Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.296
Filtrar
1.
Chemosphere ; 239: 124793, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31726530

RESUMO

Developing an efficient and environmentally friendly strategy for oil-water separation is extremely important for practical application. In this study, a superhydrophobic and superoleophilic melamine sponge loaded with cross-linked and swellable polydivinylbenzene was successfully fabricated by a facile and effective one-step impregnation-curing method with adhesion of polydimethylsiloxane. The prepared sponge not only exhibited high oil absorption capacity, but it also enabled rapid oil collection in situ, which could be extended to practical application. Moreover, the modified superhydrophobic sponge showed excellent mechanical resistance and chemical stability. The surface morphology and chemical composition were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. This material has great development potential for large-scale oil spill clean-up and chemical spill accidents.

2.
J Cell Biochem ; 121(1): 49-62, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31571264

RESUMO

Acute coronary syndrome (ACS) is characterized by atherosclerotic plaque rupture with a high incidence of recurrent ischemic events. Several microRNAs are found to be aberrantly expressed in atherosclerotic plaques. This study aims to investigate the effects of microRNA-9 (miR-9) on vulnerable atherosclerotic plaque and vascular remodeling in ACS and underlying mechanisms. Microarray-based gene expression profiling was used to identify differentially expressed genes related to ACS and regulatory miRNAs. Oxidized low-density lipoprotein (lectin-like) receptor 1 (OLR1) was identified to be aberrantly activated in ACS and regulated by miR-9. OLR1 was verified as a target gene of miR-9 by bioinformatics prediction and dual luciferase reporter gene assay. The atherosclerotic models were induced in ApoE-/- mice, in which the agomir or antagomir of miR-9, or small interfering RNA (siRNA) against OLR1 were separately introduced. Serum lipid levels and expression of vascular remodeling and inflammatory response-related factors were determined, respectively. On the basis of the obtained results, in the atherosclerosis mice treated with the agomir of miR-9 and siRNA against OLR1, the p38-mitogen-activated protein kinase (p38MAPK) pathway was inhibited; levels of triglyceride, total cholesterol, low-density lipoprotein cholesterol, tumor necrosis factor-α, interleukin-6, and vascular endothelial growth factor were reduced, but the high-density lipoprotein cholesterol level was increased, along with decreased vulnerable atherosclerotic plaque area and enhanced vascular remodeling. Taken together, these findings suggested an inhibitory role miR-9 acts in the formation of vulnerable atherosclerotic plaques in ACS mice, along with a promoted vascular remodeling, via a negative feedback regulation of OLR1-mediated p38MAPK pathway.

3.
Methods Mol Biol ; 2069: 197-228, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31523776

RESUMO

In vivo whole-animal optical (bioluminescence and fluorescence) imaging of Staphylococcus aureus infections has provided the opportunity to noninvasively and longitudinally monitor the dynamics of the bacterial burden and ensuing host immune responses in live anesthetized animals. Herein, we describe several different mouse models of S. aureus skin infection, skin inflammation, incisional/excisional wound infections, as well as mouse and rabbit models of orthopedic implant infection, which utilized this imaging technology. These animal models and imaging methodologies provide insights into the pathogenesis of these infections and innate and adaptive immune responses, as well as the preclinical evaluation of diagnostic and treatment modalities. Noninvasive approaches to investigate host-pathogen interactions are extremely important as virulent community-acquired methicillin-resistant S. aureus strains (CA-MRSA) are spreading through the normal human population, becoming more antibiotic resistant and creating a serious threat to public health.

4.
Genome Med ; 11(1): 67, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666118

RESUMO

BACKGROUND: Cancer neoantigens are expressed only in cancer cells and presented on the tumor cell surface in complex with major histocompatibility complex (MHC) class I proteins for recognition by cytotoxic T cells. Accurate and rapid identification of neoantigens play a pivotal role in cancer immunotherapy. Although several in silico tools for neoantigen prediction have been presented, limitations of these tools exist. RESULTS: We developed pTuneos, a computational pipeline for prioritizing tumor neoantigens from next-generation sequencing data. We tested the performance of pTuneos on the melanoma cancer vaccine cohort data and tumor-infiltrating lymphocyte (TIL)-recognized neopeptide data. pTuneos is able to predict the MHC presentation and T cell recognition ability of the candidate neoantigens, and the actual immunogenicity of single-nucleotide variant (SNV)-based neopeptides considering their natural processing and presentation, surpassing the existing tools with a comprehensive and quantitative benchmark of their neoantigen prioritization performance and running time. pTuneos was further tested on The Cancer Genome Atlas (TCGA) cohort data as well as the melanoma and non-small cell lung cancer (NSCLC) cohort data undergoing checkpoint blockade immunotherapy. The overall neoantigen immunogenicity score proposed by pTuneos is demonstrated to be a powerful and pan-cancer marker for survival prediction compared to traditional well-established biomarkers. CONCLUSIONS: In summary, pTuneos provides the state-of-the-art one-stop and user-friendly solution for prioritizing SNV-based candidate neoepitopes, which could help to advance research on next-generation cancer immunotherapies and personalized cancer vaccines. pTuneos is available at https://github.com/bm2-lab/pTuneos , with a Docker version for quick deployment at https://cloud.docker.com/u/bm2lab/repository/docker/bm2lab/ptuneos .

5.
BMC Cancer ; 19(1): 1117, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729964

RESUMO

BACKGROUND: The CAO/ARO/AIO-94 demonstrated that neoadjuvant chemoradiotherapy (CRT) could decrease the rate of local recurrence rather than distal metastases in advanced rectal cancer. Adjuvant chemotherapy (ACT) can eliminate micrometastasis, and render a better prognosis to rectal cancer. However, adoption of ACT mainly depends on the evidence from colon cancer. Neoadjuvant CRT can lead to tumor shrinkage in a number of patients with advanced rectal cancer. The administration of adjuvant therapy depending on pretreatment clinical stage or postoperative yield pathological (yp) stage remains controversial. At present, the clinical guidelines recommend ACT for patients with stage II/III (ypT3-4 N0 or ypTanyN1-2) rectal cancer following neoadjuvant CRT and surgery. However, the yp stage may influence the guidance of ACT. METHODS: According to the postoperative pathological stage, the present study was divided into two parts with different study design procedures. Patients will undergo different therapeutic strategies after collecting data related to postoperative pathological stage. For patients with pathologic complete response or yp stage I, the study was designed as a non-inferiority trial to compare the patients' long-term outcomes in observational group and those in treatment group with 5-fluorouracil. For patients at yp stage II or III, the study was designed as a superiority trial to compare the oncological effect of oxaliplatin combined with 5-fluorouracil, in addition to 5-fluorouracil alone in ACT. The primary endpoint is 3-year disease-free survival (DFS). Secondary endpoints are 3-year, 5-year overall survival, 5-year DFS, and the rate of local recurrence and adverse events resulted from chemotherapy and the patients' quality of life postoperatively. DISCUSSION: The ACRNaCT trial aims to investigate whether observation is not inferior than 5-fluorouracil for pathologic complete response or yp stage I, and indicate whether combined chemotherapy contains superior outcomes than 5-fluorouracil alone for yp stage II or III in patients receiving neoadjuvant CRT and surgery for locally advanced rectal cancer (LARC). This trial is expected to provide individualized adjuvant treatment strategies for LARC patients following neoadjuvant CRT and surgery. TRIAL REGISTRATION: The trial has been registered in ClinicalTrials.gov on January 30, 2018 (Registration No. NCT03415763), and also, that was registered in Chinese Clinical Trial Registry on November 12, 2018 (Registration No. ChiCTR1800019445).

6.
J Transl Med ; 17(1): 378, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31730006

RESUMO

BACKGROUND: Atherosclerosis preferentially develops in regions of disturbed flow (DF). Emerging evidence indicates that yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), which are both effectors of the Hippo pathway, sense different blood flow patterns and regulate atherosclerotic lesions. We previously found that methotrexate (MTX) reduces in-stent neoatherosclerosis, decreases the plaque burden, and has an effect on local fluid shear stress. Here, we investigated the atheroprotective effect of MTX under DF and the mechanisms underlying these properties. METHODS: Human umbilical vein endothelial cells (HUVECs) were subjected to biomechanical stretch using a parallel-plate flow system and treated with or without MTX at therapeutically relevant concentrations. Additionally, an extravascular device was used to induce DF in the left common carotid artery of C57BL/6 mice, followed by treatment with MTX or 0.9% saline. The artery was then assessed histopathologically after 4 weeks on a Western diet. RESULTS: We observed that MTX significantly inhibited DF-induced endothelial YAP/TAZ activation. Furthermore, it markedly decreased pro-inflammatory factor secretion and monocyte adhesion in HUVECs but had no effect on apoptosis. Mechanistically, AMPKa1 depletion attenuated these effects of MTX. Accordingly, MTX decreased DF-induced plaque formation, which was accompanied by YAP/TAZ downregulation in vivo. CONCLUSIONS: Taken together, we conclude that MTX exerts protective effects via the AMP-dependent kinase (AMPK)-YAP/TAZ pathway. These results provide a basis for the prevention and treatment of atherosclerosis via the inhibition of YAP/TAZ.

7.
Nanoscale ; 11(44): 21433-21448, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31681915

RESUMO

The intestinal epithelium is the main barrier for nanocarriers to orally deliver poorly water-soluble and absorbed agents. To further improve the transmembrane transport efficiency of polymeric micelles, intestinal oligopeptide transporter PepT1-targeted polymeric micelles were fabricated by Gly-Sar-conjugated poly(ethylene glycol)-poly(d,l-lactic acid). The functionalized polymeric micelles with about 40 nm diameter, uniform spherical morphology and favorable cytocompatibility with Caco-2 cells were demonstrated to distinctly enhance the cellular uptake and transmembrane transport of the loaded agents. The results of intestinal absorption strongly evidenced the higher accumulation of the micelles inside the epithelial cells, at the apical and basolateral sides of the epithelium within the villi in mice. Furthermore, the interaction of Gly-Sar decorated polymeric micelles with PepT1 was explored to promote the internalization of the micelles through fluorescence immunoassay, and the PepT1 level on the membrane of Caco-2 cells treated with the micelles appeared to change in a distinctly time-dependent manner. Both clathrin- and caveolae-mediated pathways were involved in the transcellular transport for undecorated polymeric micelles, while the transcellular transport pathway for Gly-Sar decorated ones was changed to be mainly mediated by clathrin and lipid rafts. The colocalization of Gly-Sar decorated micelles with the organelles observed by confocal laser scanning microscopy indicated that late endosomes, lysosomes, endoplasmic reticulum and Golgi apparatus appeared to participate in the intracellular trafficking progression of the micelles. These results suggested that PepT1-targeted polymeric micelles might have a strong potential to greatly promote the oral absorption of poorly water-soluble and absorbed agents.

8.
Artigo em Inglês | MEDLINE | ID: mdl-31724280

RESUMO

Herein, a sensitive amine-responsive disassembly of self-assembled Au(I)-Cu(I) double salts was observed and its utilization for the synergistic catalysis was further enlightened. Investigation of the disassembly of [Au(NHC)2][CuI2] revealed the contribution of Cu-assisted ligand exchange of N-heterocyclic carbene (NHC) by amine in [Au(NHC)2]+ and the capacity of [CuI2]- on the oxidative step. By integrating the implicative information coded in the responsive behaviour and inherent catalytic functions of d10 metal complexes, we have developed a novel catalyst for the oxidative carbonylation of amines. The advantages of this protocol were clearly reflected on mild reaction condtion and the significantly expanded scope (51 examples); both primary and steric secondary amines can be employed as substrates. The cooperative reactivity from Au and Cu centers, as an indispensable prerequisite for the excellent catalytic performance, was validated in the synthesis of (un)symmetric ureas and carbamates.

9.
PLoS Comput Biol ; 15(10): e1007343, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31671086

RESUMO

Adopting a systems approach, we devise a general workflow to define actionable subtypes in human cancers. Applied to small cell lung cancer (SCLC), the workflow identifies four subtypes based on global gene expression patterns and ontologies. Three correspond to known subtypes (SCLC-A, SCLC-N, and SCLC-Y), while the fourth is a previously undescribed ASCL1+ neuroendocrine variant (NEv2, or SCLC-A2). Tumor deconvolution with subtype gene signatures shows that all of the subtypes are detectable in varying proportions in human and mouse tumors. To understand how multiple stable subtypes can arise within a tumor, we infer a network of transcription factors and develop BooleaBayes, a minimally-constrained Boolean rule-fitting approach. In silico perturbations of the network identify master regulators and destabilizers of its attractors. Specific to NEv2, BooleaBayes predicts ELF3 and NR0B1 as master regulators of the subtype, and TCF3 as a master destabilizer. Since the four subtypes exhibit differential drug sensitivity, with NEv2 consistently least sensitive, these findings may lead to actionable therapeutic strategies that consider SCLC intratumoral heterogeneity. Our systems-level approach should generalize to other cancer types.

10.
Theriogenology ; 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31733931

RESUMO

The aim of this study was to investigate the effects of different oxygen (O2) concentrations on the growth of mouse spermatogonial stem cells (SSCs) and the possible mechanisms of cell proliferation in vitro. The SSCs from testicular cells were cultured in various O2 concentrations (1%, 2.5%, 5%, and 20% O2) for 7 days. Colonies of SSCs were identified morphologically and by immunofluorescence. The number of mouse SSC colonies and the area covered by them were measured. Cell cycle progression of the SSCs was analyzed to identify the state of cell proliferation. The effects of O2 concentrations on the levels of intracellular reactive oxygen species (ROS) and expression of ATP binding cassette subfamily G member 2 (ABCG2) were also analyzed in the SSCs. Following culturing for 7 days, the SSCs were treated with Ko143 (a specific inhibitor of ABCG2) for 1 h, and the ROS level and expression of bcl-2, bax, and p53 were analyzed. The results showed that mouse SSCs formed compact colonies and had unclear borders in different O2 concentrations for 7 days, and there were no major morphologic differences between the O2 treatment groups. The expression of the SSC marker, GFR α1 was studied in each O2 treatment group. The number and area of SSC colonies, and the number of GFR α1 positive cells were the highest in the 2.5% O2 treatment group. Compared with other O2 concentrations, the number of cells in G0 cycle was significantly higher, while the level of intracellular ROS was lower at 1% O2. Moreover, the intracellular ROS levels gradually increased with increasing O2 concentration from 1% to 20%. The expression of ABCG2 in the SSCs cultured at 2.5% O2 was higher than in the other O2 groups. Inhibition of ABCG2 increased intracellular ROS generation, and the expression of the pro-apoptotic genes bax and p53, and decreased the expression of the anti-apoptotic gene bcl-2. In conclusion, moderate to low O2 tension increases ABCG2 expression to maintain mild ROS levels, triggers the expression of the anti-apoptotic genes, suppresses the proapoptotic gene pathway, and further promotes the proliferation of mouse SSCs in vitro.

11.
Pediatr Blood Cancer ; : e28047, 2019 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-31736278

RESUMO

PURPOSE: To estimate the absolute number of adult survivors of childhood cancer in the U.S. population who carry a pathogenic or likely pathogenic variant in a cancer predisposition gene. METHODS: Using the Surveillance, Epidemiology, and End Results (SEER) Program, we estimated the number of childhood cancer survivors on December 31, 2016 for each childhood cancer diagnosis, multiplied this by the proportion of carriers of pathogenic/likely pathogenic variants in the St. Jude Lifetime Cohort (SJLIFE) study, and projected the resulting number onto the U.S. RESULTS: Based on genome sequence data, 11.8% of 2450 SJLIFE participants carry a pathogenic/likely pathogenic variant in one of 156 cancer predisposition genes. Given this information, we estimate that 21 800 adult survivors of childhood cancer in the United States carry a pathogenic/likely pathogenic variant in one of these genes. The highest estimated absolute number of variant carriers are among survivors of central nervous system tumors (n = 4300), particularly astrocytoma (n = 1800) and other gliomas (n = 1700), acute lymphoblastic leukemia (n = 4300), and retinoblastoma (n = 3500). The most frequently mutated genes are RB1 (n = 3000), NF1 (n = 2300), and BRCA2 (n = 800). CONCLUSION: Given the increasing number of childhood cancer survivors in the United States, clinicians should counsel survivors regarding their potential genetic risk, consider referral for genetic counseling and testing, and, as appropriate, implement syndrome-specific cancer surveillance or risk-reducing measures.

12.
J Hazard Mater ; : 121535, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31740311

RESUMO

Electrospinning technology has been used for a long time. A jet from a needle was formed by applying high voltage, and then the nanofibers are deposited onto a collecting electrode (usually metal) and the excess charge is conducted away to complete the electrospinning. Alternatively, it is also possible to prevent charge accumulation from hindering the progress of electrospinning by means of charge neutralization. A bipolar electrospinning technique (B-EEM) was developed to induce jets with different charges through a set of high-voltage power supplies of opposite polarity, and the two jets neutralize each other on the insulating mesh, thus completing the electrospinning process. There is no need for a collecting electrode to complete the electrospinning process. We have found that the filters produced by the new technology have better filtration efficiency while maintaining the same transparency in relative to the original technology, and this optimization is due to the distribution modification of the nanofibers on the mesh.

13.
Adv Mater ; : e1905751, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31709671

RESUMO

The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) enzyme, Cas13a, holds great promise in cancer treatment due to its potential for selective destruction of tumor cells via collateral effects after target recognition. However, these collateral effects do not specifically target tumor cells and may cause safety issues when administered systemically. Herein, a dual-locking nanoparticle (DLNP) that can restrict CRISPR/Cas13a activation to tumor tissues is described. DLNP has a core-shell structure, in which the CRISPR/Cas13a system (plasmid DNA, pDNA) is encapsulated inside the core with a dual-responsive polymer layer. This polymer layer endows the DLNP with enhanced stability during blood circulation or in normal tissues and facilitates cellular internalization of the CRISPR/Cas13a system and activation of gene editing upon entry into tumor tissue. After carefully screening and optimizing the CRISPR RNA (crRNA) sequence that targets programmed death-ligand 1 (PD-L1), DLNP demonstrates the effective activation of T-cell-mediated antitumor immunity and the reshaping of immunosuppressive tumor microenvironment (TME) in B16F10-bearing mice, resulting in significantly enhanced antitumor effect and improved survival rate. Further development by replacing the specific crRNA of target genes can potentially make DLNP a universal platform for the rapid development of safe and efficient cancer immunotherapies.

14.
Molecules ; 24(22)2019 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-31717584

RESUMO

Astragalus mongholicus (MG) and Astragalus membranaceus (MJ), both generally known as Huangqi in China, are two perennial herbals widely used in variety diseases. However, there were still some differences in the chemical ingredients between MG and MJ. In this paper, metabolomics combined with the ultra-high performance liquid chromatography coupled with electrospray ionization/quadrupole time-of-flight mass spectrometry (UHPLC-ESI-Q-TOF-MS/MS) was employed to contrastively analyze the chemical constituents between MG and MJ. As a result, principal component analysis showed that MG and MJ were separated clearly. A total of 53 chemical markers were successfully identified for the discrimination of MG and MJ. Of them, the contents of 36 components including Astragaloside I~III, Astragaloside IV, Agroastragaloside I, etc. in MJ were significantly higher than those in MG. On the contrary, the contents of 17 other components including coumaric acid, formononetin, sophoricoside, etc. in MG were obviously higher than those in MJ. The results showed that the distinctive constituents in MG and MJ were remarkable, and MJ may own stronger pharmacological activities than MG. In a word, MG and MJ may be treated as two different herbs. This paper demonstrated that metabolomics was a vitally credible technology to rapidly screen the characteristic chemical composition of traditional Chinese medicine.

15.
Br J Haematol ; 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31696939

RESUMO

Donor selection for older leukaemia patients undergoing haematopoietic cell transplant (HCT) is not well defined: outcomes might be improved with a younger offspring donor rather than an older human leukocyte antigen (HLA)-matched sibling donor (MSD). We extended our multicentre dataset. A total of 185 acute leukaemia patients (≥ 50 years) transplanted in first complete remission who received HCT from offspring (n = 62) or MSD (n = 123) were included. A 1:1 ratio matched-pair analysis was performed. We were able to match 54 offspring with 54 MSD patients. Outcomes were compared between the two matched-pair groups. The cumulative incidence of grade II/IV acute graft-versus-host disease (GVHD) (26% vs. 35%; P = 0·23) and chronic GVHD (37% vs. 24%; P = 0·19) was comparable between groups (MSD vs. offspring). The lower three-year transplant-related mortality (9% vs. 26%; P = 0·023) and relapse incidence (6% vs. 17%; P = 0·066) resulted in higher overall survival (85% vs. 58%; P = 0·003) and leukaemia-free survival (LFS) (85% vs. 56%; P = 0·001) in offspring HCT compared with that in MSD HCT. These data might favour a young offspring over an older MSD in patients >50 years. The current analyses confirm that non-HLA donor characteristics, such as kinship and donor age, rather than HLA disparity, predominantly influence survival in older acute leukaemia patients.

16.
Adv Healthc Mater ; : e1900823, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31697456

RESUMO

Rapid and effective hemostatic materials have received wide attention not only in the battlefield but also in hospitals and clinics. Traditional hemostasis relies on materials with little designability which has many limitations. Nanohemostasis has been proposed since the use of peptides in hemostasis. Nanomaterials exhibit excellent adhesion, versatility, and designability compared to traditional materials, laying a good foundation for future hemostatic materials. This review first summarizes current hemostatic methods and materials, and then introduces several cutting-edge designs and applications of nanohemostatic materials such as polypeptide assembly, electrospinning of cyanoacrylate, and nanochitosan. Particularly, their advantages and working mechanisms are introduced. Finally, the challenges and prospects of nanohemostasis are discussed.

17.
iScience ; 21: 249-260, 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31677477

RESUMO

Compared with SNV&indel-based neoantigens, fusion-based neoantigens are not well characterized. In the present study, we performed a comprehensive analysis of the landscape of tumor fusion neoantigens in cancer and proposed a score scheme to quantitatively assess their immunogenic potentials. By analyzing three large-scale tumor datasets, we demonstrated that (1) the tumor fusion candidate neoantigen burden is not related to the immunotherapy outcome; (2) fusion neoantigens tend to have notably higher immunogenic potentials than SNV&indel-based candidate neoantigens, making them better candidates for cancer vaccines; (3) fusion candidate neoantigens distribute sparsely between individual patients. Although several recurrent candidate neoantigens exist, they usually have extremely low immunogenic potentials, suggesting that vaccination-based cancer immunotherapy must be personalized; (4) compared with fusion mutations involving tumor passenger genes, fusion mutations involving oncogenic genes have remarkably low immunogenic potentials, indicating that they undergo selection pressure during tumorigenesis.

18.
Sci Total Environ ; : 135507, 2019 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-31761370

RESUMO

Soil respiration is a large carbon flux from terrestrial ecosystems to the atmosphere, and small variations in soil respiration can prominently influence the global carbon (C) cycle. The vegetation changes could directly affect soil respiration. The large-scale "Grain for Green" project carried out on the Loess Plateau, China has importantly affected the contribution of soil respiration to atmospheric carbon dioxide (CO2). Therefore, it is important to study the effects of vegetation restoration on soil respiration. We selected four land-use types: crop, forest, shrub, and grassland in the Zhifanggou watershed to analyze variation in soil respiration during dry and rainy seasons. Furthermore, the source of CO2 emissions from soil respiration was identified using isotopes. The results showed that soil respiration in the rainy season was significantly higher than that in the dry season (P < .05). Soil respiration in the dry season was as follows: shrubland (1.04 µmol m-2 s-1) > cropland (0.72 µmol m-2 s-1) > forestland (0.44 µmol m-2 s-1) > grassland (0.33 µmol m-2 s-1). However, grass and forestland had significantly higher soil respiration than shrub and cropland in the rainy season (P < .05). Roots were the main source of soil respiration in cropland, which contributed >70% of CO2 emissions. Following revegetation, litter contributed more to soil respiration than roots or soil microorganisms at >68% of soil respiration. Our results provide a theoretical basis for assessing C balance in terrestrial ecosystems.

19.
ACS Sens ; 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31736294

RESUMO

A digital fluorescence detector (DFD), a handheld fluorescence detection device, can convert the fluorescence signal of samples into the corresponding fluorescer concentration. Herein, by adopting a DFD as the readout, a novel intelligent platform was developed based on a ratiometric paper-based device (RPD) for multiple aminoglycoside detection. There are five layers and four parallel channels contained in the designed RPD, functioning as reagent storage, fluidic path control and signal processing, respectively. The rationale of this design lies in the fact that aptamer/graphitic carbon nitride nanosheet (Apt/g-C3N4 NS) modified layers can catalyze o-phenylenediamine to fluorescent 2,3-diaminophenazine (DAP) in the presence of H2O2. When Apt was removed from nanosheets via the Apt-target reaction, the peroxidase-like activity would be decreased, thus decreasing the production of DAP. All the changes of the fluorescence DAP signal can be read out using a portable DFD. Based on the DFD signal change related to the concentration of the target, a quantitative reaction platform was established. Furthermore, the sample flow and Apt-target reaction time can be reasonably regulated using the H2O2-cleavable hydrophobic compound modified layer placed between the target recognition region and detection region. Then, the practicality of this platform was verified through realizing sensitive analysis of streptomycin, tobramycin, and kanamycin simultaneously. Overall, with merits including portability and ease of operation, the platform shows great potential in on-site simultaneous detection of multiple targets, especially in resource-limited settings.

20.
Artigo em Inglês | MEDLINE | ID: mdl-31767764

RESUMO

The oncoprotein transcription factor MYC is overexpressed in the majority of cancers. Key to its oncogenic activity is the ability of MYC to regulate gene expression patterns that drive and maintain the malignant state. MYC is also considered a validated anticancer target, but efforts to pharmacologically inhibit MYC have failed. The dependence of MYC on cofactors creates opportunities for therapeutic intervention, but for any cofactor this requires structural understanding of how the cofactor interacts with MYC, knowledge of the role it plays in MYC function, and demonstration that disrupting the cofactor interaction will cause existing cancers to regress. One cofactor for which structural information is available is WDR5, which interacts with MYC to facilitate its recruitment to chromatin. To explore whether disruption of the MYC-WDR5 interaction could potentially become a viable anticancer strategy, we developed a Burkitt's lymphoma system that allows replacement of wild-type MYC for mutants that are defective for WDR5 binding or all known nuclear MYC functions. Using this system, we show that WDR5 recruits MYC to chromatin to control the expression of genes linked to biomass accumulation. We further show that disrupting the MYC-WDR5 interaction within the context of an existing cancer promotes rapid and comprehensive tumor regression in vivo. These observations connect WDR5 to a core tumorigenic function of MYC and establish that, if a therapeutic window can be established, MYC-WDR5 inhibitors could be developed as anticancer agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA