , Glioblastoma/patologia , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Camundongos , Invasividade Neoplásica , Transplante de Neoplasias , Proteínas Proto-Oncogênicas c-yes/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transfecção , Transplante Isogênico , Células Tumorais Cultivadas , Quinases da Família src/metabolismo
10.
Proc Natl Acad Sci U S A ; 102(35): 12459-64, 2005 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-16109770

RESUMO

Sialic acid-containing glycosphingolipids, i.e., gangliosides, constitute a major component of neuronal cells and are thought to be essential for brain function. UDP-glucose:ceramide glucosyltransferase (Ugcg) catalyzes the initial step of glycosphingolipid (GSL) biosynthesis. To gain insight into the role of GSLs in brain development and function, a cell-specific disruption of Ugcg was performed as indicated by the absence of virtually all glucosylceramide-based GSLs. Shortly after birth, mice showed dysfunction of cerebellum and peripheral nerves, associated with structural defects. Axon branching of Purkinje cells was significantly reduced. In primary cultures of neurons, dendritic complexity was clearly diminished, and pruning occurred early. Myelin sheaths of peripheral nerves were broadened and focally severely disorganized. GSL deficiency also led to a down-regulation of gene expression sets involved in brain development and homeostasis. Mice died approximately 3 weeks after birth. These results imply that GSLs are essential for brain maturation.


Assuntos
Encéfalo/enzimologia , Encéfalo/patologia , Glucosiltransferases/deficiência , Animais , Animais Recém-Nascidos , Encéfalo/fisiopatologia , Feminino , Marcação de Genes , Glucosiltransferases/genética , Glicoesfingolipídeos/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Neural/enzimologia , Degeneração Neural/patologia , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
Nat Med ; 10(4): 389-95, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15004554

RESUMO

The clinical outcome of spinal cord injury (SCI) depends in part on the extent of secondary damage, to which apoptosis contributes. The CD95 and tumor necrosis factor (TNF) ligand/receptor systems play an essential role in various apoptotic mechanisms. To determine the involvement of these ligands in SCI-induced damage, we neutralized the activity of CD95 ligand (CD95L) and/or TNF in spinal cord-injured mice. Therapeutic neutralization of CD95L, but not of TNF, significantly decreased apoptotic cell death after SCI. Mice treated with CD95L-specific antibodies were capable of initiating active hind-limb movements several weeks after injury. The improvement in locomotor performance was mirrored by an increase in regenerating fibers and upregulation of growth-associated protein-43 (GAP-43). Thus, neutralization of CD95L promoted axonal regeneration and functional improvement in injured adult animals. This therapeutic strategy may constitute a potent future treatment for human spinal injury.


Assuntos
Axônios/fisiologia , Glicoproteínas de Membrana/antagonistas & inibidores , Regeneração , Traumatismos da Medula Espinal/fisiopatologia , Animais , Sobrevivência Celular , Proteína Ligante Fas , Camundongos , Neurônios/citologia , Testes de Neutralização , Oligodendroglia/citologia , Traumatismos da Medula Espinal/patologia
12.
J Cell Biol ; 162(7): 1267-79, 2003 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-14517206

RESUMO

Neuritogenesis, the first step of neuronal differentiation, takes place as nascent neurites bud from the immediate postmitotic neuronal soma. Little is known about the mechanisms underlying the dramatic morphological changes that characterize this event. Here, we show that RhoA activity plays a decisive role during neuritogenesis of cultured hippocampal neurons by recruiting and activating its specific kinase ROCK, which, in turn, complexes with profilin IIa. We establish that this previously uncharacterized brain-specific actin-binding protein controls neurite sprouting by modifying actin stability, a function regulated by ROCK-mediated phosphorylation. Furthermore, we determine that this novel cascade is switched on or off by physiological stimuli. We propose that RhoA/ROCK/PIIa-mediated regulation of actin stability, shown to be essential for neuritogenesis, may constitute a central mechanism throughout neuronal differentiation.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas Contráteis , Proteínas dos Microfilamentos/metabolismo , Neurônios/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Tamanho Celular/fisiologia , Células Cultivadas , Hipocampo/citologia , Peptídeos e Proteínas de Sinalização Intracelular , Fatores de Crescimento Neural/farmacologia , Neuritos/enzimologia , Neurônios/ultraestrutura , Profilinas , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Estimulação Química , Quinases Associadas a rho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...