Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.214
Filtrar
1.
BMC Vet Res ; 17(1): 293, 2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34481494

RESUMO

BACKGROUND: There is little objective information concerning the effect of steam-flaked grains on foal's growth performance and faecal microbiota. To determine the effects of steam-flaked grains on foal's growth performance and faecal microbiota, faecal samples were collection from 18 foals which had been fed either corn, oat or barley diets over the 60 days of the experiment. Body weight and conformation measurements were collected. Next-generation sequencing of the V3 + V4 region of the 16 S rRNA gene was used to assess the microbial composition of faeces. Alpha diversity, Venn graph, Relative abundance and beta diversity are presented. RESULTS: There was a significantly higher larger increase in the body weight of those foals fed barley compared to either corn or oats. There were also significant changes in the Alpha diversity of the gut microbiota. The Shannon and Simpson indices were significantly higher in the barley fed group than those fed corn or oats. The Chao1 index was significantly higher in the oat fed group than the corn or barley fed groups. There were significant changes in the relative abundance of bacteria in the microbiota in terms of phylum, family and genus. The histogram of LDA value distribution showed that the 12 statistically different biomarkers of the bacteria were present. Tax4Fun function annotation clustering heat map showed that functional information was detected from 26 species of bacteria in faecal samples from the foals. CONCLUSIONS: Differences by starch sources were found in overall growth of the foals and in the faecal microbiota if either supplementary corn, oat or barley was fed. Further studies are required to determine the potential impact of the changes in the microbiota on the health and development of foals fed cereal starch of different sources.

2.
Int J Biol Macromol ; 190: 130-140, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34481848

RESUMO

Quinoa starch was developed as a new kind of Pickering emulsifier by enzymatic modification. The morphological structure, crystalline structure, lamellar structure, fractal structure, particle size distribution, contact angle, emulsion index (EI), and emulsion micromorphology were studied to explore the relationship between structure characteristics, hydrophilic property, and emulsifying properties of enzymatically modified (EM) quinoa starches. With the increasing enzymatic hydrolysis time in the test range of 0-9 h, particle size of EM quinoa starch decreased, and the broken starch and contact angle of EM quinoa starch increased; the EI value of emulsions with EM quinoa starch increased, and the oil droplet size of emulsions with EM quinoa starch decreased. It suggested that both the smallest particle size and the closest extent of the contact angle to 90° derived the best emulsifying property of EM-9. The EM quinoa starch had higher emulsifying capacity at higher oil volume fraction (Φ) (50%) than at lower Φ (20%), proving that the EM starch has potential to be used as Pickering emulsifiers in higher oil products, such as salad dressing.

3.
Front Endocrinol (Lausanne) ; 12: 665145, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512542

RESUMO

The aquaporin 2 (AQP2) plays a critical role in water reabsorption to maintain water homeostasis. AQP2 mutation leads to nephrogenic diabetes insipidus (NDI), characterized by polyuria, polydipsia, and hypernatremia. We previously reported that a novel AQP2 mutation (G215S) caused NDI in a boy. In this study, we aimed to elucidate the cell biological consequences of this mutation on AQP2 function and clarify the molecular pathogenic mechanism for NDI in this patient. First, we analyzed AQP2 expression in Madin-Darby canine kidney (MDCK) cells by AQP2-G215S or AQP2-WT plasmid transfection and found significantly decreased AQP2-G215S expression in cytoplasmic membrane compared with AQP2-WT, independent of forskolin treatment. Further, we found co-localization of endoplasmic reticulum (ER) marker (Calnexin) with AQP2-G215S rather than AQP2-WT in MDCK cells by immunocytochemistry. The functional analysis showed that MDCK cells transfected with AQP2-G215S displayed reduced water permeability compared with AQP2-WT. Visualization of AQP2 structure implied that AQP2-G215S mutation might interrupt the folding of the sixth transmembrane α-helix and/or the packing of α-helices, resulting in the misfolding of monomer and further impaired formation of tetramer. Taken together, these findings suggested that AQP2-G215S was misfolded and retained in the ER and could not be translocated to the apical membrane to function as a water channel, which revealed the molecular pathogenic mechanism of AQP2-G215S mutation and explained for the phenotype of NDI in this patient.

4.
Adv Mater ; : e2102964, 2021 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-34510582

RESUMO

High-voltage lithium-ion batteries (LIBs) enabled by high-voltage electrolytes can effectively boost energy density and power density, which are critical requirements to achieve long travel distances, fast-charging, and reliable safety performance for electric vehicles. However, operating these batteries beyond the typical conditions of LIBs (4.3 V vs Li/Li+ ) leads to severe electrolyte decomposition, while interfacial side reactions remain elusive. These critical issues have become a bottleneck for developing electrolytes for applications in extreme conditions. Herein, an additive-free electrolyte is presented that affords high stability at high voltage (4.5 V vs Li/Li+ ), lithium-dendrite-free features upon fast-charging operations (e.g., 162 mAh g-1 at 3 C), and superior long-term battery performance at low temperature. More importantly, a new solvation structure-related interfacial model is presented, incorporating molecular-scale interactions between the lithium-ion, anion, and solvents at the electrolyte-electrode interfaces to help interpret battery performance. This report is a pioneering study that explores the dynamic mutual-interaction interfacial behaviors on the lithium layered oxide cathode and graphite anode simultaneously in the battery. This interfacial model enables new insights into electrode performances that differ from the known solid electrolyte interphase approach to be revealed, and sets new guidelines for the design of versatile electrolytes for metal-ion batteries.

5.
Hum Cell ; 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34515990

RESUMO

Emerging evidence suggests that long non-coding RNA (lncRNA) is closely associated with numerous human diseases, including cancer. However, the functional relevance of lncRNA in human laryngeal squamous cell carcinoma (LSCC) is largely unknown. In the current study, we described CCAT2, a previously unappreciated oncogenic lncRNA in LSCC. CCAT2 was significantly upregulated in human LSCC tissue and serum samples, associated with larger tumor volume, higher clinical stage, and poorer differentiation status. Lentivirus-mediated CCAT2 knockdown notably repressed the cell viability, colony formation, and DNA synthesis rate of LSCC. Screening of transcription factors revealed that YAP/TEAD activity was affected by CCAT2 in LSCC cells. Further, CCAT2 directly binds to YAP protein and blocks the phosphorylation of YAP induced by LATS1, resulting in the nuclear translocation of YAP and the activation of YAP oncogenic targets, such as CTGF, CYR61 and AMOTL2. Importantly, we also confirmed the regulation of CCAT2 on YAP activity in vivo based on nude mice model. Altogether, we identified a novel lncRNA that controls YAP nucleocytoplasmic shuttling and promotes LSCC cell proliferation. Given the importance of YAP in tumorigenesis and progression, our results provide insights to intervene LSCC by targeting the CCAT2/YAP axis.

6.
Nanoscale ; 13(32): 13719-13734, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34477647

RESUMO

Functionalized carbon nanomaterials are potential candidates for use as anode materials in potassium-ion batteries (PIBs). The inevitable defect sites in the architectures significantly affect the physicochemical properties of the carbon nanomaterials, thus defect engineering has recently become a vital research area for carbon-based electrodes. However, one of the major issues holding back its further development is the lack of a complete understanding of the effects accounting for the potassium (K) storage of different carbon defects, which have remained elusive. Owing to pressing research demands, the construction strategies, adsorption difficulties, and structure-activity relationships of the carbon defect-involved reaction centers for the K adsorption are systematically summarized using first principles calculations. Carbon defects affect the ability to trap K by affecting the geometry, charge distribution, and conductive behavior of the carbon surface. The results show that carbon doping with pyridinic-N, pyrrolic-N, and P defect sites tend to act as trapping K sites because of electron-deficient sites. However, graphite-N and sulfur doping are less capable of trapping K. In addition, it has been proved using calculations that the defects can inhibit the growth of the K dendrite. Finally, using the molten salt method, we prepared the undoped and nitrogen-doped carbon materials for comparison, verifying the results of the calculation.

7.
Chem Commun (Camb) ; 57(71): 8993-8996, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34486606

RESUMO

The oxidative phosphorylation inhibitor atovaquone (ATO) and the photosensitizer new indocyanine green (IR820) were self-assembled into carrier-free nanodrugs (IR820/ATO NPs) to achieve superior photothermal therapy (PTT), offering an attractive mitochondrial metabolism-regulatable approach for breast cancer treatment, where adenosine triphosphate (ATP) was downregulated along with downregulating the expression of heat shock proteins (HSPs) to amplify the sensitivity of PTT.

8.
Sci Total Environ ; 792: 148546, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34465057

RESUMO

During the latest several decades, the continuous development of the economy and industry has brought more and more serious organic pollutants to the natural environment, which have inevitably aroused severe menace to human health and the environmental system. The nano zero-valent iron (NZVI) particles and NZVI-based materials have widely applied to remove organic pollutants. This article reviews the key advancements of different methods for the synthesis of NZVI and NZVI-based materials. Different modification methods (e.g., doped NZVI, encapsulated NZVI and supported NZVI) are also introduced detailedly for overcoming the defects of NZVI such as aggregation and easy oxidation. The removal of different organic pollutants including dyes, halogenated organic compounds, nitro-organic compounds, phenolic compounds, pesticides, and antibiotics are summarized. The interaction mechanisms, including adsorption, reduction, and active oxidation of organic pollutants by NZVI/NZVI-based composites, are discussed. The dyes are mainly removed by destroying their chromogenic group according to the reduction or the Fenton-like reaction with NZVI. The removal of halogenated organic compounds (HOCs) is realized by the dehalogenation process, including reductive elimination, hydrogenolysis, and hydrogenation. As for the nitro-organic compounds, three different reduction pathways as nitro-reduction (into amino), cleavage at the carbon­nitrogen bond or denitration of the NO2 group may take effect. The phenolic compounds can be mineralized into inorganic molecules, including CO2 and H2O, by Fenton oxidation. This review might provide the basis for future studies on developing more effective NZVI-based materials for the treatment of wastewaters contaminated by organic pollutants.


Assuntos
Ferro , Poluentes Químicos da Água , Adsorção , Corantes , Humanos , Águas Residuárias , Poluentes Químicos da Água/análise
9.
Leuk Lymphoma ; : 1-8, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34477034

RESUMO

Acute myelomagakaryocytic leukemia is a diagnostic and therapeutic challenge owing to its heterogeneity and overlapping features with other types of acute leukemia. In order to build a diagnostic profile, we analyzed the biological, clinical and hematologic characteristics of acute myelomagakaryocytic leukemia. We found that, in three patients diagnosed with acute myelomagakaryocytic leukemia, there were two types of leukemia cells. One type was myeloblastic with positive peroxidase (POX) stainig and the expression of antigens CD13 and CD33. The other type was megakaryoblastic with negative POX staining and the expression of antigens CD36, CD41, CD42a and CD61. Three patients displayed the same cytogenetic abnormality, a (9: 22) translocation. Among the three patients with RT-PCR, two patients displayed BCR-ABL fusion gene amplification and one patient showed a previously undescribed OTT-MAL fusion gene amplification.

10.
Chaos ; 31(8): 083107, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34470251

RESUMO

The firing patterns of each bursting neuron are different because of the heterogeneity, which may be derived from the different parameters or external drives of the same kind of neurons, or even neurons with different functions. In this paper, the different electromagnetic effects produced by two fractional-order memristive (FOM) Hindmarsh-Rose (HR) neuron models are selected for characterizing different firing patterns of heterogeneous neurons. Meanwhile, a fractional-order memristor-coupled heterogeneous memristive HR neural network is constructed via coupling these two heterogeneous FOM HR neuron models, which has not been reported in the adjacent neuron models with memristor coupling. With the study of initial-depending bifurcation behaviors of the system, it is found that the system exhibits abundant hidden firing patterns, such as periods with different topologies, quasiperiodic firings, chaos with different topologies, and even hyperchaotic firings. Particularly, the hidden hyperchaotic firings are perfectly detected by two-dimensional Lyapunov stability graphs in the two-parameter space. Meanwhile, the hidden coexisting firing patterns of the system are excited from two scattered attraction domains, which can be confirmed from the local attraction basins. Furthermore, the color image encryption based on the system and the DNA approach owns great keyspace and a good encryption effect. Finally, the digital implementations based on Advanced RISC Machine are in good coincidence with numerical simulations.


Assuntos
Modelos Neurológicos , Redes Neurais de Computação , Análise por Conglomerados , Neurônios
11.
Sheng Wu Gong Cheng Xue Bao ; 37(8): 2753-2764, 2021 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-34472293

RESUMO

Biodiesel is an alternative fuel to addressing the energy shortage problem. Microbial lipids have attracted widespread attention as one of the potential feed-stocks for cost-effective and efficient biodiesel production. However, the large-scale production of microbial lipids is hampered by the complexity and the high cost of aseptic culturing approach. Metschnikowia pulcherrima is an oleaginous yeast with strong environmental adaptability. It is capable of utilizing a wide spectrum of substrates, and can be cultured under non-sterile conditions. Therefore, this yeast has great potential to replace the traditional oleaginous microorganisms, particularly in the area of recycling wastewater and solid waste for the production of biodiesel. Based on the analysis of lipid production and application conditions of M. pulcherrima, this review summarized the unique advantages of M. pulcherrima and the key factors affecting lipids production. We further discussed the feasibility of cultivating M. pulcherrima on various organic wastes under non-sterile conditions for lipids production. Moreover, we analyzed the challenges associated with M. pulcherrima's in the yield and mechanism for lipids production, and proposed perspectives for how to achieve efficient biodiesel production using this yeast.


Assuntos
Biocombustíveis , Lipídeos , Candida , Metschnikowia , Leveduras
12.
Br J Radiol ; : 20210682, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34478333

RESUMO

OBJECTIVE: To evaluate the correlation between elastic heterogeneity (EH) and lymphovascular invasion (LVI) in breast cancers and assess the clinical value of using EH to predict LVI pre-operatively. METHODS: This retrospective study consisted of 376 patients with breast cancers that had undergone shear wave elastography (SWE) with virtual touch tissue imaging quantification between June 2017 and June 2018. The EH was determined as the difference between the averaged three highest and three lowest shear wave value. Clinicalpathological parameters including histological type and grades, LVI, axillary lymph node status and molecular markers (estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2 and Ki-67) were reviewed and recorded. Relationship EH and clinicalpathological parameters was investigated respectively. The diagnostic performance of EH in distinguishing LVI or not was analyzed. RESULTS: At multivariate regression analysis, only EH (p = 0.017) was positively correlated with LVI in all tumors. EH (p = 0.003) and Ki-67 (p = 0.025) were positively correlated with LVI in tumors ≤ 2 cm. None of clinicalpathological parameters were correlated with LVI in tumors > 2 cm (p > 0.05 for all). Using EH to predict LVI in tumors ≤ 2 cm, the sensitivity and negative predictive value were 93 and 89% respectively. CONCLUSION: EH has the potential to be served as an imaging biomarker to predict LVI in breast cancer especially for tumors ≤ 2 cm. ADVANCES IN KNOWLEDGE: There was no association between LVI and other most commonly used elastic features such as SWVmean and SWVmax. Elastic heterogeneity is an independent predictor of LVI, so it can provide additional prognostic information for routine preoperative breast cancer assessment.For tumors ≤ 2cm, using EH value higher than 1.36 m/s to predict LVI involvement, the sensitivity and negative predictive value can reach to 93% and 89%, respectively, suggesting that breast cancer with negative EH value was more likely to be absent of LVI.

13.
Clinics (Sao Paulo) ; 76: e2502, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34495077

RESUMO

OBJECTIVES: Diagnosis and management of essential hypertension (EH) or type 2 diabetes mellitus (T2DM) by combining comprehensive treatment and classificatory diagnosis have been continuously improved. However, understanding the pathogenesis of EH patients with concomitant T2DM and subsequent treatment remain the major challenges owing to the lack of non-invasive biomarkers and information regarding the underlying mechanisms. METHODS: Herein, we collected 200 serum samples from EH and/or T2DM patients and healthy donors (N). Gene-expression profiling was conducted to identify candidate microRNAs with clinical significance. Then, a larger cohort of the aforementioned patients and 50 N were used to identify the correlation between the tumor suppressor miR-195-5p and EH and/or T2DM. The dual-luciferase reporter assay was used to explore the target genes of miR-195-5p. The suppressive effects of miR-195-5p on the 3'-UTR of the dopamine receptor D1 (DRD1) transcript in EH patients with concomitant T2DM were verified as well. RESULTS: Compared with that in other groups, serum miR-195-5p was highly downregulated in EH patients with concomitant T2DM. miR-195-5p overexpression efficiently suppressed DRD1 expression by binding to the two 3'-UTRs. Additionally, two single nucleotide polymorphisms, including 231T-A and 233C-G, in the miR-195-5p binding sites of the DRD1 3'-UTR were further identified. Collectively, we identified the potential clinical significance of DRD1 regulation by miR-195-5p in EH patients with concomitant T2DM. CONCLUSIONS: Our data suggested that miR-195-5p circulating in the peripheral blood served as a novel biomarker and therapeutic target for EH and T2DM, which could eventually help address major challenges during the diagnosis and treatment of EH and T2DM.

14.
mBio ; : e0159921, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34488453

RESUMO

Cellular immunity may be involved in organ damage and rehabilitation in patients with coronavirus disease 2019 (COVID-19). We aimed to delineate immunological features of COVID-19 patients with pulmonary sequelae (PS) 1 year after discharge. Fifty COVID-19 survivors were recruited and classified according to radiological characteristics, including 24 patients with PS and 26 patients without PS. Phenotypic and functional characteristics of immune cells were evaluated by multiparametric flow cytometry. Patients with PS had an increased proportion of natural killer (NK) cells and a lower percentage of B cells than patients without PS. Phenotypic and functional features of T cells in patients with PS were predominated by the accumulation of CD4-positive (CD4+) T cells secreting interleukin 17A (IL-17A), short-lived effector-like CD8+ T cells (CD27-negative [CD27-] CD62L-), and senescent T cells with excessive secretion of granzyme B/perforin/interferon gamma (IFN-γ). NK cells were characterized by the excessive secretion of granzyme B and perforin and the downregulation of NKP30 and NKP46; highly activated NKT and γδ T cells exhibited NKP30 and TIM-3 upregulation and NKB1 downregulation in patients with PS. However, immunosuppressive cells were comparable between the two groups. The interrelationship of immune cells in COVID-19 was intrinsically identified, whereby T cells secreting IL-2, IL-4, and IL-17A were enriched among CD28+ and CD57- cells and cells secreting perforin/granzyme B/IFN-γ/tumor necrosis factor alpha (TNF-α)-expressed markers of terminal differentiation. CD57+ NK cells, CD4+Perforin+ T cells, and CD8+ CD27+ CD62L+ T cells were identified as the independent predictors for residual lesions. Overall, our findings unveil the profound imbalance of immune landscape that may correlate with organ damage and rehabilitation in COVID-19. IMPORTANCE A considerable proportion of COVID-19 survivors have residual lung lesions such as ground-glass opacity and fiber streak shadow. To determine the relationship between host immunity and residual lung lesions, we performed an extensive analysis of immune responses in convalescent patients with COVID-19 1 year after discharge. We found significant differences in immunological characteristics between patients with pulmonary sequelae and patients without pulmonary sequelae 1 year after discharge. Our study highlights the profound imbalance of immune landscape in the COVID-19 patients with pulmonary sequelae, characterized by the robust activation of cytotoxic T cells, NK cells, and γδ T cells, as well as the deficiencies of immunosuppressive cells. Importantly, CD57+ NK cells, CD4+Perforin+ T cells, and CD8+ CD27+ CD62L+ T cells were identified as the independent predictors for residual lesions.

15.
J Bone Miner Res ; 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34490910

RESUMO

Camurati-Engelmann disease is a rare autosomal dominant skeletal dysplasia caused by mutations in the transforming growth factor-ß1 (TGFB1) gene. In this study, we performed a retrospective review of patients with CED evaluated in Peking Union Medical College Hospital from November 30, 2000 to November 30, 2020. Data including demographic data, manifestations and examination results were characterized. Further, we assessed bone geometry, density, microarchitecture and estimated bone strength by High-resolution peripheral quantitative computed tomography (HR-pQCT). Results showed the median age at onset was 2.5 years. Common manifestations included pain in the lower limbs (94%, 17/18), abnormal gait (89%, 16/18), genu valgum (89%, 16/18), reduced subcutaneous fat (78%, 14/18), delayed puberty (73%, 8/11), muscle weakness (67%, 12/18), hearing loss (39%, 7/18), hepatosplenomegaly (39%, 7/18), exophthalmos or impaired vision or visual field defect (33%, 6/18), and anemia (33%, 7/18). 25% (4/16) of patients had short stature. Serum level of alkaline phosphatase (ALP) was elevated in 41% (7/17) of patients whereas beta-C-terminal telopeptide (ß-CTX) was elevated in 91% of patients (10/11). Among 12 patients, Z-scores of 2 patients were greater than 2.5 at femur neck and Z-scores of 5 patients were lower than -2.5 at femur neck and/or lumbar spine. HR-pQCT results showed lower vBMD, altered bone microstructure and lower estimated bone strength at the distal radius and tibia in patients with CED compared to controls. Besides, Tt.vBMD and Ct.vBMD at the radius were negatively correlated with age in CED patients but positively correlated with age in controls. In conclusion, we reported the largest case series of CED in Chinese and characterized clinical features. Further, we used HR-pQCT to investigate bone microstructure at the distal radius and tibia in 9 patients with CED and demonstrated alteration of bone density, microstructure and strength for the first time. This article is protected by copyright. All rights reserved.

17.
Cancer ; 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34494662

RESUMO

BACKGROUND: Hodgkin lymphoma (HL) is a treatable tumor affecting children, adolescents and young adults (AYAs; 15-39 years old). Population-based studies report worse survival for non-White children and AYAs but have limited data on individual therapeutic exposures. This study examined overall and HL-specific survival in a population-based cohort of patients while adjusting for sociodemographic factors and treatment. METHODS: Data for 4807 patients younger than 40 years with HL (2007-2017) were obtained from the California Cancer Registry. Individual treatment information was extracted from text fields; chemotherapy regimens were defined by standard approaches for pediatric and adult HL. Multivariable Cox models examined the influence of patient and treatment factors on survival. RESULTS: At a median follow-up of 4.4 years, 95% of the patients were alive. Chemotherapy differed by age, with 70% of 22- to 39-year-olds and 41% of <22-year-olds receiving doxorubicin, bleomycin, vinblastine, and dacarbazine (P < .001). In multivariable models, older patients (22-39 vs < 21 y; hazard ratio [HR], 1.53; 95% confidence interval [CI], 1.11-2.10), Black (vs White patients); HR, 1.90; 95% CI, 1.25-2.88), and Hispanic patients (HR, 1.45; 95% CI, 1.06-1.99) experienced worse survival; among those < 21 y, Black race was associated with a 3.3-fold increased risk of death (HR, 3.26; 95% CI, 1.43-7.42). CONCLUSIONS: In children and AYAs with HL, older age and non-White race/ethnicity predicted worse survival after adjustments for treatment data. Further work is needed to identify the biological and nonbiological factors driving disparities in these at-risk populations.

18.
J Pharm Biomed Anal ; 205: 114340, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34474230

RESUMO

Burkholderia pseudomallei causes melioidosis - an infectious disease with high mortality. Its varied clinical manifestations and resistance to many antibiotics make it a potential biothreat agent and calls for a robust diagnostic assay and effective vaccines. Bacterial cell surface polysaccharides are considered a valuable target for diagnostics and as protective antigen candidates. This study characterized the structure of polysaccharides of B. pseudomallei clinical strain from Hainan, China. A novel structural domain [→3-(α-D-Manp-1→3-α-D-Manp)2-2Me-α-L-6dTalp-1→] was identified by chemical analysis, gas chromatography-mass spectrometry (GC-MS), and 1D/2D nuclear magnetic resonance (NMR) spectroscopy. Immunofluorescence and enzyme-linked immunosorbent assay (ELISA) showed that the serum antibodies against the purified polysaccharide antigen could recognize and bind specifically to B. pseudomallei strains. Additionally, the assays revealed cross-reactivity with polysaccharides from different clinical strains. The polysaccharide antigen also exhibited a strong reaction with the sera from melioidosis patients. Thus, the pentasaccharide repeating unit residue could be a potential candidate antigen for the melioidosis serodiagnosis and vaccine development.

19.
Mar Pollut Bull ; 171: 112770, 2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34492563

RESUMO

Studies have reported that various hydrocarbons and hydrocarbon-degrading bacteria are found in global deep-sea hydrothermal regions. However, little is known about degradation characteristics of culturable hydrocarbon-degrading bacteria from these regions. We speculate that these bacteria can be used as resources for the bioremediation of oil pollution. In this study, six oil-degrading consortia were obtained from the hydrothermal region of the Southern Mid-Atlantic Ridge through room-temperature enrichment experiments. The dominant oil-degrading bacteria belonged to Nitratireductor, Pseudonocardia, Brevundimonas and Acinetobacter. More varieties of hydrocarbon-degrading bacteria were obtained from sediments (preserved at 4 °C) near hydrothermal vents. Most strains had the ability to degrade high molecular weight petroleum components. In addition, Pseudonocardia was shown to exhibit a high degradation ability for phytane and pristine for the first time. This study may provide new insights into the community structure and biodiversity of culturable oil-degrading bacteria in deep-sea hydrothermal regions.

20.
Melanoma Res ; 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34494606

RESUMO

Autophagy plays a complicated role in the occurrence and development of cancer. Beclin 1 is a significant autophagy-related protein that plays an essential role in tumorigenesis, but its expression is controversial in melanoma. In this meta-analysis, we searched seven studies involving 638 melanoma patients. PubMed, Web of Science, Google Scholar, Elsevier, and Chinese National Knowledge Infrastructure were used for literature retrieval. The I2 index was used to assess heterogeneity. The expression of Beclin 1 in the primary melanoma group was significantly lower than the non-tumor group tissues (P < 0.01), while higher than the metastatic melanoma group (P < 0.01). Beclin 1 expression status could not distinguish between patients with melanoma by sex (male vs. female), lymph node metastasis (metastasis vs. non-metastasis), melanin deposition (present vs. absent), ulcer formation (present vs. absent), tumor necrosis status (present vs. absent), and Breslow thickness (<1.5 mm vs. ≥1.5 mm) for the subgroups (all P values > 0.05). Different expression intensities of Beclin 1 did not affect the overall survival and disease-free survival of melanoma patients. This study showed a trend of low expression of Beclin 1 in melanoma; patients with low expression of Beclin 1 were prone to the possibility of distant metastasis. The inconsistent profile of Beclin 1 expression in the prognosis of melanoma patients warrants further clinical investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...