Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.116
Filtrar
1.
Clin Immunol ; 239: 109029, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35525476

RESUMO

Innate lymphoid cells (ILCs) are a newly identified heterogeneous family of innate immune cells. We conducted this study to investigate the frequency of circulating ILC subsets in various chronic kidney diseases (CKD). In DN, the proportion of total ILCs and certain ILC subgroups increased significantly. Positive correlations between proportion of total ILCs, ILC1s and body mass index, glycated hemoglobin were observed in DN. In LN, a significantly increased proportion of ILC1s was found in parallel with a reduced proportion of ILC2s. The proportions of total ILCs and ILC1s were correlated with WBC count and the level of C3. In all enrolled patients, the proportion of total ILCs and ILC1s was significantly correlated with the levels of ACR and GFR. In the present study, the proportion of circulating ILC subsets increased significantly in various types of CKD and correlated with clinico-pathological features, which suggests a possible role for ILCs in CKD.

2.
Radiother Oncol ; 171: 155-163, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35490846

RESUMO

BACKGROUND: To investigate the ability of the CT-based radiomics models for pretreatment prediction of the response to neoadjuvant chemotherapy (NAC) in patients with locally advanced gastric cancer (LAGC). METHODS: This retrospective analysis included 279 consecutive LAGC patients from center I (training cohort, n = 196; internal validation cohort, n = 83) who were examined by contrast-enhanced CT before treatment and 211 consecutive patients from center II who were recruited as an external validation cohort. A total of 102 features were extracted from the portal venous phase CT images, and feature selection was further subjected to three-step procedures. Next, five classifications, including Logistic Regression (LR), Naive Bayes, Random forest (RF), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGB) algorithms, were applied to construct radiomics models for predicting the good-responder (GR) to NAC in the training cohort. The prediction performances were evaluated using ROC and decision curve analysis (DCA). RESULTS: No statistically significant difference was detected for all clinicopathological characteristics. Additionally, allsix key features were significantly different between GR and poor-responder (PR). Compared to models from other classifiers, the model obtained with XGB showed promising prediction performance with the highest AUC of 0.790(95%CI: 0.700-0.880) in the training cohort. The corresponding AUCs were 0.784(95%CI, 0.659-0.908) and 0.803(95%CI, 0.717-0.888) in the internal and external validation cohorts, respectively. DCA confirmed the clinical utility. CONCLUSIONS: The proposed pretreatment CT-based radiomics models revealed good performances in predicting response to NAC and thus may be used to improve clinical treatment in LAGC patients.

3.
J Nanobiotechnology ; 20(1): 217, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35524276

RESUMO

Designing new oxygenation nanomaterials by oxygen-generating or oxygen-carrying strategies in hypoxia-associated anti-tumor therapy is a high priority target yet challenge. In this work, we fabricated a nanoplatform involving Fenton-like reaction, Pd@MOF-525@HA, to relieve tumor hypoxia via oxygen-generating strategy for enhanced oxygen-dependent anti-tumor therapy. Thereinto, the porphyrinic MOF-525 can produce singlet oxygen (1O2) via light or ultrasonic irradiation for photodynamic and sonodynamic therapy. Notably, the well-dispersed Pd nanocubes within MOF-525 can convert H2O2 into O2 to mitigate the hypoxic environment for enhanced therapy outcome. Moreover, the two-photon activity and cancer cell specific targeting capability of Pd@MOF-525@HA gave rise to deeper tissue penetration and near-infrared light-induced fluorescence imaging to achieve precise guidance for cancer therapy. This work provides a feasible way in designing new oxygenation nanomaterials to relieve tumor hypoxia for enhanced cancer treatment.


Assuntos
Estruturas Metalorgânicas , Fotoquimioterapia , Linhagem Celular Tumoral , Humanos , Peróxido de Hidrogênio , Hipóxia , Estruturas Metalorgânicas/farmacologia , Oxigênio , Hipóxia Tumoral
4.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35563002

RESUMO

Trifolium repens (T. repens) can accumulate significant amounts of heavy metal ions, and has strong adaptability to wide environmental conditions, and relatively large biomass, which is considered a potential plant for phytoremediation. However, the molecular mechanisms of T. repens involved in Cd tolerance have not yet been studied in detail. This study was conducted to examine the integrative responses of T. repens exposed to a high-level CdCl2 by investigating the physiological and transcriptomic analyses. The results suggested that T. repens seedlings had a high degree of tolerance to Cd treatment. The roots accumulated higher Cd concentration than leaves and were mainly distributed in the cell wall. The content of MDA, soluble protein, the relative electrolyte leakage, and three antioxidant enzymes (POD, SOD, and APX) was increased with the Cd treatment time increasing, but the CAT enzymes contents were decreased in roots. Furthermore, the transcriptome analysis demonstrated that the differentially expressed genes (DEGs) mainly enriched in the glutathione (GSH) metabolism pathway and the phenylpropanoid biosynthesis in the roots. Overexpressed genes in the lignin biosynthesis in the roots might improve Cd accumulation in cell walls. Moreover, the DEGs were also enriched in photosynthesis in the leaves, transferase activity, oxidoreductase activity, and ABA signal transduction, which might also play roles in reducing Cd toxicity in the plants. All the above, clearly suggest that T. repens employ several different mechanisms to protect itself against Cd stress, while the cell wall biosynthesis and GSH metabolism could be considered the most important specific mechanisms for Cd retention in the roots of T. repens.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 278: 121305, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35504101

RESUMO

Sulfur dioxide, an essential gas signaling molecule mainly produced in mitochondria, plays important roles in many physiological and pathological processes. Herein, a near-infrared fluorescent probe, A1, with good mitochondria targeting ability was developed for colorimetric and fluorescence detection of HSO3-. Probe A1 has a conjugated cyanine structure that can selectively react with HSO3- through the nucleophilic addition. The reaction with HSO3- destroys the conjugated structure of probe A1, resulting in fluorescence quenching, and accompaniedby color change of probe A1 solution from purple-red to colorless. Probe A1 showed high selectivity and good sensitivity to HSO3- in PBS. And the limit of detection was calculated to be 1.28 and 0.037 µM for colorimetry and fluorescence spectrophotometry respectively. In addition, probe A1 mainly entered the mitochondria in living cells, and was successfully used for imaging the exogenous/endogenous HSO3- in cells. These results suggest the potential applications of probe A1 in biological systems.

6.
Adv Compos Hybrid Mater ; : 1-12, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35539508

RESUMO

The worldwide pandemic, coronavirus COVID-19, has been posing a serious threat to the global economy and security in last 2 years. The monthly consumption and subsequent discarding of 129 billion masks (equivalent to 645,000 tons) pose a serious detrimental impact on environmental sustainability. In this study, we report a novel type of nanofibrous membranes (NFMs) with supreme filtration performance and controllable degradation rates, which are mainly composed of polylactic acid (PLA) and artificially cultured diatom frustules (DFs). In this way, the filtration efficiency of particular matter (PM) and the pressure drop were significantly improved in the prepared PLA/DFs NFMs as compared with the neat PLA NFM. In specific, with incorporation of 5% DFs into fibers, PM0.3 removal with a filtration efficiency of over 99% and a pressure drop of 109 Pa were achieved with a membrane thickness of only 0.1 mm. Moreover, the yield strength and crystallinity degree of the PLA/DFs5 NFMs were sharply increased from 1.88 Mpa and 26.37% to 2.72 Mpa and 30.02%. Besides those unique characters, the PLA/DFs5 presented excellent degradability, accompanied by the degradation of 38% in 0.01 M sodium hydroxide solution after 7 days and approximately 100% in natural condition after 42 days, respectively. Meanwhile, the environmentally friendly raw materials of the composite polylactic acid and artificially cultured diatom frustules could be extracted from corn-derived biomass and artificially cultivated diatoms, ensuring the conformance to carbon neutrality and promising applications in personal protection. Supplementary information: The online version contains supplementary material available at 10.1007/s42114-022-00474-7.

7.
Front Plant Sci ; 13: 890980, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548270

RESUMO

Common bermudagrass (Cynodon dactylon L.) is an important perennial warm-season turfgrass species with great economic value. However, the reference genome is still deficient in C. dactylon, which severely impedes basic studies and breeding studies. In this study, a high-quality haplotype-resolved genome of C. dactylon cultivar Yangjiang was successfully assembled using a combination of multiple sequencing strategies. The assembled genome is approximately 1.01 Gb in size and is comprised of 36 pseudo chromosomes belonging to four haplotypes. In total, 76,879 protein-coding genes and 529,092 repeat sequences were annotated in the assembled genome. Evolution analysis indicated that C. dactylon underwent two rounds of whole-genome duplication events, whereas syntenic and transcriptome analysis revealed that global subgenome dominance was absent among the four haplotypes. Genome-wide gene family analyses further indicated that homologous recombination-regulating genes and tiller-angle-regulating genes all showed an adaptive evolution in C. dactylon, providing insights into genome-scale regulation of polyploid genome stability and prostrate growth. These results not only facilitate a better understanding of the complex genome composition and unique plant architectural characteristics of common bermudagrass, but also offer a valuable resource for comparative genome analyses of turfgrasses and other plant species.

8.
Sci Total Environ ; 836: 155571, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35490824

RESUMO

As one of the largest carbon emitters, China promises to achieve carbon emissions neutrality by 2060. Various industries are developing businesses to reduce carbon emissions. As an important greenhouse gas emissions scenario, the reduction of carbon emissions in the food chain can be achieved by preparing the wastes into biochar. The food chain, as one of the sources of biochar, consists of production, processing and consumption, in which many wastes can be transferred into biochar. However, few studies use the food chain as the system to sort out the raw materials of biochar. A systematic review of the food chain application in serving as raw materials for biochar is helpful for further application of such technique, providing supportive information for the development of biochar preparation and wastes treating. In addition, there are many pollution sources in the food production process, such as agricultural contaminated soil and wastewater from livestock and aquatic, that can be treated on-site to achieve the goal of treating wastes with wastes within the food chain. This study focuses on waste resource utilization and pollution remediation in the food chain, summarizing the sources of biochar in the food chain and analyzing the feasibility of using waste in food chain to treat contaminated sites in the food chain and discussing the impacts of the greenhouse gas emissions. This review provides a reference for the resource utilization of waste and pollution reduction in the food chain.

9.
Crit Rev Clin Lab Sci ; : 1-18, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35559711

RESUMO

Viral respiratory infections are common and serious diseases. Because there is no effective treatment method or vaccine for respiratory tract infection, early diagnosis is vital to identify the pathogen so as to determine the infectivity of the patient and to quickly take measures to curb the spread of the virus, if warranted, to avoid serious public health problems. Real-time reverse transcriptase PCR (rRT-PCR), which has high sensitivity and specificity, is the best approach for early diagnosis. Among rRT-PCR methods, multiplex rRT-PCR can resolve issues arising from various types of viruses, high mutation frequency, coinfection, and low concentrations of virus. However, the design, optimization, and validation of multiplex rRT-PCR are more complicated than singleplex rRT-PCR, and comprehensive research on multiplex rRT-PCR methodology is lacking. This review summarizes recent progress in multiplex rRT-PCR methodology, outlines the principles of design, optimization and validation, and describes a scheme to help diagnostic companies to design and optimize their multiplex rRT-PCR detection panel and to assist laboratory staff to solve problems in their daily work. In addition, the analytical validity, clinical validity and clinical utility of multiplex rRT-PCR in viral respiratory tract infection diagnosis are assessed to provide theoretical guidance and useful information for physicians to understand the test results.

10.
Hum Brain Mapp ; 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35567336

RESUMO

Emerging evidence suggests white matter network abnormalities in patients with schizophrenia (SZ) and bipolar disorder (BD), but the alterations in dynamics of the white matter network in patients with SZ and BD are largely unknown. The white matter network of patients with SZ (n = 45) and BD (n = 47) and that of healthy controls (HC, n = 105) were constructed. We used dynamics network control theory to quantify the dynamics metrics of the network, including controllability and synchronizability, to measure the ability to transfer between different states. Experiments show that the patients with SZ and BD showed decreasing modal controllability and synchronizability and increasing average controllability. The correlations between the average controllability and synchronizability of patients were broken, especially for those with SZ. The patients also showed alterations in brain regions with supercontroller roles and their distribution in the cognitive system. Finally, we were able to accurately discriminate and predict patients with SZ and BD. Our findings provide novel dynamic metrics evidence that patients with SZ and BD are characterized by a selective disruption of brain network controllability, potentially leading to reduced brain state transfer capacity, and offer new guidance for the clinical diagnosis of mental illness.

11.
Pest Manag Sci ; 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35415871

RESUMO

BACKGROUND: Berberine is a plant-derived herbicidal alkaloid. The herbicidal mechanism of berberine is still not clear. In this study, our aim is to clarify the mechanism of berberine inhibiting the root growth of Arabidopsis thaliana, aiming at providing new insight into identifying the molecular targets of berberine. RESULTS: The whole-genome RNA sequencing had revealed that 403 genes were down-regulated, and 422 genes were up-regulated in Arabidopsis roots with berberine treatment. According to KEGG and GO analysis, the expression of two genes AT5G48010 (Thas) and AT5G42600 (MRN1) which are in the sesquiterpenoid and triterpenoid biosynthesis pathway were affected most. These two genes belong to thalianol and marneral gene clusters. RT-PCR showed that Arabidopsis responds to berberine by inhibiting root growth through repressing the expression of thalianol and marneral gene clusters, which was independent of the upstream effectors ARP6 and HTA9-1. GC-MS analysis showed that berberine could inhibit THAH in the biosynthetic network of triterpenoid gene cluster in Arabidopsis and thus cause the accumulation of thalianol. CONCLUSION: Our study indicated the repression of the thalianol and marneral gene clusters as the primary mechanism of action of berberine in Arabidopsis, which may result in plant growth defects by interrupting the thalianol metabolic pathway. This provides novel clues as to the possible molecular herbicidal mechanism of berberine. © 2022 Society of Chemical Industry.

12.
Cereb Cortex ; 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35483707

RESUMO

Male and female adults exhibited significant group differences in brain white matter (WM) asymmetry and WM network controllability. However, gender differences in controllability of hemispheric WM networks between males and females remain to be determined. Based on 1 principal atlas and 1 replication atlas, this work characterized the average controllability (AC) and modal controllability (MC) of hemispheric WM network based on 1 principal dataset and 2 replication datasets. All results showed that males had higher AC of left hemispheric networks than females. And significant hemispheric asymmetry was revealed in regional AC and MC. Furthermore, significant gender differences in the AC asymmetry were mainly found in regions lie in the frontoparietal network, and the MC asymmetry was found in regions involving auditory and emotion process. Finally, we found significant associations between regional controllability and cognitive features. Taken together, this work could provide a novel perspective for understanding gender differences in hemispheric WM asymmetry and cognitive function between males and females.

13.
Microbiol Immunol ; 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35485217

RESUMO

Pneumonia is a common disorder of the respiratory system associated with inflammation. Telmisartan (TEL) has been reported to treat inflammatory-related diseases. The current study is aimed to make investigations for the possible role and action mechanism of TEL on lipopolysaccharide (LPS)-induced pneumonia rats. Forty male Sprague Dawley (SD) rats aged 8 weeks were assigned into four groups ad libitum: a control group received saline only, an experimental group received LPS, a group received TEL (5 mg/kg), followed by LPS treatment, and a group received TEL (10 mg/kg), followed by LPS treatment. LPS (2 mg/kg) and equal saline were administered intratracheally. TEL was orally administrated 5 days before LPS. After LPS treatment for 24 h, bronchoalveolar lavage fluid (BALF) and serum were collected for the analysis of cell counts and/or cytokines. Lung tissues were used to perform histological examination, assess oxidative stress levels, and determine the levels of PPARγ/NF-κB pathway-related proteins. Rats received LPS treatment exhibited high levels of lung wet/dry ratio, ALP, LDH, BALF polymorphonuclear leukocytes count, inflammatory cytokines, and oxidative stress. Meanwhile, LPS also resulted in severe interstitial edema and inflammatory cells infiltration. Interestingly, TEL by oral administration remarkably ameliorated the adverse effects on pneumonia rats caused by LPS. In addition, western blotting further revealed that TEL could activate PPARγ and repress NF-κB (p65). TEL is protective against pneumonia through inhibition of the inflammation and oxidative stress via the PPARγ/NF-κB pathway. This article is protected by copyright. All rights reserved.

14.
Dis Colon Rectum ; 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35485833

RESUMO

BACKGROUND: Colorectal cancer patients with mismatch repair deficiency are usually less aggressive and associated with lower risk of distant metastasis. Immune checkpoint inhibition, rather than traditional chemoradiotherapy, has shown great advantages in treating such patients. OBJECTIVE: This study aimed to verify our hypothesis that locally very advanced (T4b) CRC without distant metastases might present with higher probability of dMMR and be more sensitive to neoadjuvant immune checkpoint inhibition. DESIGN: This study was designed as a single center retrospective observational study. SETTINGS: The study was conducted in a tertiary referral center in China. PATIENTS: Patients clinically diagnosed as T4bM0 CRC from 2008 to 2019 were included. MAIN OUTCOME MEASURES: Clinicopathological characteristics, MMR status and survival outcomes of dMMR patients were analyzed. RESULTS: A total of 268 patients were included. The incidence of dMMR in T4bM0 population was 27.6% (75/268), with 84.0% (63/75) in colon and 16.0% (12/75) in rectum. For tumors located in proximal colon, 45.0% (50/111) exhibited dMMR, while the incidence of dMMR in sigmoid colon cancer and rectal cancer was only 15.9% (25/157). Neoadjuvant immune checkpoint inhibition significantly reduced open surgery and multivisceral resection rate (p = 0.000 and p = 0.025, respectively). The pCR rate in neoadjuvant immune checkpoint inhibition group was significantly higher than that in neoadjuvant chemoradiotherapy/ chemotherapy group (70.0% v.s. 0%, p = 0.004). No tumor downstaging was observed after neoadjuvant chemotherapy. Neoadjuvant immune checkpoint inhibition provided significantly better disease-free survival (p = 0.0078) and relatively longer overall survival (p = 0.15) than other groups. LIMITATIONS: This study is limited by the possible selection bias and small sample size. CONCLUSIONS: Our data depicted the high incidence of dMMR in T4bM0 CRC and the effectiveness of neoadjuvant immune checkpoint inhibition group in organ preservation. Precision oncology requires identification of MMR protein status at initial diagnosis to make rational treatment decision for these special patients. See Video Abstract at http://links.lww.com/DCR/B952.

15.
Protein Cell ; 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35394262

RESUMO

Postnatal heart maturation is the basis of normal cardiac function and provides critical insights into heart repair and regenerative medicine. While static snapshots of the maturing heart have provided much insight into its molecular signatures, few key events during postnatal cardiomyocyte maturation have been uncovered. Here, we report that cardiomyocytes (CMs) experience epigenetic and transcriptional decline of cardiac gene expression immediately after birth, leading to a transition state of CMs at postnatal day 7 (P7) that was essential for CM subtype specification during heart maturation. Large-scale single-cell analysis and genetic lineage tracing confirm the presence of transition state CMs at P7 bridging immature state and mature states. Silencing of key transcription factor JUN in P1-hearts significantly repressed CM transition, resulting in perturbed CM subtype proportions and reduced cardiac function in mature hearts. In addition, transplantation of P7-CMs into infarcted hearts exhibited cardiac repair potential superior to P1-CMs. Collectively, our data uncover CM state transition as a key event in postnatal heart maturation, which not only provides insights into molecular foundations of heart maturation, but also opens an avenue for manipulation of cardiomyocyte fate in disease and regenerative medicine.

16.
Animals (Basel) ; 12(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35454294

RESUMO

Skeletal myogenesis is a complicated biological event that involves a succession of tightly controlled gene expressions. In order to identify novel regulators of this process, we performed mRNA-Seq studies of goat skeletal muscle satellite cells (MuSCs) cultured under proliferation (GM) and differentiation (DM1/DM5) conditions. A total of 19,871 goat genes were expressed during these stages, 198 of which represented novel transcripts. Notably, in pairwise comparisons at the different stages, 2551 differentially expressed genes (DEGs) were identified (p < 0.05), including 1560 in GM vs. DM1, 1597 in GM vs. DM5, and 959 in DM1 vs. DM5 DEGs. The time-series expression profile analysis clustered the DEGs into eight gene groups, three of which had significantly upregulated and downregulated patterns (p < 0.05). Functional enrichment analysis showed that DEGs were enriched for essential biological processes such as muscle structure development, muscle contraction, muscle cell development, striated muscle cell differentiation, and myofibril assembly, and were involved in pathways such as the MAPK, Wnt and PPAR signaling pathways. Moreover, the expression of eight DEGs (MYL2, DES, MYOG, FAP, PLK2, ADAM, WWC1, and PRDX1) was validated. These findings offer novel insights into the transcriptional regulation of skeletal myogenesis in goats.

17.
J Pers Med ; 12(4)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35455712

RESUMO

Conventional prognostic risk analysis in patients undergoing noninvasive imaging is based upon a limited selection of clinical and imaging findings, whereas machine learning (ML) algorithms include a greater number and complexity of variables. Therefore, this paper aimed to explore the predictive value of integrating coronary plaque information from coronary computed tomographic angiography (CCTA) with ML to predict major adverse cardiovascular events (MACEs) in patients with suspected coronary artery disease (CAD). Patients who underwent CCTA due to suspected coronary artery disease with a 30-month follow-up for MACEs were included. We collected demographic characteristics, cardiovascular risk factors, and information on coronary plaques by analyzing CCTA information (plaque length, plaque composition and coronary artery stenosis of 18 coronary artery segments, coronary dominance, myocardial bridge (MB), and patients with vulnerable plaque) and follow-up information (cardiac death, nonfatal myocardial infarction and unstable angina requiring hospitalization). An ML algorithm was used for survival analysis (CoxBoost). This analysis showed that chest symptoms, the stenosis severity of the proximal anterior descending branch, and the stenosis severity of the middle right coronary artery were among the top three variables in the ML model. After the 22nd month of follow-up, in the testing dataset, ML showed the largest C-index and AUC compared with Cox regression, SIS, SIS score + clinical factors, and clinical factors. The DCA of all the models showed that the net benefit of the ML model was the highest when the treatment threshold probability was between 1% and 9%. Integrating coronary plaque information from CCTA based on ML technology provides a feasible and superior method to assess prognosis in patients with suspected coronary artery disease over an approximately three-year period.

18.
Birth Defects Res ; 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35437950

RESUMO

Craniomaxillofacial developmental anomalies are one of the most prevalent congenital defects worldwide and could result from any disruption of normal development processes, which is generally influenced by interactions between genes and the environment. Currently, with the advances in genetic screening strategies, an increasing number of novel variants and their roles in orofacial diseases have been explored. Zebrafish is recognized as a powerful animal model, and its homologous genes and similar oral structure and development process provide an ideal platform for studying the contributions of genetic and environmental factors to human craniofacial malformations. Here, we reviewed zebrafish models for the study of craniomaxillofacial developmental anomalies, such as human nonsyndromic cleft lip with or without an affected palate and jaw and tooth developmental anomalies. Due to its potential for gene expression and regulation research, zebrafish may provide new perspectives for understanding craniomaxillofacial diseaseand its treatment.

19.
Cardiol Res Pract ; 2022: 4713826, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35449605

RESUMO

Objective: We aimed to further investigate the efficacy and safety of low-dose NOACs by performing a meta-analysis of cohort studies. Background: Meta-analyses of randomized controlled trials (RCTs) have demonstrated that low-dose non-vitamin K antagonist oral anticoagulants (NOACs) showed inferior efficacy compared with standard-dose NOACs, although they are still frequently prescribed for patients with atrial fibrillation (AF) in the clinical practice. Methods: Cochrane Central Register of Controlled Trials (CENTRAL), Embase, and MEDLINE were systematically searched from the inception to September 9, 2021, for cohort studies that compared the efficacy and/or safety of low-dose NOACs in patients with AF. The primary outcomes were ischemic stroke and major bleeding, and the secondary outcomes were mortality, intracranial hemorrhage (ICH), and gastrointestinal hemorrhage (GH). Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated with the random-effect model. Results: Twenty-five publications involving 487856 patients with AF were included. Compared with standard-dose NOACs, low-dose NOACs had comparable risks of ischemic stroke (HR = 1.03, 95% CI 0.96 to 1.11), major bleeding (HR = 1.12, 95% CI 0.97 to 1.28), ICH (HR = 1.09, 95% CI 0.88 to 1.36), and GH (HR = 1.11, 95% CI 0.92 to 1.33), except for a higher risk of mortality (HR = 1.41, 95% CI 1.21 to 1.65). Compared with warfarin, low-dose NOACs were associated with lower risks of ischemic stroke (HR = 0.72, 95% CI .67 to 0.78), mortality (HR = 0.67, 95% CI 0.59 to 0.77), major bleeding (HR = 0.64, 95% CI 0.53 to 0.79), ICH (HR = 0.57, 95% CI 0.42 to 0.77), and GH (HR = 0.78, 95% CI 0.64 to 0.95). Conclusions: Low-dose NOACs were comparable to standard-dose NOACs considering risks of ischemic stroke, major bleeding, ICH, and GH, and they were superior to warfarin. Low-dose NOACs might be prescribed effectively and safely for patients with AF. Considering limitations, further well-designed prospective studies are foreseen.

20.
RSC Adv ; 12(7): 4234-4239, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35425439

RESUMO

To obtain high thermostable materials for flexible display substrates, a series of copoly(benzimidazole imide)s was prepared using 5-amine-2-(4-aminobenzene)-1-phenyl-benzimidazole (N-PhPABZ) and 6(5)-amino-2-(4-aminobenzene)-benzimidazole (PABZ). Incorporating N-phenyl groups effectively healed the brittleness of the poly(benzimidazole imide)s (PBIIs) derived from pyromellitic dianhydride (PMDA), and the resultant homo- and copoly(benzimidazole imide)s displayed an outstandingly high glass transition temperature (T g > 450 °C) and a low coefficient of thermal expansion (CTE < 10 ppm K-1). Furthermore, the influence of removing intermolecular hydrogen bonds on the properties of these poly(benzimidazole imide)s was systematically analyzed. These data provide a feasible method to prepare superheat-resistant poly(benzimidazole imide)s without H-bonding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...