Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 121(6): 067401, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30141674

RESUMO

Exciton polaritons in high quality semiconductor microcavities can travel long macroscopic distances (>100 µm) due to their ultralight effective mass. The polaritons are repelled from optically pumped exciton reservoirs where they are formed; however, their spatial dynamics is not as expected for pointlike particles. Instead we show polaritons emitted into waveguides travel orthogonally to the repulsive potential gradient and can only be explained if they are emitted as macroscopic delocalized quantum particles, even before they form Bose condensates.

2.
Proc Natl Acad Sci U S A ; 111(24): 8770-5, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24889642

RESUMO

Polariton condensates are macroscopic quantum states formed by half-matter half-light quasiparticles, thus connecting the phenomena of atomic Bose-Einstein condensation, superfluidity, and photon lasing. Here we report the spontaneous formation of such condensates in programmable potential landscapes generated by two concentric circles of light. The imposed geometry supports the emergence of annular states that extend up to 100 µm, yet are fully coherent and exhibit a spatial structure that remains stable for minutes at a time. These states exhibit a petal-like intensity distribution arising due to the interaction of two superfluids counterpropagating in the circular waveguide defined by the optical potential. In stark contrast to annular modes in conventional lasing systems, the resulting standing wave patterns exhibit only minimal overlap with the pump laser itself. We theoretically describe the system using a complex Ginzburg-Landau equation, which indicates why the condensate wants to rotate. Experimentally, we demonstrate the ability to precisely control the structure of the petal condensates both by carefully modifying the excitation geometry as well as perturbing the system on ultrafast timescales to reveal unexpected superfluid dynamics.

3.
Science ; 336(6082): 704-7, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22491095

RESUMO

Tunneling of electrons through a potential barrier is fundamental to chemical reactions, electronic transport in semiconductors and superconductors, magnetism, and devices such as terahertz oscillators. Whereas tunneling is typically controlled by electric fields, a completely different approach is to bind electrons into bosonic quasiparticles with a photonic component. Quasiparticles made of such light-matter microcavity polaritons have recently been demonstrated to Bose-condense into superfluids, whereas spatially separated Coulomb-bound electrons and holes possess strong dipole interactions. We use tunneling polaritons to connect these two realms, producing bosonic quasiparticles with static dipole moments. Our resulting three-state system yields dark polaritons analogous to those in atomic systems or optical waveguides, thereby offering new possibilities for electromagnetically induced transparency, room-temperature condensation, and adiabatic photon-to-electron transfer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...