Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Pharmacol Drug Dev ; 11(1): 112-122, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34859612

RESUMO

GLPG1972/S201086 is a disintegrin and metalloproteinase with thrombospondin motif-5 (ADAMTS-5) inhibitor in development as an osteoarthritis disease-modifying therapy. We report the safety, tolerability, pharmacokinetics, and pharmacodynamics (turnover of plasma/serum ARGS-aggrecan neoepitope fragments [ARGS]) of GLPG1972 in 3 randomized, double-blind, placebo-controlled phase 1 trials. Study A, a first-in-human trial of single (≤2100 mg [fasted] and 300 mg [fed]) and multiple (≤1050 mg once daily [fed]; 14 days) ascending oral (solution) doses, investigated GLPG1972 in healthy men (N = 41; NCT02612246). Study B investigated multiple ascending oral (tablet) doses of GLPG1972 (≤300 mg once daily [fed]; 4 weeks) in male and female participants with osteoarthritis (N = 30; NCT03311009). Study C investigated single (Japanese: ≤1500 mg; White: 300 mg [fasted]) and multiple (Japanese, ≤1050 mg once daily; White, 300 mg once daily [fed]; 14 days) ascending oral (tablet) doses of GLPG1972 in healthy Japanese and White men (N = 88). The pharmacokinetic profile of GLPG1972 was similar between healthy participants and participants with osteoarthritis, with low to moderate interindividual variability. GLPG1972 was rapidly absorbed (median time to maximum concentration, 4 hours), and eliminated with a mean apparent terminal elimination half-life of ≈10 hours. Steady state was achieved within 2 days of dosing, with minimal accumulation. Steady-state plasma exposure after 300 mg of GLPG1972 showed no or minor differences between populations. Area under the plasma concentration-time curve (56.8-67.6 µg · h/mL) and time to maximum concentration (4 hours) were similar between studies. Urinary excretion of GLPG1972 (24 hours) was low (<11%). Multiple dosing significantly reduced ARGS levels vs baseline at all time points for all doses vs placebo. GLPG1972 was generally well tolerated at all doses.


Assuntos
Proteína ADAMTS5 , Osteoartrite do Joelho , Proteína ADAMTS5/antagonistas & inibidores , Administração Oral , Área Sob a Curva , Ensaios Clínicos Fase I como Assunto , Método Duplo-Cego , Feminino , Voluntários Saudáveis , Humanos , Masculino , Osteoartrite do Joelho/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto
2.
J Med Chem ; 64(6): 2937-2952, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33719441

RESUMO

There are currently no approved disease-modifying osteoarthritis (OA) drugs (DMOADs). The aggrecanase ADAMTS-5 is key in the degradation of human aggrecan (AGC), a component of cartilage. Therefore, ADAMTS-5 is a promising target for the identification of DMOADs. We describe the discovery of GLPG1972/S201086, a potent and selective ADAMTS-5 inhibitor obtained by optimization of a promising hydantoin series following an HTS. Biochemical activity against rat and human ADAMTS-5 was assessed via a fluorescence-based assay. ADAMTS-5 inhibitory activity was confirmed with human aggrecan using an AGC ELISA. The most promising compounds were selected based on reduction of glycosaminoglycan release after interleukin-1 stimulation in mouse cartilage explants and led to the discovery of GLPG1972/S201086. The anticatabolic activity was confirmed in mouse cartilage explants (IC50 < 1.5 µM). The cocrystal structure of GLPG1972/S201086 with human recombinant ADAMTS-5 is discussed. GLPG1972/S201086 has been investigated in a phase 2 clinical study in patients with knee OA (NCT03595618).


Assuntos
Proteína ADAMTS5/antagonistas & inibidores , Osteoartrite/tratamento farmacológico , Proteína ADAMTS5/metabolismo , Animais , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Cães , Glicosaminoglicanos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Osteoartrite/metabolismo , Ratos
3.
Osteoarthr Cartil Open ; 3(4): 100209, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36474770

RESUMO

Objective: This study aims to assess the efficacy of the anticatabolic 'a disintegrin and metalloproteinase with thrombospondin motif-5' (ADAMTS-5) inhibitor, S201086/GLPG1972, in slowing cartilage loss in participants with knee osteoarthritis (OA). Design: ROCCELLA (NCT03595618) is a randomized, double-blind, placebo-controlled, parallel-group, dose-ranging, phase 2 trial. We plan to enrol a total of 852 participants with knee OA across 12 countries. Participants will be randomized 1:1:1:1 to receive 75, 150 or 300 â€‹mg S201086/GLPG1972, or placebo orally, once daily for 52 weeks. Eligible participants will be aged 40-75 years and have predominantly medial knee OA with centrally read Kellgren-Lawrence grade 2 or 3, OARSI atlas medial femorotibial joint space narrowing grade 1 or 2, and consistent moderate to severe baseline pain. The primary endpoint will be the change from baseline to week 52 in magnetic resonance imaging-assessed central medial femorotibial compartment cartilage thickness. Secondary endpoints will include other structural outcomes, and patient-reported outcomes, as well as safety and pharmacokinetic assessments. Study sites will be assessed for eligibility based on factors including imaging quality, and images will be centrally read and quality checked. Conclusions: Using strict inclusion criteria and leading imaging techniques with stringent quality controls, the ROCCELLA trial will evaluate the efficacy of S201086/GLPG1972 in slowing cartilage loss in participants with knee OA. The selected eligibility criteria should enrich for participants with OA who experience sufficient cartilage loss to allow detection of a substantial treatment effect.

4.
J Med Chem ; 63(22): 13526-13545, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-32902984

RESUMO

GPR84 is a medium chain free fatty acid-binding G-protein-coupled receptor associated with inflammatory and fibrotic diseases. As the only reported antagonist of GPR84 (PBI-4050) that displays relatively low potency and selectivity, a clear need exists for an improved modulator. Structural optimization of GPR84 antagonist hit 1, identified through high-throughput screening, led to the identification of potent and selective GPR84 inhibitor GLPG1205 (36). Compared with the initial hit, 36 showed improved potency in a guanosine 5'-O-[γ-thio]triphosphate assay, exhibited metabolic stability, and lacked activity against phosphodiesterase-4. This novel pharmacological tool allowed investigation of the therapeutic potential of GPR84 inhibition. At once-daily doses of 3 and 10 mg/kg, GLPG1205 reduced disease activity index score and neutrophil infiltration in a mouse dextran sodium sulfate-induced chronic inflammatory bowel disease model, with efficacy similar to positive-control compound sulfasalazine. The drug discovery steps leading to GLPG1205 identification, currently under phase II clinical investigation, are described herein.


Assuntos
Descoberta de Drogas/métodos , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo , Acetatos/química , Acetatos/farmacologia , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Células CACO-2 , Células Cultivadas , Cães , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Ratos , Ratos Sprague-Dawley
5.
J Oncol ; 2020: 9342732, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32184826

RESUMO

Erythropoietin-producing hepatocellular receptors (Eph) promote the onset and sustain the progression of cancers such as colorectal cancer (CRC), in which the A2 subtype of Eph receptor expression has been shown to correlate with a poor prognosis and has been identified as a promising therapeutic target. Herein, we investigated, in vitro and in vivo, the effects of treatment with GLPG1790, a potent pan-Eph inhibitor. The small molecule has selective activity against the EphA2 isoform in human HCT116 and HCT15 CRC cell lines expressing a constitutively active form of RAS concurrently with a wild-type or mutant form of p53, respectively. GLPG1790 reduced EPHA2 phosphorylation/activation and induced G1/S cell-cycle growth arrest by downregulating the expression of cyclin E and PCNA, while upregulating p21Waf1/Cip1 and p27Cip/Kip. The inhibition of ephrin signaling induced quiescence in HCT15 and senescence in HCT116 cells. While investigating the role of CRC-related, pro-oncogenic p53 and RAS pathways, we found that GLPG1790 upregulated p53 expression and that silencing p53 or inhibiting RAS (human rat sarcoma)/ERKs (extracellular signal-regulated kinase) signaling restrained the ability of GLPG1790 to induce senescence in HCT116 cells. On the other hand, HCT15 silencing of p53 predisposed cells to GLPG1790-induced senescence, whilst no effects of ERK inhibition were observed. Finally, GLPG1790 hindered the epithelial-mesenchymal transition, reduced the migratory capacities of CRC, and affected tumor formation in xenograft models in vivo more efficiently using HCT116 than HCT15 for xenografts. Taken together, our data suggest the therapeutic potential of GLPG1790 as a signal transduction-based therapeutic strategy in to treat CRC.

6.
Clin Pharmacokinet ; 58(9): 1175-1191, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30953319

RESUMO

BACKGROUND AND OBJECTIVES: GLPG1690 is an autotaxin inhibitor in development for the treatment of idiopathic pulmonary fibrosis. Several publications suggested a role of autotaxin in the control of disease-affected lung function and of lysophosphatidic acid in lung remodeling processes. The aim of the current article was to describe the exposure-response relationship of GLPG1690 and further develop a rational basis to support dose selection for clinical trials in patients with idiopathic pulmonary fibrosis. METHODS: Two trials were conducted in healthy volunteers: in the first trial, GLPG1690 was administered as single doses from 20 mg up to 1500 mg, and subsequently in multiple daily doses of 300-1000 mg. In a second trial, the interaction of rifampin with 600 mg of GLPG1690 was evaluated. A third trial was conducted in patients with idiopathic pulmonary fibrosis administered 600 mg of GLPG1690 once daily for 12 weeks. The exposure-response (lysophosphatidic acid C18:2 reduction) relationship of GLPG1690 was first described using non-linear mixed-effects modeling and the model was subsequently deployed to simulate a lysophosphatidic acid C18:2 reduction as a biomarker of autotaxin inhibition in the dose range from 50 to 1000 mg once or twice daily. RESULTS: The population pharmacokinetics and lysophosphatidic acid C18:2 response of GLPG1690 were adequately described by a combined population pharmacokinetic and pharmacokinetic/pharmacodynamic model. Dose, formulation, rifampin co-administration, health status (healthy volunteer vs. patient with idiopathic pulmonary fibrosis), and baseline lysophosphatidic acid C18:2 were identified as covariates in the model. The effect of dose on systemic clearance indicated that GLPG1690 followed a more than dose-proportional increase in exposure over the simulated dose range of 50-1000 mg once daily. Model-based simulations showed reductions in lysophosphatidic acid C18:2 of at least 80% with doses greater or equal to 200 mg once daily. CONCLUSION: Based on these results, 200 and 600 mg once-daily doses were selected for future clinical trials in patients with idiopathic pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática/tratamento farmacológico , Imidazóis/farmacocinética , Lisofosfolipídeos/farmacocinética , Diester Fosfórico Hidrolases/efeitos dos fármacos , Pirimidinas/farmacocinética , Adulto , Idoso , Antibióticos Antituberculose/administração & dosagem , Biomarcadores Farmacológicos/sangue , Estudos de Casos e Controles , Relação Dose-Resposta a Droga , Interações Medicamentosas , Feminino , Voluntários Saudáveis , Humanos , Fibrose Pulmonar Idiopática/fisiopatologia , Imidazóis/administração & dosagem , Imidazóis/farmacologia , Lisofosfolipídeos/sangue , Lisofosfolipídeos/farmacologia , Masculino , Pessoa de Meia-Idade , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , Rifampina/administração & dosagem
7.
J Clin Pharmacol ; 59(10): 1366-1378, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31012984

RESUMO

GLPG1690 is a novel autotaxin inhibitor in development for the treatment of idiopathic pulmonary fibrosis (IPF). We report phase 1 studies investigating the safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) of GLPG1690 in healthy subjects. We performed a first-in-human randomized, double-blind, placebo-controlled trial of single (20, 60, 150, 300, 600, 1000, 1500 mg) and multiple (14 days: 150 mg twice daily; 600 and 1000 mg once daily) ascending oral doses of GLPG1690 (NCT02179502), and a randomized, open-label, crossover relative bioavailability study to compare the PK of tablet and capsule formulations of GLPG1690 600 mg and to assess the effect of food on PK of the tablet formulation (NCT03143712). Forty and 13 subjects were randomized in the first-in-human and relative bioavailability studies, respectively. GLPG1690 was well tolerated, with no dose-limiting toxicity at all single and multiple doses. GLPG1690 was rapidly absorbed and eliminated, with a median tmax and mean t1/2 of approximately 2 and 5 hours, respectively. GLPG1690 exposure increased with increasing dose (mean Cmax , 0.09-19.01 µg/mL; mean AUC0-inf , 0.501-168 µg·h/mL, following single doses of GLPG1690 20-1500 mg). PD response, evidenced by rapid reduction in plasma lysophosphatidic acid (LPA) C18:2 levels, increased with increasing GLPG1690 plasma levels, plateauing at approximately 80% reduction in LPA C18:2 at around 0.6 µg/mL GLPG1690. Tablet and capsule formulations had similar PK profiles, and no clinically significant food effect was observed when comparing tablets taken in fed and fasted states. The safety, tolerability, and PK/PD profiles of GLPG1690 support continued clinical development for IPF.


Assuntos
Imidazóis/efeitos adversos , Imidazóis/farmacocinética , Diester Fosfórico Hidrolases/metabolismo , Pirimidinas/efeitos adversos , Pirimidinas/farmacocinética , Administração Oral , Adulto , Área Sob a Curva , Disponibilidade Biológica , Estudos Cross-Over , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Interações Alimento-Droga/fisiologia , Voluntários Saudáveis , Humanos , Imidazóis/uso terapêutico , Masculino , Pessoa de Meia-Idade , Pirimidinas/uso terapêutico , Comprimidos/efeitos adversos , Comprimidos/farmacocinética , Comprimidos/uso terapêutico , Adulto Jovem
8.
Cancers (Basel) ; 11(3)2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30871240

RESUMO

Therapies against glioblastoma (GBM) show a high percentage of failure associated with the survival of glioma stem cells (GSCs) that repopulate treated tumours. Forced differentiation of GSCs is a promising new approach in cancer treatment. Erythropoietin-producing hepatocellular (Eph) receptors drive tumourigenicity and stemness in GBM. We tested GLPG1790, a first small molecule with inhibition activity versus inhibitor of various Eph receptor kinases, in preclinical GBM models using in vitro and in vivo assays. GLPG1790 rapidly and persistently inhibited Ephrin-A1-mediated phosphorylation of Tyr588 and Ser897, completely blocking EphA2 receptor signalling. Similarly, this compound blocks the ephrin B2-mediated EphA3 and EphB4 tyrosine phosphorylation. This resulted in anti-glioma effects. GLPG1790 down-modulated the expression of mesenchymal markers CD44, Sox2, nestin, octamer-binding transcription factor 3/4 (Oct3/4), Nanog, CD90, and CD105, and up-regulated that of glial fibrillary acidic protein (GFAP) and pro-neural/neuronal markers, ßIII tubulin, and neurofilaments. GLPG1790 reduced tumour growth in vivo. These effects were larger compared to radiation therapy (RT; U251 and T98G xenografts) and smaller than those of temozolomide (TMZ; U251 and U87MG cell models). By contrast, GLPG1790 showed effects that were higher than Radiotherapy (RT) and similar to Temozolomide (TMZ) in orthotopic U87MG and CSCs-5 models in terms of disease-free survival (DFS) and overall survival (OS). Further experiments were necessary to study possible interactions with radio- and chemotherapy. GLPG1790 demonstrated anti-tumor effects regulating both the differentiative status of Glioma Initiating Cells (GICs) and the quality of tumor microenvironment, translating into efficacy in aggressive GBM mouse models. Significant common molecular targets to radio and chemo therapy supported the combination use of GLPG1790 in ameliorative antiglioma therapy.

9.
Lancet Respir Med ; 6(8): 627-635, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29792287

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) causes irreversible loss of lung function. People with IPF have increased concentrations of autotaxin in lung tissue and lysophosphatidic acid (LPA) in bronchoalveolar lavage fluid and exhaled condensate. GLPG1690 (Galapagos, Mechelen, Belgium) is a novel, potent, selective autotaxin inhibitor with good oral exposure. We explored the effects of GLPG1690 in patients with IPF. METHODS: This was a randomised, double-blind, placebo-controlled phase 2a study done in 17 centres in Italy, Ukraine and the UK. Eligible patients were aged 40 years or older, non-smokers, not taking pirfenidone or nintedanib, and had a centrally confirmed diagnosis of IPF. We used a computer-generated randomisation schedule to assign patients 1:3 to receive placebo or 600 mg oral GLPG1690 once daily for 12 weeks. The primary outcomes were safety (adverse events), tolerability, pharmacokinetics, and pharmacodynamics. Spirometry was assessed as a secondary outcome. This trial is registered with ClinicalTrials.gov, number NCT02738801. FINDINGS: Between March 24, 2016, and May 2, 2017, 72 patients were screened., of whom 49 were ineligible and 23 were enrolled in eight centres (six in Ukraine and two in the UK). Six patients were assigned to receive placebo and 17 to receive GLPG1690. 20 patients completed the study after one in each group discontinued because of adverse events and one in the GLPG1690 group withdrew consent. Four (67%) patients in the placebo group and 11 (65%) in the GLPG1690 group had treatment-emergent adverse events, most of which were mild to moderate. The most frequent events in the GLPG1690 group were infections and infestations (ten events) and respiratory, thoracic, and mediastinal disorders (eight events) with no apparent differences from the placebo group. Two (12%) patients in the GLPG1690 group had events that were judged to be related to treatment. Serious adverse events were seen in two patients in the placebo group (one had a urinary tract infection, acute kidney injury, and lower respiratory tract infection and the other had atrioventricular block, second degree) and one in the GLPG1690 group (cholangiocarcinoma that resulted in discontinuation of treatment). No patients died. The pharmacokinetic and pharmacodynamic profiles of GLPG1690 were similar to those previously shown in healthy controls. LPA C18:2 concentrations in plasma were consistently decreased. Mean change from baseline in forced vital capacity at week 12 was 25 mL (95% CI -75 to 124) for GLPG1690 and -70 mL (-208 to 68 mL) for placebo. INTERPRETATION: Our findings support further development of GLPG1690 as a novel treatment for IPF. FUNDING: Galapagos.


Assuntos
Fibrose Pulmonar Idiopática/tratamento farmacológico , Imidazóis/administração & dosagem , Imidazóis/farmacologia , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , Idoso , Biomarcadores/sangue , Método Duplo-Cego , Feminino , Humanos , Fibrose Pulmonar Idiopática/sangue , Imidazóis/efeitos adversos , Imidazóis/farmacocinética , Masculino , Pessoa de Meia-Idade , Diester Fosfórico Hidrolases/sangue , Pirimidinas/efeitos adversos , Pirimidinas/farmacocinética
11.
J Med Chem ; 61(4): 1425-1435, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29148763

RESUMO

Cystic fibrosis (CF) is caused by mutations in the gene for the cystic fibrosis transmembrane conductance regulator (CFTR). With the discovery of Ivacaftor and Orkambi, it has been shown that CFTR function can be partially restored by administering one or more small molecules. These molecules aim at either enhancing the amount of CFTR on the cell surface (correctors) or at improving the gating function of the CFTR channel (potentiators). Here we describe the discovery of a novel potentiator GLPG1837, which shows enhanced efficacy on CFTR mutants harboring class III mutations compared to Ivacaftor, the first marketed potentiator. The optimization of potency, efficacy, and pharmacokinetic profile will be described.


Assuntos
Agonistas dos Canais de Cloreto/química , Fibrose Cística/tratamento farmacológico , Descoberta de Drogas , Proteínas Mutantes/efeitos dos fármacos , Aminofenóis/farmacocinética , Animais , Agonistas dos Canais de Cloreto/farmacocinética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Mutação , Pirazóis/química , Pirazóis/farmacocinética , Quinolonas/farmacocinética , Ratos , Relação Estrutura-Atividade
12.
J Med Chem ; 60(17): 7371-7392, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28731719

RESUMO

Autotaxin (ATX) is a secreted enzyme playing a major role in the production of lysophosphatidic acid (LPA) in blood through hydrolysis of lysophosphatidyl choline (LPC). The ATX-LPA signaling axis arouses a high interest in the drug discovery industry as it has been implicated in several diseases including cancer, fibrotic diseases, and inflammation, among others. An imidazo[1,2-a]pyridine series of ATX inhibitors was identified out of a high-throughput screening (HTS). A cocrystal structure with one of these compounds and ATX revealed a novel binding mode with occupancy of the hydrophobic pocket and channel of ATX but no interaction with zinc ions of the catalytic site. Exploration of the structure-activity relationship led to compounds displaying high activity in biochemical and plasma assays, exemplified by compound 40. Compound 40 was also able to decrease the plasma LPA levels upon oral administration to rats.


Assuntos
Imidazóis/química , Imidazóis/farmacologia , Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Piridinas/química , Piridinas/farmacologia , Animais , Humanos , Imidazóis/farmacocinética , Lisofosfatidilcolinas/metabolismo , Lisofosfolipídeos/metabolismo , Masculino , Camundongos , Simulação de Acoplamento Molecular , Inibidores de Fosfodiesterase/farmacocinética , Diester Fosfórico Hidrolases/química , Piridinas/farmacocinética , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
13.
J Med Chem ; 60(9): 3580-3590, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28414242

RESUMO

Autotaxin is a circulating enzyme with a major role in the production of lysophosphatic acid (LPA) species in blood. A role for the autotaxin/LPA axis has been suggested in many disease areas including pulmonary fibrosis. Structural modifications of the known autotaxin inhibitor lead compound 1, to attenuate hERG inhibition, remove CYP3A4 time-dependent inhibition, and improve pharmacokinetic properties, led to the identification of clinical candidate GLPG1690 (11). Compound 11 was able to cause a sustained reduction of LPA levels in plasma in vivo and was shown to be efficacious in a bleomycin-induced pulmonary fibrosis model in mice and in reducing extracellular matrix deposition in the lung while also reducing LPA 18:2 content in bronchoalveolar lavage fluid. Compound 11 is currently being evaluated in an exploratory phase 2a study in idiopathic pulmonary fibrosis patients.


Assuntos
Fibrose Pulmonar Idiopática/tratamento farmacológico , Imidazóis/uso terapêutico , Diester Fosfórico Hidrolases/efeitos dos fármacos , Pirimidinas/uso terapêutico , Animais , Humanos , Imidazóis/farmacologia , Camundongos , Camundongos Knockout , Diester Fosfórico Hidrolases/genética , Pirimidinas/farmacologia , Ratos
14.
J Med Chem ; 57(23): 10044-57, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25380412

RESUMO

FFA2, also called GPR43, is a G-protein coupled receptor for short chain fatty acids which is involved in the mediation of inflammatory responses. A class of azetidines was developed as potent FFA2 antagonists. Multiparametric optimization of early hits with moderate potency and suboptimal ADME properties led to the identification of several compounds with nanomolar potency on the receptor combined with excellent pharmacokinetic (PK) parameters. The most advanced compound, 4-[[(R)-1-(benzo[b]thiophene-3-carbonyl)-2-methyl-azetidine-2-carbonyl]-(3-chloro-benzyl)-amino]-butyric acid 99 (GLPG0974), is able to inhibit acetate-induced neutrophil migration strongly in vitro and demonstrated ability to inhibit a neutrophil-based pharmacodynamic (PD) marker, CD11b activation-specific epitope [AE], in a human whole blood assay. All together, these data supported the progression of 99 toward next phases, becoming the first FFA2 antagonist to reach the clinic.


Assuntos
Anti-Inflamatórios não Esteroides/metabolismo , Azetidinas/metabolismo , Butiratos/síntese química , Receptores de Superfície Celular/antagonistas & inibidores , Tiofenos/síntese química , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/farmacocinética , Anti-Inflamatórios não Esteroides/farmacologia , Azetidinas/síntese química , Azetidinas/farmacocinética , Azetidinas/farmacologia , Butiratos/farmacocinética , Butiratos/farmacologia , Humanos , Doenças do Sistema Imunitário , Concentração Inibidora 50 , Transtornos Leucocíticos , Camundongos , Microssomos Hepáticos/metabolismo , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Tiofenos/farmacocinética , Tiofenos/farmacologia
15.
J Med Chem ; 57(22): 9323-42, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25369270

RESUMO

Janus kinases (JAK1, JAK2, JAK3, and TYK2) are involved in the signaling of multiple cytokines important in cellular function. Blockade of the JAK-STAT pathway with a small molecule has been shown to provide therapeutic immunomodulation. Having identified JAK1 as a possible new target for arthritis at Galapagos, the compound library was screened against JAK1, resulting in the identification of a triazolopyridine-based series of inhibitors represented by 3. Optimization within this chemical series led to identification of GLPG0634 (65, filgotinib), a selective JAK1 inhibitor currently in phase 2B development for RA and phase 2A development for Crohn's disease (CD).


Assuntos
Química Farmacêutica/métodos , Janus Quinase 1/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Piridinas/química , Triazóis/química , Trifosfato de Adenosina/química , Animais , Artrite/tratamento farmacológico , Colágeno/química , Doença de Crohn/tratamento farmacológico , Cristalografia por Raios X , Citocinas/metabolismo , Dimerização , Modelos Animais de Doenças , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Concentração Inibidora 50 , Cinética , Fosforilação , Ratos , Proteínas Recombinantes/química , Relação Estrutura-Atividade
16.
J Immunol ; 191(7): 3568-77, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24006460

RESUMO

The JAKs receive continued interest as therapeutic targets for autoimmune, inflammatory, and oncological diseases. JAKs play critical roles in the development and biology of the hematopoietic system, as evidenced by mouse and human genetics. JAK1 is critical for the signal transduction of many type I and type II inflammatory cytokine receptors. In a search for JAK small molecule inhibitors, GLPG0634 was identified as a lead compound belonging to a novel class of JAK inhibitors. It displayed a JAK1/JAK2 inhibitor profile in biochemical assays, but subsequent studies in cellular and whole blood assays revealed a selectivity of ∼30-fold for JAK1- over JAK2-dependent signaling. GLPG0634 dose-dependently inhibited Th1 and Th2 differentiation and to a lesser extent the differentiation of Th17 cells in vitro. GLPG0634 was well exposed in rodents upon oral dosing, and exposure levels correlated with repression of Mx2 expression in leukocytes. Oral dosing of GLPG0634 in a therapeutic set-up in a collagen-induced arthritis model in rodents resulted in a significant dose-dependent reduction of the disease progression. Paw swelling, bone and cartilage degradation, and levels of inflammatory cytokines were reduced by GLPG0634 treatment. Efficacy of GLPG0634 in the collagen-induced arthritis models was comparable to the results obtained with etanercept. In conclusion, the JAK1 selective inhibitor GLPG0634 is a promising novel therapeutic with potential for oral treatment of rheumatoid arthritis and possibly other immune-inflammatory diseases.


Assuntos
Inflamação/metabolismo , Janus Quinase 1/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Triazóis/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Inativação Gênica , Humanos , Inflamação/tratamento farmacológico , Concentração Inibidora 50 , Interleucina-6/farmacologia , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Masculino , Camundongos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/administração & dosagem , Piridinas/administração & dosagem , Ratos , Fator de Transcrição STAT1/metabolismo , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/imunologia , Triazóis/administração & dosagem
17.
J Med Chem ; 55(19): 8236-47, 2012 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-22957947

RESUMO

Structural modification performed on a 4-methyl-4-(4-hydroxyphenyl)hydantoin series is described which resulted in the development of a new series of 4-(hydroxymethyl)diarylhydantoin analogues as potent, partial agonists of the human androgen receptor. This led to the identification of (S)-(-)-4-(4-(hydroxymethyl)-3-methyl-2,5-dioxo-4-phenylimidazolidin-1-yl)-2-(trifluoromethyl)benzonitrile ((S)-(-)-18a, GLPG0492) evaluated in vivo in a classical model of orchidectomized rat. In this model, (-)-18a exhibited anabolic activity on muscle, strongly dissociated from the androgenic activity on prostate after oral dosing. (-)-18a has very good pharmacokinetic properties, including bioavailability in rat (F > 50%), and is currently under evaluation in phase I clinical trials.


Assuntos
Androgênios/síntese química , Hidantoínas/síntese química , Anabolizantes/síntese química , Anabolizantes/química , Anabolizantes/farmacologia , Antagonistas de Receptores de Andrógenos/síntese química , Antagonistas de Receptores de Andrógenos/química , Antagonistas de Receptores de Andrógenos/farmacologia , Androgênios/química , Androgênios/farmacologia , Animais , Disponibilidade Biológica , Agonismo Parcial de Drogas , Células HeLa , Humanos , Hidantoínas/química , Hidantoínas/farmacologia , Masculino , Modelos Moleculares , Conformação Molecular , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Orquiectomia , Tamanho do Órgão/efeitos dos fármacos , Próstata/anatomia & histologia , Próstata/efeitos dos fármacos , Próstata/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade , Ativação Transcricional/efeitos dos fármacos
18.
Bioorg Med Chem Lett ; 22(7): 2514-7, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22386665

RESUMO

The disclosed 3-phenyl-5-isothiazole carboxamides are potent allosteric antagonists of mGluR1 with generally good selectivity relative to the related group 1 receptor mGluR5. Pharmacokinetic properties of a member of this series (1R,2R)-N-(3-(4-methoxyphenyl)-4-methylisothiazol-5-yl)-2-methylcyclopropanecarboxamide (14) are good, showing acceptable plasma and brain exposure after oral dosing. Oral administration of isothiazole 14 gave robust activity in the formalin model of persistent pain which correlated with CNS receptor occupancy.


Assuntos
Amidas/síntese química , Analgésicos/síntese química , Antagonistas de Aminoácidos Excitatórios/síntese química , Dor/tratamento farmacológico , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Tiazóis/síntese química , Administração Oral , Amidas/administração & dosagem , Amidas/farmacocinética , Analgésicos/administração & dosagem , Analgésicos/farmacocinética , Animais , Disponibilidade Biológica , Encéfalo/metabolismo , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/farmacocinética , Humanos , Dor/metabolismo , Medição da Dor , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade , Tiazóis/administração & dosagem , Tiazóis/farmacocinética
19.
Neoplasia ; 10(6): 573-86, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18516294

RESUMO

Several naphthalimides have been evaluated clinically as potential anticancer agents. UNBS3157, a naphthalimide that belongs to the same class as amonafide, was designed to avoid the specific activating metabolism that induces amonafide's hematotoxicity. The current study shows that UNBS3157 rapidly and irreversibly hydrolyzes to UNBS5162 without generating amonafide. In vivo UNBS5162 after repeat administration significantly increased survival in orthotopic human prostate cancer models. Results obtained by the National Cancer Institute (NCI) using UNBS3157 and UNBS5162 against the NCI 60 cell line panel did not show a correlation with any other compound present in the NCI database, including amonafide, thereby suggesting a unique mechanism of action for these two novel naphthalimides. Affymetrix genome-wide microarray analysis and enzyme-linked immunosorbent assay revealed that in vitro exposure of PC-3 cells to UNBS5162 (1 microM for 5 successive days) dramatically decreased the expression of the proangiogenic CXCL chemokines. Histopathology additionally revealed antiangiogenic properties in vivo for UNBS5162 in the orthotopic PC-3 model. In conclusion, the present study reveals UNBS5162 to be a pan-antagonist of CXCL chemokine expression, with the compound displaying antitumor effects in experimental models of human refractory prostate cancer when administered alone and found to enhance the activity of taxol when coadministered with the taxoid.


Assuntos
Antineoplásicos/farmacologia , Quimiocinas CXC/metabolismo , Naftalimidas/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Ureia/análogos & derivados , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Senescência Celular , Modelos Animais de Doenças , Humanos , Cinética , Masculino , Camundongos , Transplante de Neoplasias , Ureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...