Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(21)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38828810

RESUMO

Understanding core level shifts in aromatic compounds is crucial for the correct interpretation of x-ray photoelectron spectroscopy (XPS) of polycyclic aromatic hydrocarbons (PAHs), including acenes, as well as of styrenic polymers, which are increasingly relevant for the microelectronic industry, among other applications. The effect of delocalization through π aromatic systems on the stabilization of valence molecular orbitals has been widely investigated in the past. However, little has been reported on the impact on the deeper C1s core energy levels. In this work, we use first-principles calculations at the level of many body perturbation theory to compute the C1s binding energies of several aromatic systems. We report a C1s red shift in PAHs and acenes of increasing size, both in the gas phase and in the molecular crystal. C1s red shifts are also calculated for stacked benzene and naphthalene pairs at decreasing intermolecular distances. A C1s red shift is in addition found between oligomers of poly(p-hydroxystyrene) and polystyrene of increasing length, which we attribute to ring-ring interactions between the side-chains. The predicted shifts are larger than common instrumental errors and could, therefore, be detected in XPS experiments.

2.
J Phys Chem Lett ; 15(3): 834-839, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38235964

RESUMO

The broadening in photoelectron spectra of polymers can be attributed to several factors, such as light source spread, spectrometer resolution, the finite lifetime of the hole state, and solid-state effects. Here, for the first time, we set up a computational protocol to assess the peak broadening induced for both core and valence levels by solid-state effects in four amorphous polymers by using a combination of density functional theory, many-body perturbation theory, and classical polarizable embedding. We show that intrinsic local inhomogeneities in the electrostatic environment induce a Gaussian broadening of 0.2-0.7 eV in the binding energies of both core and semivalence electrons, corresponding to a full width at half-maximum (FWHM) of 0.5-1.7 eV for the investigated systems. The induced broadening is larger in acrylate-based than in styrene-based polymers, revealing the crucial role of polar groups in controlling the roughness of the electrostatic landscape in the solid matrix.

3.
Molecules ; 28(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37175062

RESUMO

The availability of thermochemical properties allows for the prediction of the equilibrium compositions of chemical reactions. The accurate prediction of these can be crucial for the design of new chemical synthesis routes. However, for new processes, these data are generally not completely available. A solution is the use of thermochemistry calculated from first-principles methods such as Density Functional Theory (DFT). Before this can be used reliably, it needs to be systematically benchmarked. Although various studies have examined the accuracy of DFT from an energetic point of view, few studies have considered its accuracy in predicting the temperature-dependent equilibrium composition. In this work, we collected 117 molecules for which experimental thermochemical data were available. From these, we constructed 2648 reactions. These experimentally constructed reactions were then benchmarked against DFT for 6 exchange-correlation functionals and 3 quality of basis sets. We show that, in reactions that do not show temperature dependence in the equilibrium composition below 1000 K, over 90% are predicted correctly. Temperature-dependent equilibrium compositions typically demonstrate correct qualitative behavior. Lastly, we show that the errors are equally caused by errors in the vibrational spectrum and the DFT electronic ground state energy.

4.
J Chem Inf Model ; 63(5): 1454-1461, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36864757

RESUMO

Predicting chemical activation energies is one of the longstanding and important challenges in computational chemistry. Recent advances have shown that machine learning can be used to create tools to predict them. Such tools can significantly decrease the computational cost for these predictions compared to traditional methods, which require an optimal path search along a high-dimensional potential energy surface. To enable this new route, we need both large and accurate datasets and a compact yet complete description of the reactions. Although data for chemical reactions is becoming increasingly available, the key step of encoding the reaction as an efficient descriptor remains a big challenge. In this paper, we demonstrate that including electronic energy levels in the description of the reaction significantly improves the prediction accuracy and transferability. Feature importance analysis further demonstrates that electronic energy levels have a higher importance than some structural information and typically require less space in the reaction encoding vector. In general, we observe that the results of the feature importance analysis relate well to the domain knowledge of fundamental chemical principles. This work can help to build better chemical reaction encodings for machine learning and thus improve the predictions of machine learning models for reaction activation energies. These models could ultimately be used to recognize reaction limiting steps in large reaction systems, allowing to account for bottlenecks at the design stage.


Assuntos
Eletrônica , Aprendizado de Máquina
5.
J Phys Chem Lett ; 13(37): 8666-8672, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36084286

RESUMO

We propose a simple additive approach to simulate X-ray photoelectron spectra (XPS) of macromolecules based on the GW method. Single-shot GW (G0W0) is a promising technique to compute accurate core-electron binding energies (BEs). However, its application to large molecules is still unfeasible. To circumvent the computational cost of G0W0, we break the macromolecule into tractable building blocks, such as isolated monomers, and sum up the theoretical spectra of each component, weighted by their molar ratio. In this work, we provide a first proof of concept by applying the method to four test polymers and one copolymer and show that it leads to an excellent agreement with experiments. The method could be used to retrieve the composition of unknown materials and study chemical reactions, by comparing the simulated spectra with experimental ones.

6.
Front Chem ; 9: 749779, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004607

RESUMO

We use the GW100 benchmark set to systematically judge the quality of several perturbation theories against high-level quantum chemistry methods. First of all, we revisit the reference CCSD(T) ionization potentials for this popular benchmark set and establish a revised set of CCSD(T) results. Then, for all of these 100 molecules, we calculate the HOMO energy within second and third-order perturbation theory (PT2 and PT3), and, GW as post-Hartree-Fock methods. We found GW to be the most accurate of these three approximations for the ionization potential, by far. Going beyond GW by adding more diagrams is a tedious and dangerous activity: We tried to complement GW with second-order exchange (SOX), with second-order screened exchange (SOSEX), with interacting electron-hole pairs (W TDHF), and with a GW density-matrix (γ GW ). Only the γ GW result has a positive impact. Finally using an improved hybrid functional for the non-interacting Green's function, considering it as a cheap way to approximate self-consistency, the accuracy of the simplest GW approximation improves even more. We conclude that GW is a miracle: Its subtle balance makes GW both accurate and fast.

7.
J Chem Phys ; 152(12): 124102, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32241118

RESUMO

abinit is probably the first electronic-structure package to have been released under an open-source license about 20 years ago. It implements density functional theory, density-functional perturbation theory (DFPT), many-body perturbation theory (GW approximation and Bethe-Salpeter equation), and more specific or advanced formalisms, such as dynamical mean-field theory (DMFT) and the "temperature-dependent effective potential" approach for anharmonic effects. Relying on planewaves for the representation of wavefunctions, density, and other space-dependent quantities, with pseudopotentials or projector-augmented waves (PAWs), it is well suited for the study of periodic materials, although nanostructures and molecules can be treated with the supercell technique. The present article starts with a brief description of the project, a summary of the theories upon which abinit relies, and a list of the associated capabilities. It then focuses on selected capabilities that might not be present in the majority of electronic structure packages either among planewave codes or, in general, treatment of strongly correlated materials using DMFT; materials under finite electric fields; properties at nuclei (electric field gradient, Mössbauer shifts, and orbital magnetization); positron annihilation; Raman intensities and electro-optic effect; and DFPT calculations of response to strain perturbation (elastic constants and piezoelectricity), spatial dispersion (flexoelectricity), electronic mobility, temperature dependence of the gap, and spin-magnetic-field perturbation. The abinit DFPT implementation is very general, including systems with van der Waals interaction or with noncollinear magnetism. Community projects are also described: generation of pseudopotential and PAW datasets, high-throughput calculations (databases of phonon band structure, second-harmonic generation, and GW computations of bandgaps), and the library libpaw. abinit has strong links with many other software projects that are briefly mentioned.

8.
J Chem Theory Comput ; 14(9): 4856-4869, 2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30092140

RESUMO

The GW method is routinely used to predict charged valence excitations in molecules and solids. However, the numerical techniques employed in the most efficient GW algorithms break down when computing core excitations as measured by X-ray photoelectron spectroscopy (XPS). We present a full-frequency approach on the real axis using a localized basis to enable the treatment of core levels in GW. Our scheme is based on the contour deformation technique and allows for a precise and efficient calculation of the self-energy, which has a complicated pole structure for core states. The accuracy of our method is validated by comparing to a fully analytic GW algorithm. Furthermore, we report the obtained core-level binding energies and their deviations from experiment for a set of small molecules and large polycyclic hydrocarbons. The core-level excitations computed with our GW approach deviate by less than 0.5 eV from the experimental reference. For comparison, we also report core-level binding energies calculated by density functional theory (DFT)-based approaches such as the popular delta self-consistent field (ΔSCF) method. Our implementation is optimized for massively parallel execution, enabling the computation of systems up to 100 atoms.

9.
Sci Data ; 5: 180065, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29714723

RESUMO

The knowledge of the vibrational properties of a material is of key importance to understand physical phenomena such as thermal conductivity, superconductivity, and ferroelectricity among others. However, detailed experimental phonon spectra are available only for a limited number of materials, which hinders the large-scale analysis of vibrational properties and their derived quantities. In this work, we perform ab initio calculations of the full phonon dispersion and vibrational density of states for 1521 semiconductor compounds in the harmonic approximation based on density functional perturbation theory. The data is collected along with derived dielectric and thermodynamic properties. We present the procedure used to obtain the results, the details of the provided database and a validation based on the comparison with experimental data.

10.
J Chem Theory Comput ; 14(2): 877-883, 2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29320628

RESUMO

Here we present a systematic study on the performance of different GW approaches: G0W0, G0W0 with linearized quasiparticle equation (lin-G0W0), and quasiparticle self-consistent GW (qsGW), in predicting core level binding energies (CLBEs) on a series of representative molecules comparing to Kohn-Sham (KS) orbital energy-based results. KS orbital energies obtained using the PBE functional are 20-30 eV lower in energy than experimental values obtained from X-ray photoemission spectroscopy (XPS), showing that any Koopmans-like interpretation of KS core level orbitals fails dramatically. Results from qsGW lead to CLBEs that are closer to experimental values from XPS, yet too large. For the qsGW method, the mean absolute error is about 2 eV, an order of magnitude better than plain KS PBE orbital energies and quite close to predictions from ΔSCF calculations with the same functional, which are accurate within ∼1 eV. Smaller errors of ∼0.6 eV are found for qsGW CLBE shifts, again similar to those obtained using ΔSCF PBE. The computationally more affordable G0W0 approximation leads to results less accurate than qsGW, with an error of ∼9 eV for CLBEs and ∼0.9 eV for their shifts. Interestingly, starting G0W0 from PBE0 reduces this error to ∼4 eV with a slight improvement on the shifts as well (∼0.4 eV). The validity of the G0W0 results is however questionable since only linearized quasiparticle equation results can be obtained. The present results pave the way to estimate CLBEs in periodic systems where ΔSCF calculations are not straightforward although further improvement is clearly needed.

11.
J Chem Theory Comput ; 13(8): 3814-3828, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28628314

RESUMO

We study the vertical and adiabatic ionization potentials and electron affinities of bare and hydroxylated TiO2 nanoclusters, as well as their fundamental gap and exciton binding energy values, to understand how the clusters' electronic properties change as a function of size and hydroxylation. In addition, we have employed a range of many-body methods; including G0W0, qsGW, EA/IP-EOM-CCSD, and DFT (B3LYP, PBE), to compare the performance and predictions of the different classes of methods. We demonstrate that, for bare clusters, all many-body methods predict the same trend with cluster size. The highest occupied and lowest unoccupied DFT orbitals follow the same trends as the electron affinity and ionization potentials predicted by the many-body methods, but are generally far too shallow and deep respectively in absolute terms. In contrast, the ΔDFT method is found to yield values in the correct energy window. However, its predictions depend upon the functional used and do not necessarily follow trends based on the many-body methods. Adiabatic potentials are predicted to be similar to their vertical counterparts and holes found to be trapped more strongly than excess electrons. The effect of hydroxylation on the clusters is to open up both the optical and fundamental gap. Finally, a simple microscopic explanation for the observed trends with cluster size and upon hydroxylation is proposed in terms of the onsite electrostatic potential.

12.
J Chem Theory Comput ; 13(2): 635-648, 2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28094981

RESUMO

In a recent work, van Setten and co-workers have presented a carefully converged G0W0 study of 100 closed shell molecules [ J. Chem. Theory Comput. 2015 , 11 , 5665 - 5687 ]. For two different codes they found excellent agreement to within a few 10 meV if identical Gaussian basis sets were used. We inspect the same set of molecules using the projector augmented wave method and the Vienna ab initio simulation package (VASP). For the ionization potential, the basis set extrapolated plane wave results agree very well with the Gaussian basis sets, often reaching better than 50 meV agreement. In order to achieve this agreement, we correct for finite basis set errors as well as errors introduced by periodically repeated images. For positive electron affinities differences between Gaussian basis sets and VASP are slightly larger. We attribute this to larger basis set extrapolation errors for the Gaussian basis sets. For quasi particle (QP) resonances above the vacuum level, differences between VASP and Gaussian basis sets are, however, found to be substantial. This is tentatively explained by insufficient basis set convergence of the Gaussian type orbital calculations as exemplified for selected test cases.

13.
J Chem Theory Comput ; 12(10): 5076-5087, 2016 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-27631585

RESUMO

For the recent GW100 test set of molecular ionization energies, we present a comprehensive assessment of different GW methodologies: fully self-consistent GW (scGW), quasiparticle self-consistent GW (qsGW), partially self-consistent GW0 (scGW0), perturbative GW (G0W0), and optimized G0W0 based on the minimization of the deviation from the straight-line error (DSLE-min GW). We compare our GW calculations to coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] reference data for GW100. We find scGW and qsGW ionization energies in excellent agreement with CCSD(T), with discrepancies typically smaller than 0.3 eV (scGW) and 0.2 eV (qsGW), respectively. For scGW0 and G0W0 the deviation from CCSD(T) is strongly dependent on the starting point. We further relate the discrepancy between the GW ionization energies and CCSD(T) to the deviation from straight line error (DSLE). In DSLE-minimized GW calculations, the DSLE is significantly reduced, yielding a systematic improvement in the description of the ionization energies.

14.
J Chem Theory Comput ; 11(12): 5665-87, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26642984

RESUMO

We present the GW100 set. GW100 is a benchmark set of the ionization potentials and electron affinities of 100 molecules computed with the GW method using three independent GW codes and different GW methodologies. The quasi-particle energies of the highest-occupied molecular orbitals (HOMO) and lowest-unoccupied molecular orbitals (LUMO) are calculated for the GW100 set at the G0W0@PBE level using the software packages TURBOMOLE, FHI-aims, and BerkeleyGW. The use of these three codes allows for a quantitative comparison of the type of basis set (plane wave or local orbital) and handling of unoccupied states, the treatment of core and valence electrons (all electron or pseudopotentials), the treatment of the frequency dependence of the self-energy (full frequency or more approximate plasmon-pole models), and the algorithm for solving the quasi-particle equation. Primary results include reference values for future benchmarks, best practices for convergence within a particular approach, and average error bars for the most common approximations.

15.
J Phys Condens Matter ; 22(7): 074208, 2010 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-21386386

RESUMO

Mixing Mg with Ti leads to a hydride Mg(x)Ti((1 - x))H(2) with markedly improved (de)hydrogenation properties for x ≤ 0.8, as compared to MgH(2). Optically thin films of Mg(x)Ti((1 - x))H(2) have a black appearance, which is remarkable for a hydride material. In this paper we study the structure and stability of Mg(x)Ti((1 - x))H(2), x = 0-1 by first-principles calculations at the level of density functional theory. We give evidence for a fluorite to rutile phase transition at a critical composition x(c) = 0.8-0.9, which correlates with the experimentally observed sharp decrease in (de)hydrogenation rates at this composition. The densities of states of Mg(x)Ti((1 - x))H(2) have a peak at the Fermi level, composed of Ti d states. Disorder in the positions of the Ti atoms easily destroys the metallic plasma, however, which suppresses the optical reflection. Interband transitions result in a featureless optical absorption over a large energy range, causing the black appearance of Mg(x)Ti((1 - x))H(2).


Assuntos
Hidrogênio/química , Magnésio/química , Modelos Químicos , Titânio/química , Transição de Fase , Propriedades de Superfície
16.
J Am Chem Soc ; 129(9): 2458-65, 2007 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-17295480

RESUMO

Its low weight, high melting point, and large degree of hardness make elemental boron a technologically interesting material. The large number of allotropes, mostly containing over a hundred atoms in the unit cell, and their difficult characterization challenge both experimentalists and theoreticians. Even the ground state of this element is still under discussion. For over 30 years, scientists have attempted to determine the relative stability of alpha- and beta-rhombohedral boron. We use density functional calculations in the generalized gradient approximation to study a broad range of possible beta-rhombohedral structures containing interstitial atoms and partially occupied sites within a 105 atoms framework. The two most stable structures are practically degenerate in energy and semiconducting. One contains the experimental 320 atoms in the hexagonal unit cell, and the other contains 106 atoms in the triclinic unit cell. When populated with the experimental 320 electrons, the 106 atom structure exhibits a band gap of 1.4 eV and an in-gap hole trap at 0.35 eV above the valence band, consistent with known experiments. The total energy of these two structures is 23 meV/B lower than the original 105 atom framework, but it is still 1 meV/B above the alpha phase. Adding zero point energies finally makes the beta phase the ground state of elemental boron by 3 meV/B. At finite temperatures, the difference becomes even larger.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...