Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 167: 112607, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37087225

RESUMO

Probiotic bacteria and bioactive compounds obtained from plant origin stand out as ingredients with the potential to increase the healthiness of functional foods, as there is currently a recurrent search for them. Probiotics and bioactive compounds are sensitive to intrinsic and extrinsic factors in the processing and packaging of the finished product. In this sense, the present study aims to evaluate the co-encapsulation by spray dryer (inlet air temperature 120 °C, air flow 40 L / min, pressure of 0.6 MPa and 1.5 mm nozzle diameter) of probiotic bacteria (L.plantarum) and compounds extracted from red beet stems (betalains) in order to verify the interaction between both and achieve better viability and resistance of the encapsulated material. When studying the co-encapsulation of L.plantarum and betalains extracted from beet stems, an unexpected influence was observed with a decrease in probiotic viability in the highest concentration of extract (100 %), on the other hand, the concentration of 50 % was the best enabled and maintained the survival of L.plantarum in conditions of 25 °C (63.06 %), 8 °C (88.80 %) and -18 °C (89.28 %). The viability of the betalains and the probiotic was better preserved in storage at 8 and -18 °C, where the encapsulated stability for 120 days was successfully achieved. Thus, the polyfunctional formulation developed in this study proved to be promising, as it expands the possibilities of application and development of new foods.


Assuntos
Beta vulgaris , Lactobacillus plantarum , Probióticos , Viabilidade Microbiana , Preservação Biológica
2.
Food Res Int ; 152: 110907, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35181079

RESUMO

Oleaginous microorganisms, including the fungus Umbelopsis isabellina, have emerged as a biotechnological alternative to obtain polyunsaturated fatty acid-rich oils, which are strongly linked to energy purposes (biofuel) than the food industry. Considering the composition of microbial oil and its use by the food industry, it is necessary to investigate strategies that increase its lipid stability. Ergo, this pioneering study aimed to microencapsulate the oil produced by Umbelopsis isabellina and evaluate its oxidative stability throughout the storage period against factors such as temperature and luminosity. The microbial oil was microencapsulated through the external ionic gelation technique, producing an encapsulation efficiency of 80% and proving to be a suitable method because it maintained oil composition. Combining microencapsulation and refrigerated storage led to the best effects on storage time, increasing the evaluated lipid stability through the peroxide values and conjugated diene formation. Moreover, saturated and monounsaturated fatty acid content increased, and polyunsaturated fatty acid content decreased during storage for both the free and microencapsulated oil, regardless of storage temperature, although microencapsulation reduced the changes. The results primarily demonstrate how microencapsulation prolongs the oxidative stability and unsaturated fatty acid content of the microbial oil by reducing its reactions to external environmental factors, thus facilitating its use in the food industry.


Assuntos
Ácidos Graxos Insaturados , Óleos , Fungos , Oxirredução
3.
Food Res Int ; 125: 108645, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31554039

RESUMO

The aim of this study was to develop and evaluate the physicochemical and antioxidant stability of nanoemulsions containing a Physalis peruviana calyx extract (CPp-NE) and free extracts under different storage conditions (7 and 25 °C) and with absence or incidence of light for 120 days. The calyx extracts were prepared with ethanol 60% and characterized for later preparation of the nanoemulsions by spontaneous emulsification. The formulations presented nanometric sizes, low polydispersity index, negative zeta potential, acid pH, rutin content (11 µg·mL-1), and encapsulation efficiency of 85%. Regarding the stability, the droplet size and PdI of the CPp-NE stored at refrigeration temperature in the dark, room temperature in the dark, and refrigeration temperature with light incidence were stable for 120 days and with no visible changes in the formulations. The antioxidant capacity was related to the reducing capacity, and the best results were found for nanoemulsions stored at room temperature and in absence of light. In addition, CPp-NE presented higher antioxidant and reducing capacity in relation to the free extracts.


Assuntos
Antioxidantes/química , Emulsões/síntese química , Flores/química , Nanopartículas/química , Physalis/química , Extratos Vegetais/química , Antioxidantes/análise , Fenômenos Químicos , Estabilidade de Medicamentos , Emulsões/química , Microscopia Eletrônica de Varredura , Rutina/análise
4.
Food Res Int ; 125: 108577, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31554127

RESUMO

Lactobacillus acidophilus were encapsulated by complex coacervation followed by transglutaminase crosslinking, aiming to improve the resistance of the microcapsules and improve the protection for probiotics. Subsequently, microcapsules were dried by freeze drying. The encapsulation efficiency, morphology, thermal resistance, gastrointestinal simulation and storage stability were analysed for wet and dry forms. The treatments offered high encapsulation efficiency (68.20-97.72%). Transglutaminase maintained the structure rounded, multinucleate and homogeneous distribution of probiotics in the microcapsules. In relation to the thermal resistance, in general, microencapsulation was effective in protecting and crosslinked microcapsules demonstrated greater protection for probiotics, obtaining viable cell counts of up to 10 log CFU g-1, approximately. On exposure to the simulated gastrointestinal tract, microencapsulation coupled to crosslinking demonstrated good results and the dry form was more efficient in the protection and the treatment with greater amount of transglutaminase was highlighted (9.07 log CFU g-1). As for storage, probiotic viability was maintained for up to 60 days in freezing temperature, with counts of up to 9.59 log CFU g-1. The results obtained in the present work are innovative and present a promising alternative for the protection of probiotics and their addition in food products.


Assuntos
Células Imobilizadas/microbiologia , Lactobacillus acidophilus/enzimologia , Viabilidade Microbiana , Probióticos , Cápsulas/química , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Armazenamento de Alimentos , Liofilização , Trato Gastrointestinal/metabolismo , Modelos Biológicos , Transglutaminases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...