Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.839
Filtrar
1.
Beilstein J Nanotechnol ; 14: 52-60, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36703910

RESUMO

Particles with attractive patches are appealing candidates to be used as building units to fabricate novel colloidal architectures by self-assembly. Here, we report the synthesis of one-patch silica nanoparticles, which consist of silica half-spheres whose concave face carries in its center a polymeric patch made of grafted polystyrene chains. The multistage synthesis allows for a fine control of the patch-to-particle size ratio from 0.23 to 0.57. The assembly of the patchy nanoparticles can be triggered by reducing the solvent quality for the polystyrene chains. Dimers or trimers can be obtained by tuning the patch-to-particle size ratio. When mixed with two-patch nanoparticles, one-patch nanoparticles control the length of the resulting chains by behaving as colloidal chain stoppers. The present strategy allows for future elaboration of novel colloidal structures by controlled assembly of nanoparticles.

2.
Arch Biochem Biophys ; 735: 109502, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36603698

RESUMO

Necroptosis has been demonstrated to contribute to brain injury in ischemic stroke, whereas A20 can exert anti-necroptosis effect via deubiquitinating receptor-interacting protein kinase (RIPK3) at k63 and it can be cleaved by MALT1. This study aims to explore whether MALT1 is upregulated in the brain during ischemic stroke and promotes brain cell necroptosis through enhancing the degradation of A20. Ischemic stroke model was established in Sprague Dawley rats by occlusion of the middle cerebral artery (MCA) for 2 h, followed by 24 h reperfusion, which showed brain injury (increase in neurological deficit score and infarct volume) concomitant with an upregulation of MALT1, a decrease in A20 level, and increases in necroptosis-associated protein levels [RIPK3, mixed lineage kinase domain-like protein (MLKL) and p-MLKL] and k63-ubiquitination of RIPK3 in brain tissues. Administration of MALT1 inhibitor (Ml-2) at 8 or 15 mg/kg (i.p.) at 1 h after ischemia significantly improved neurological function and reduced infarct volume together with a downregulation of MALT1, an increase in A20 level and decreases in necroptosis-associated protein levels and k63-ubiquitination of RIPK3. Similarly, knockdown of MALT1 could also reduce oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury in the cultured HT22 cells coincident with an increase in A20 level and decreases in necroptosis-associated protein levels and k63-ubiquitination of RIPK3. Based on these observations, we conclude that MALT1 promotes necroptosis in stroke rat brain via enhancing the degradation of A20, which leads to a decrease in the capability of A20 to deubiquitinate RIPK3 at k63 and a subsequent compromise in counteraction against the brain cell necroptosis.

3.
Oncol Rep ; 49(3)2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36660930

RESUMO

Guanylate­binding protein 2 (GBP2) has been widely studied in cancer, however, its potential role in clear cell renal cell carcinoma (ccRCC) is not fully elucidated. The present study aimed to explore the effect of GBP2 on tumor progression and its possible underlying molecular mechanisms in ccRCC. The Cancer Genome Atlas, Gene Expression Omnibus, Cancer Cell Line Encyclopedia databases, and several bioinformatics analysis tools, such as Gene Expression Profiling Interactive Analysis 2, Kaplan­Meier plotter, UALCAN, LinkedOmics, Metascape, GeneMANIA and Tumor Immune Estimation Resource, were used to characterize the functional relationship between GBP2 and ccRCC. Focusing on the association between GBP2 and programmed death ligand 1 (PD­L1) in vitro, the regulatory mechanism was investigated by knockdown and overexpression of GBP2 in Caki­1 and 786­O cells using reverse transcription­quantitative PCR, western blotting and co­immunoprecipitation techniques. The results indicated that GBP2 was commonly upregulated in ccRCC, correlating with worse prognosis. In addition, GBP2 expression levels were positively associated with different patterns of immune cell infiltration, suggesting that the GBP2 gene regulates PD­L1 expression via the signal transducer and activator of transcription 1 (STAT1) pathway. The present study suggested that GBP2 regulates tumor immune infiltration and promotes tumor immune escape through PD­L1 expression, revealing a potential immunotherapeutic target for ccRCC.


Assuntos
Antígeno B7-H1 , Carcinoma de Células Renais , Proteínas de Ligação ao GTP , Neoplasias Renais , Fator de Transcrição STAT1 , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Carcinoma de Células Renais/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação ao GTP/genética , Neoplasias Renais/patologia , Prognóstico , Transdução de Sinais/genética , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
4.
Cells ; 12(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36672139

RESUMO

The brief opening mode of the mitochondrial permeability transition pore (mPTP) serves as a calcium (Ca2+) release valve to prevent mitochondrial Ca2+ (mCa2+) overload. Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a stress-induced arrhythmic syndrome due to mutations in the Ca2+ release channel complex of ryanodine receptor 2 (RyR2). We hypothesize that inhibiting the mPTP opening in CPVT exacerbates the disease phenotype. By crossbreeding a CPVT model of CASQ2 knockout (KO) with a mouse missing CypD, an activator of mPTP, a double KO model (DKO) was generated. Echocardiography, cardiac histology, and live-cell imaging were employed to assess the severity of cardiac pathology. Western blot and RNAseq were performed to evaluate the contribution of various signaling pathways. Although exacerbated arrhythmias were reported, the DKO model did not exhibit pathological remodeling. Myocyte Ca2+ handling was similar to that of the CASQ2 KO mouse at a low pacing frequency. However, increased ROS production, activation of the CaMKII pathway, and hyperphosphorylation of RyR2 were detected in DKO. Transcriptome analysis identified altered gene expression profiles associated with electrical instability in DKO. Our study provides evidence that genetic inhibition of mPTP exacerbates RyR2 dysfunction in CPVT by increasing activation of the CaMKII pathway and subsequent hyperphosphorylation of RyR2.


Assuntos
Canal de Liberação de Cálcio do Receptor de Rianodina , Taquicardia Ventricular , Camundongos , Animais , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Calsequestrina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Miócitos Cardíacos/metabolismo , Taquicardia Ventricular/genética , Taquicardia Ventricular/patologia , Camundongos Knockout
5.
Genome Biol ; 24(1): 19, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36703158

RESUMO

BACKGROUND: A pangenome aims to capture the complete genetic diversity within a species and reduce bias in genetic analysis inherent in using a single reference genome. However, the current linear format of most plant pangenomes limits the presentation of position information for novel sequences. Graph pangenomes have been developed to overcome this limitation. However, bioinformatics analysis tools for graph format genomes are lacking. RESULTS: To overcome this problem, we develop a novel strategy for pangenome construction and a downstream pangenome analysis pipeline (PSVCP) that captures genetic variants' position information while maintaining a linearized layout. Using PSVCP, we construct a high-quality rice pangenome using 12 representative rice genomes and analyze an international rice panel with 413 diverse accessions using the pangenome as the reference. We show that PSVCP successfully identifies causal structural variations for rice grain weight and plant height. Our results provide insights into rice population structure and genomic diversity. We characterize a new locus (qPH8-1) associated with plant height on chromosome 8 undetected by the SNP-based genome-wide association study (GWAS). CONCLUSIONS: Our results demonstrate that the pangenome constructed by our pipeline combined with a presence and absence variation-based GWAS can provide additional power for genomic and genetic analysis. The pangenome constructed in this study and the associated genome sequence and genetic variants data provide valuable genomic resources for rice genomics research and improvement in future.

6.
Nat Commun ; 14(1): 363, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690626

RESUMO

The coactivator associated arginine methyltransferase (CARM1) promotes transcription, as its name implies. It does so by modifying histones and chromatin bound proteins. We identified nuclear factor I B (NFIB) as a CARM1 substrate and show that this transcription factor utilizes CARM1 as a coactivator. Biochemical studies reveal that tripartite motif 29 (TRIM29) is an effector molecule for methylated NFIB. Importantly, NFIB harbors both oncogenic and metastatic activities, and is often overexpressed in small cell lung cancer (SCLC). Here, we explore the possibility that CARM1 methylation of NFIB is important for its transforming activity. Using a SCLC mouse model, we show that both CARM1 and the CARM1 methylation site on NFIB are critical for the rapid onset of SCLC. Furthermore, CARM1 and methylated NFIB are responsible for maintaining similar open chromatin states in tumors. Together, these findings suggest that CARM1 might be a therapeutic target for SCLC.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Animais , Camundongos , Fatores de Transcrição NFI , Proteína-Arginina N-Metiltransferases/metabolismo , Cromatina
7.
Langmuir ; 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36668988

RESUMO

Au@Ag@SiO2 core-shell-shell nanoparticles (NPs) were prepared by a facile one-pot synthetic technique. The Au@Ag core size and SiO2 shell thicknesses are readily controlled by adjusting the precursor concentration. The multilayered NPs with dielectric SiO2 outer shells and bimetallic Au@Ag cores exhibited both the chemical stability of Au with the high scattering efficiency of Ag. Furthermore, the SiO2 shell is beneficial to the metal-enhanced fluorescence for biomedical applications. Metal-enhanced fluorescence, surface-enhanced Raman scattering, and photocatalytic activities of silica-coated Au@Ag, Ag, Au, and Au/Ag core-shell NPs were compared and discussed. The size and structure of Au@Ag@SiO2 core-shell-shell NPs were optimized to maximize their optical and catalytic activities.

8.
Plants (Basel) ; 12(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36678989

RESUMO

Abies beshanzuensis, an extremely rare and critically endangered plant with only three wild adult trees globally, is strongly mycorrhizal-dependent, leading to difficulties in protection and artificial breeding without symbiosis. Root hair morphogenesis plays an important role in the survival of mycorrhizal symbionts. Due to the lack of an effective genome and transcriptome of A. beshanzuensis, the molecular signals involved in the root hair development remain unknown, which hinders its endangered mechanism analysis and protection. Herein, transcriptomes of radicles with root hair (RH1) and without root hair (RH0) from A. beshanzuensis in vitro plantlets were primarily established. Functional annotation and differentially expressed gene (DEG) analysis showed that the two phenotypes have highly differentially expressed gene clusters. Transcriptome divergence identified hormone and sugar signaling primarily involved in root hair morphogenesis of A. beshanzuensis. Weighted correlation network analysis (WGCNA) coupled with quantitative real-time PCR (qRT-PCR) found that two hormone-sucrose-root hair modules were linked by IAA17, and SUS was positioned in the center of the regulation network, co-expressed with SRK2E in hormone transduction and key genes related to root hair morphogenesis. Our results contribute to better understanding of the molecular mechanisms of root hair development and offer new insights into deciphering the survival mechanism of A. beshanzuensis and other endangered species, utilizing root hair as a compensatory strategy instead of poor mycorrhizal growth.

9.
Regen Biomater ; 10: rbac093, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36683734

RESUMO

The 'plainification of materials' has been conceptualized to promote the sustainable development of materials. This perspective, for the first time in the field of biomaterials, proposes and defines 'plain metallic biomaterials (PMBs)' with demonstrated research and application case studies of pure titanium with high strength and toughness, and biodegradable, fine-grained and high-purity magnesium. Then, after discussing the features, benefits and opportunities of PMBs, the challenges are analyzed from both technical and regulatory aspects. Regulatory perspectives on PMB-based medical devices are also provided for the benefit of future research, development and commercialization.

10.
ACS Nano ; 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36623255

RESUMO

Responsive nanosystems for tumor treatment with high specificity and sensitivity have aroused great attention. Herein, we develop a tumor microenvironment responsive and near-infrared (NIR)-activatable theranostic nanoreactor for imaging-guided anticancer therapy. The nanoreactor (SnO2-x@AGP) is comprised of poly(vinylpyrrolidine) encapsulated hollow mesoporous black SnO2-x nanoparticles coloaded with glucose oxidase (GOx) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). The constructed nanoreactor can be specifically activated through endogenous H2O2 by an NIR-mediated "bursting-like" process to enhance its imaging and therapeutic functions. Black SnO2-x with abundant oxygen vacancies expedites effective separation of electron-hole pairs from energy-band structure and endows them with strong hyperthermia effect upon NIR laser irradiation. The generating toxic H2O2 with the assistance of GOx provides SnO2-x@AGP with the capacity of oxidative stress therapy. Ascended H2O2 can activate ABTS into ABTS•+. ABTS•+ not only possesses significant NIR absorption properties, but also disrupts intracellular glutathione to generate excessive reactive oxygen species for improved phototherapy, leading to more effective treatment together with oxidative stress therapy. Thus, SnO2-x@AGP with NIR-mediated and H2O2-activated performance presents tumor inhibition efficacy with minimized damage to normal tissues. These outstanding characteristics of SnO2-x@AGP bring an insight into the development of activatable nanoreactors for smart, precise, and non-invasive cancer theranostics.

11.
Nat Nanotechnol ; 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624206

RESUMO

Block copolymer self-assembly is a powerful tool for two-dimensional nanofabrication; however, the extension of this self-assembly concept to complex three-dimensional network structures is limited. Here we report a simple method to experimentally generate three-dimensional layered mesh morphologies through intrinsic molecular confinement self-assembly. We designed triblock bottlebrush polymers with two Janus domains: one perpendicular and one parallel to the polymer backbone. The former enforces a lamellar superstructure that intrinsically confines the intralayer self-assembly of the latter, giving rise to a mesh-like monoclinic (54°) M15 network substructure with excellent long-range order, as well as a tetragonal (90°) T131 mesh. Numerical simulations show that the spatial constraints exerted on the polymer backbone drive the assembly of M15 and yield T131 in the strong segregation regime. This work demonstrates that intrinsic molecular confinement is a viable path to bottom-up assembly of new geometrical phases of soft matter, extending the capabilities of block copolymer nanofabrication.

12.
Nutrients ; 15(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36678306

RESUMO

C. oleifera is an economically important oilseed crop and medical plant. However, as a characteristic honey resource, the standard protocol used to identify the composition of C. oleifera honey has not been established yet. Previously, distinctive flavonoid has been shown as an effective marker to trace the botanical origin of honey. In this study, we examined the flavonoid types in C. oleifera honey and nine other monofloral honeys by using liquid chromatography tandem-mass spectrometry (LC-MS/MS) and compared the differences and identified eight distinct flavonoids in C. oleifera honey. Then, comparing the 8 flavonoids with the 14 flavonoids common to C. oleifera honey and nectar, two distinct flavonoids were identified in C. oleifera honey and nectar. Finally, we identified kaempferitrin as the distinct flavonoid marker in C. oleifera honey using the degree of influence of the partial least-squares discriminant analysis (PLS-DA) model on C. oleifera honey and ployfloral honey.


Assuntos
Mel , Mel/análise , Flavonoides/química , Néctar de Plantas , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem
13.
World J Surg ; 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681771

RESUMO

BACKGROUND: Acute kidney injury (AKI) is a major complication that occurs following an operation. Therefore, there is an increasing need to discover new predictors of AKI. We hypothesized that the preoperative neutrophil-to-lymphocyte ratio (NLR) was associated with postoperative AKI and in-hospital mortality following noncardiac surgery. METHODS: This is a retrospective observational study of patients who underwent noncardiac surgery at Sichuan University West China Hospital from 2018 to 2020. Multivariable logistic regression was performed as the major analytic method. In addition, sensitivity and subgroup analyses were performed to validate the results. RESULTS: A total of 44,065 patients were included in this study. The prevalence of postoperative AKI was 5.62%, and the in-hospital mortality was 1.58%. Multivariable analysis demonstrated that NLR ≥ 5 was independently associated with the development of postoperative AKI (OR 1.42, 1.24-1.73; P < 0.001) and in-hospital mortality (OR 2.03, 1.63-2.52; P < 0.001). Similar results were achieved when propensity-score matching was performed for patients with NLR ≥ 5 and < 5 on the baseline. In stratified analysis, the associations remained persistent in most subgroups. For the sensitivity analysis, we took NLR as a continuous variable and demonstrated the potential linear relationship between NLR and postoperative AKI and mortality. CONCLUSIONS: Our results indicated that preoperative NLR is associated with the prevalence of postoperative AKI and in-hospital mortality that occur after major noncardiac surgery. These findings suggest that NLR has the potential to be a significant correlation biomarker associated with perioperative risk assessment of patients undergoing noncardiac surgeries.

14.
J Agric Food Chem ; 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36695193

RESUMO

Salicylic acid (SA) is an important plant hormone and signal required for establishing resistance to diverse pathogens and plant diseases. The abundant polyphenols in tea plants also defend plants from biotic and abiotic stresses. However, whether exogenous SA would increase the resistance of tea plants to adversity and the relationship between SA and polyphenols are still poorly understood. Here, we carried out SA treatment on tea seedlings and performed transcriptome sequencing. SA treatment inhibited the phenylpropanoid and flavonoid metabolic pathways but promoted the lignin metabolic pathways. The increased accumulation of lignin in tea leaves after treating with SA indicated that lignin might coordinate SA, enhance, and improve plant defense and disease resistance. Simultaneously, an SA-inducible flavonoid glucosyltransferase (CsUGT0554) specifically involved in 7-OH site glycosylation was characterized in vitro. These results provided valuable information about the effects of SA on tea seedlings and the molecular basis for SA-mediated immune responses.

15.
Phytomedicine ; 109: 154572, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610164

RESUMO

BACKGROUND: Melanoma is an aggressive malignancy with a high mortality rate. Signal transducer and activator of transcription 3 (STAT3), an oncoprotein, is considered as an effective target for treating melanoma. Chrysoeriol is a flavonoid compound, and possesses anti-tumor activity in lung cancer, breast cancer and multiple myeloma; while whether it has anti-melanoma effects is still not known. Chrysoeriol has been shown to restrain STAT3 signaling in an inflammation mouse model. PURPOSE: In this study, the anti-melanoma effects of chrysoeriol and the involvement of STAT3 signaling in these effects were investigated. STUDY DESIGN AND METHODS: CCK8 assays, 5-ethynyl-2'-deoxyuridine (EdU) staining, Annexin V-FITC/PI staining, Western blot analyses of cleaved caspase-9 and wound healing assays were used to study the anti-melanoma effects of chrysoeriol in cell models. A B16F10 melanoma bearing mouse model was used to evaluate the in vivo anti-melanoma effects of chrysoeriol. Indicators of cell proliferation, cell apoptosis and angiogeneis in melanoma tissues were detected by immunohistochemistry (IHC) staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. Immune cells in melanoma tissues were analyzed by flow cytometry. STAT3-overactivated cell models were used to investigate the involvement of STAT3 signaling in the anti-melanoma effects of chrysoeriol. Molecular dynamics (MD) simulations and surface plasmon resonance (SPR) assays were conducted to determine whether chrysoeriol binds to Src, an upstream kinase of STAT3. RESULTS: The results of cell experiments showed that chrysoeriol dose-dependently inhibited viability, proliferation and migration of, and induced apoptosis in, A375 and B16F10 melanoma cells. Chrysoeriol inhibited the phosphorylation of STAT3, and downregulated the expression of STAT3-target genes involved in melanoma growth and metastasis. Mouse studies showed that chrysoeriol restrained melanoma growth and tumor-related angiogenesis, and altered compositions of immune cells in melanoma microenvironment. Chrysoeriol also inhibited STAT3 signaling in B16F10 allografts. Chrysoeriol's viability-inhibiting effects were attenuated by over-activating STAT3 in A375 cells. Furthermore, chrysoeriol bound to the protein kinase domain of Src, and suppressed Src phosphorylation in melanoma cells and tissues. CONCLUSION: This study, for the first time, demonstrates that chrysoeriol has anti-melanoma effects, and these effects are partially due to inhibiting STAT3 signaling. Our findings indicate that chrysoeriol has the potential to be developed into an anti-melanoma agent.


Assuntos
Flavonas , Melanoma , Animais , Camundongos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Melanoma/tratamento farmacológico , Flavonas/farmacologia , Proliferação de Células , Linhagem Celular Tumoral , Apoptose , Microambiente Tumoral
16.
Sci Signal ; 16(767): eabm0488, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36626577

RESUMO

Escherichia coli are part of the normal intestinal microbiome, but some enterohemorrhagic E. coli (EHEC) and enteropathogenic E. coli (EPEC) strains can cause potentially life-threatening gastroenteritis. Virulence factors underlying the ability of EHEC and EPEC to cause disease include those encoded in the locus of the enterocyte effacement (LEE) pathogenicity island. Here, we demonstrated that EsrL, a small RNA present in many E. coli strains, promoted pathogenicity, adhesion, and biofilm formation in EHEC and EPEC. PhoB, the response regulator of the two-component system that controls cellular responses to phosphate, directly repressed esrL expression under low-phosphate conditions. A phosphate-rich environment, similar to that of the human intestine, relieved PhoB-mediated repression of esrL. EsrL interacted with and stabilized the LEE-encoded regulator (ler) transcript, which encodes a transcription factor for LEE genes, leading to increased bacterial adhesion to cultured cells and colonization of the rabbit colon. EsrL also bound to and stabilized the fimC transcript, which encodes a chaperone that is required for the assembly of type 1 pili, resulting in enhanced cell adhesion in pathogenic E. coli and enhanced biofilm formation in pathogenic and nonpathogenic E. coli. Our findings demonstrate that EsrL stimulates the expression of virulence genes in both EHEC and EPEC under phosphate-rich conditions, thus promoting the pathogenicity of EHEC and EPEC in the nutrient-rich gut environment.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Animais , Humanos , Coelhos , Escherichia coli/genética , Escherichia coli/metabolismo , Virulência/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fosfatos/metabolismo , Biofilmes , Regulação Bacteriana da Expressão Gênica
17.
Int Immunopharmacol ; 115: 109605, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36608439

RESUMO

Hepatic stellate cells (HSCs) activate and acquire proliferative features in response to liver injury. However, mechanisms involved in the activation of fibrotic HSCs remain uncharacterized. This study aims at elaborating the mechanistic basis by which exosomal H2AFJ derived from hepatocytes might affect the activation of HSCs and liver fibrosis. Bioinformatics analysis based on transcriptomic RNA-seq data was used to screen out the downstream regulatory genes and pathways of H2AFJ. Mouse hepatocytes AML-12 cells were stimulated with CCl4 to mimic an in vitro microenvironment of liver fibrosis, from which exosomes were isolated. Next, HSCs were co-cultured with hepatocyte-derived exosomes followed by detection of HSC migration and invasion in the presence of manipulated H2AFJ and STMN1 expression and MAPK pathway inhibitor. It was found that H2AFJ was highly expressed in hepatocyte-derived exosomes after CCl4 stimulation. Hepatocyte-derived exosomal H2AFJ promoted HSC migration and invasion. H2AFJ upregulated c-jun-mediated STMN1 by activating the MAPK signaling pathway. Furthermore, in vivo experiments verified that silencing of H2AFJ attenuated liver fibrosis in mice, while restoration of STMN1 negated its effect. Collectively, hepatocyte-derived exosomal H2AFJ aggravated liver fibrosis by activating the MAPK/STMN1 signaling pathway. This study provides a potential therapeutic target for alleviating liver fibrosis.

18.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674921

RESUMO

Alcoholic liver damage is caused by long-term drinking, and it further develops into alcoholic liver diseases. In this study, we prepared a probiotic fermentation product of Grifola frondosa total active components (PFGF) by fermentation with Lactobacillus acidophilus, Lactobacillus rhamnosus, and Pediococcus acidilactici. After fermentation, the total sugar and protein content in the PFGF significantly decreased, while the lactic acid level and antioxidant activity of the PFGF increased. Afterward, we investigated the alleviating effect of PFGF on alcoholic liver injury in alcohol-fed mice. The results showed that the PFGF intervention reduced the necrosis of the liver cells, attenuated the inflammation of the liver and intestines, restored the liver function, increased the antioxidant factors of the liver, and maintained the cecum tissue barrier. Additionally, the results of the 16S rRNA sequencing analysis indicated that the PFGF intervention increased the relative abundance of beneficial bacteria, such as Lactobacillus, Ruminococcaceae, Parabacteroids, Parasutterella, and Alistipes, to attenuate intestinal inflammation. These results demonstrate that PFGF can potentially alleviate alcoholic liver damage by restoring the intestinal barrier and regulating the intestinal microflora.


Assuntos
Grifola , Hepatopatias Alcoólicas , Probióticos , Camundongos , Animais , Antioxidantes , RNA Ribossômico 16S/genética , Probióticos/uso terapêutico , Inflamação
19.
Materials (Basel) ; 16(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36676527

RESUMO

High-activity spherical TaNbTiZr refractory high-entropy alloy (REHA) powders were successfully prepared by electrode induction melting gas atomization (EIGA) and plasma rotating electrode process (PREP) methods. Both the EIGAed and PREPed TaNbTiZr RHEA powders have a single-phase body-centered cubic (BCC) structure and low oxygen content. Compared with the EIGAed powders, the PREPed powders exhibit higher sphericity and smoother surface, but larger particle size. The average particle sizes of the EIGAed and PREPed powders are 51.8 and 65.9 µm, respectively. In addition, both the coarse EIGAed and PREPed powders have dendritic structure, and the dendrite size of the EIGAed powders is larger than that of the PREPed powders. Theoretical calculation indicates that the cooling rate of the PREPed powders is one order of magnitude higher than that of the EIGAed powders during the solidification process, and the dendritic structure has more time to grow during EIGA, which is the main reason for the coarser dendrite size of the EIGAed powders.

20.
Food Chem ; 410: 135381, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36608547

RESUMO

The on-site detection of hydrogen peroxide (H2O2) is important for maintaining food safety as the ingestion of H2O2 can lead to serious pathological conditions. However, most reported fluorescent probes require a fluorometer to ensure readable signal output and reliable detection result. Consequently, the fluorescent detection of H2O2 can be realized only within a standard laboratory setting. Herein, we report a novel supramolecular strategy that can successfully convert the typical off-on response to H2O2 into a ratiometric response, which allows the on-site detection of H2O2 when used in conjunction with a smartphone-based 3D-printed miniaturized testing system. This method has acceptable sensitivity, good anti-interference ability, and desirable accuracy compared to a standard detection method. More importantly, this portable ratiometric method can be used to detect H2O2 residue in commercial milk samples with the simple testing apparatuses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...