Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(24): 11003-11009, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35695094

RESUMO

The organometallic on-surface synthesis of the eight-membered sp2 carbon-based ring cyclooctatetraene (C8H8, Cot) with the neighboring rare-earth elements ytterbium and thulium yields fundamentally different products for the two lanthanides, when conducted on graphene (Gr) close to the charge neutrality point. Sandwich-molecular YbCot wires of more than 500 Å length being composed of an alternating sequence of Yb atoms and upright-standing Cot molecules result from the on-surface synthesis with Yb. In contrast, repulsively interacting TmCot dots consisting of a single Cot molecule and a single Tm atom result from the on-surface synthesis with Tm. While the YbCot wires are bound through van der Waals interactions to the substrate, the dots are chemisorbed to Gr via the Tm atoms being more electropositive compared to Yb atoms. When the electron chemical potential in Gr is substantially raised (n-doping) through backside doping from an intercalation layer, the reaction product in the synthesis with Tm can be tuned to TmCot sandwich-molecular wires rather than TmCot dots. By use of density functional theory, it is found that the reduced electronegativity of Gr upon n-doping weakens the binding as well as the charge transfer between the reaction intermediate TmCot dot and Gr. Thus, the assembly of the TmCot dots to long TmCot sandwich-molecular wires becomes energetically favorable. It is thereby demonstrated that the electron chemical potential in Gr can be used as a control parameter in an organometallic on-surface synthesis to tune the outcome of a reaction.

2.
Nanoscale ; 14(20): 7682-7691, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35546135

RESUMO

From macroscopic heavy-duty permanent magnets to nanodevices, the precise control of the magnetic properties in rare-earth metals is crucial for many applications used in our daily life. Therefore, a detailed understanding and manipulation of the 4f-metals' magnetic properties are key to further boosting the functionalization and efficiency of future applications. We present a proof-of-concept approach consisting of a dysprosium-iridium surface alloy in which graphene adsorption allows us to tailor its magnetic properties. By adsorbing graphene onto a long-range ordered two-dimensional dysprosium-iridium surface alloy, the magnetic 4f-metal atoms are selectively lifted from the surface alloy. This selective skyhook effect introduces a giant magnetic anisotropy in dysprosium atoms as a result of manipulating its geometrical structure within the surface alloy. Introducing and proving this concept by our combined theoretical and experimental approach provides an easy and unambiguous understanding of its underlying mechanism. Our study sets the ground for an alternative path on how to modify the crystal field around 4f-atoms and therefore their magnetic anisotropies.

3.
J Phys Chem C Nanomater Interfaces ; 126(9): 4347-4354, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35299819

RESUMO

Room temperature oxygen hydrogenation below graphene flakes supported by Ir(111) is investigated through a combination of X-ray photoelectron spectroscopy, scanning tunneling microscopy, and density functional theory calculations using an evolutionary search algorithm. We demonstrate how the graphene cover and its doping level can be used to trap and characterize dense mixed O-OH-H2O phases that otherwise would not exist. Our study of these graphene-stabilized phases and their response to oxygen or hydrogen exposure reveals that additional oxygen can be dissolved into them at room temperature creating mixed O-OH-H2O phases with an increased areal coverage underneath graphene. In contrast, additional hydrogen exposure converts the mixed O-OH-H2O phases back to pure OH-H2O with a reduced areal coverage underneath graphene.

4.
Nat Commun ; 12(1): 6837, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824213

RESUMO

In the standard model of charge density wave (CDW) transitions, the displacement along a single phonon mode lowers the total electronic energy by creating a gap at the Fermi level, making the CDW a metal-insulator transition. Here, using scanning tunneling microscopy and spectroscopy and ab initio calculations, we show that VS2 realizes a CDW which stands out of this standard model. There is a full CDW gap residing in the unoccupied states of monolayer VS2. At the Fermi level, the CDW induces a topological metal-metal (Lifshitz) transition. Non-linear coupling of transverse and longitudinal phonons is essential for the formation of the CDW and the full gap above the Fermi level. Additionally, x-ray magnetic circular dichroism reveals the absence of net magnetization in this phase, pointing to coexisting charge and spin density waves in the ground state.

5.
ACS Nano ; 15(10): 15771-15780, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34633788

RESUMO

We investigated the atomic structure of graphene supported Pd nanoclusters and their interaction with hydrogen up to atmospheric pressures at room temperature by surface X-ray diffraction and scanning tunneling microscopy. We find that Ir seeded Pd nanocluster superlattices with 1.2 nm cluster diameters can be grown on the graphene/Ir(111) moiré template with high structural perfection. The superlattice clusters are anchored through the rehybridized graphene to the Ir support, which superimposes a 2.0% inplane compression onto the clusters. During hydrogen exposure at 10 mbar pressure and room temperature, a significant part of the clusters gets unpinned from the superlattice. The clusters in registry undergo an out-of-plane expansion only, whereas the detached clusters expand in in- and out-of-plane directions. The formation of a hydrogen rich PdHx α' phase was not observed. After exposure to 1 bar, the majority of the clusters are unpinned from superlattice sites, due to their surface interaction with hydrogen and possible spill over to the graphene support. Only minor sintering was observed, which is more pronounced for the unpinned clusters. The results give evidence that ultrasmall Pd clusters on graphene are a stable hydrogen storage system with reduced hydrogen storage hysteresis and maintain a large surface area for hydrogen chemisorption.

6.
ACS Nano ; 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34296863

RESUMO

We prepared monolayers of tantalum sulfide on Au(111) by evaporation of Ta in a reactive background of H2S. Under sulfur-rich conditions, monolayers of 2H-TaS2 formed, whereas under sulfur-poor conditions TaS2-x with 0 ≤ x ≤ 1 were found. We identified this phase as TaS, a structure that can be derived from 2H-TaS2 by removal of the bottom S layer.

7.
Nat Commun ; 12(1): 2542, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953174

RESUMO

Lateral heterojunctions of atomically precise graphene nanoribbons (GNRs) hold promise for applications in nanotechnology, yet their charge transport and most of the spectroscopic properties have not been investigated. Here, we synthesize a monolayer of multiple aligned heterojunctions consisting of quasi-metallic and wide-bandgap GNRs, and report characterization by scanning tunneling microscopy, angle-resolved photoemission, Raman spectroscopy, and charge transport. Comprehensive transport measurements as a function of bias and gate voltages, channel length, and temperature reveal that charge transport is dictated by tunneling through the potential barriers formed by wide-bandgap GNR segments. The current-voltage characteristics are in agreement with calculations of tunneling conductance through asymmetric barriers. We fabricate a GNR heterojunctions based sensor and demonstrate greatly improved sensitivity to adsorbates compared to graphene based sensors. This is achieved via modulation of the GNR heterojunction tunneling barriers by adsorbates.

8.
ACS Nano ; 15(4): 7421-7429, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33759515

RESUMO

Like other 2D materials, the boron-based borophene exhibits interesting structural and electronic properties. While borophene is typically prepared by molecular beam epitaxy, we report here on an alternative way of synthesizing large single-phase borophene domains by segregation-enhanced epitaxy. X-ray photoelectron spectroscopy shows that borazine dosing at 1100 °C onto Ir(111) yields a boron-rich surface without traces of nitrogen. At high temperatures, the borazine thermally decomposes, nitrogen desorbs, and boron diffuses into the substrate. Using time-of-flight secondary ion mass spectrometry, we show that during cooldown the subsurface boron segregates back to the surface where it forms borophene. In this case, electron diffraction reveals a (6 × 2) reconstructed borophene χ6-polymorph, and scanning tunneling spectroscopy suggests a Dirac-like behavior. Studying the kinetics of borophene formation in low energy electron microscopy shows that surface steps are bunched during the borophene formation, resulting in elongated and extended borophene domains with exceptional structural order.

9.
ACS Nano ; 14(10): 13629-13637, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32910634

RESUMO

Cluster superlattice membranes consist of a two-dimensional hexagonal lattice of similar-sized nanoclusters sandwiched between single-crystal graphene and an amorphous carbon matrix. The fabrication process involves three main steps, the templated self-organization of a metal cluster superlattice on epitaxial graphene on Ir(111), conformal embedding in an amorphous carbon matrix, and subsequent lift-off from the Ir(111) substrate. The mechanical stability provided by the carbon-graphene matrix makes the membrane stable as a free-standing material and enables transfer to other substrates. The fabrication procedure can be applied to a wide variety of cluster materials and cluster sizes from the single-atom limit to clusters of a few hundred atoms, as well as other two-dimensional layer/host matrix combinations. The versatility of the membrane composition, its mechanical stability, and the simplicity of the transfer procedure make cluster superlattice membranes a promising material in catalysis, magnetism, energy conversion, and optoelectronics.

10.
ACS Nano ; 14(7): 9176-9187, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32602698

RESUMO

The variation of the electronic structure normal to 1D defects in quasi-freestanding MoS2, grown by molecular beam epitaxy, is investigated through high resolution scanning tunneling spectroscopy at 5 K. Strong upward bending of valence and conduction bands toward the line defects is found for the 4|4E mirror twin boundary and island edges but not for the 4|4P mirror twin boundary. Quantized energy levels in the valence band are observed wherever upward band bending takes place. Focusing on the common 4|4E mirror twin boundary, density functional theory calculations give an estimate of its charging, which agrees well with electrostatic modeling. We show that the line charge can also be assessed from the filling of the boundary-localized electronic band, whereby we provide a measurement of the theoretically predicted quantized polarization charge at MoS2 mirror twin boundaries. These calculations elucidate the origin of band bending and charging at these 1D defects in MoS2. The 4|4E mirror twin boundary not only impairs charge transport of electrons and holes due to band bending, but holes are additionally subject to a potential barrier, which is inferred from the independence of the quantized energy landscape on either side of the boundary.

11.
Nat Commun ; 11(1): 1340, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165617

RESUMO

We show that Cs intercalated bilayer graphene acts as a substrate for the growth of a strained Cs film hosting quantum well states with high electronic quality. The Cs film grows in an fcc phase with a substantially reduced lattice constant of 4.9 Å corresponding to a compressive strain of 11% compared to bulk Cs. We investigate its electronic structure using angle-resolved photoemission spectroscopy and show the coexistence of massless Dirac and massive Schrödinger charge carriers in two dimensions. Analysis of the electronic self-energy of the massive charge carriers reveals the crystallographic direction in which a two-dimensional Fermi gas is realized. Our work introduces the growth of strained metal quantum wells on intercalated Dirac matter.

12.
ACS Appl Mater Interfaces ; 11(43): 40524-40532, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31588723

RESUMO

Iridium cluster superlattices on the graphene moiré with Ir(111) are embedded with elemental carbon through vapor-phase deposition. Using scanning tunneling microscopy and spectroscopy, we find that carbon embedding is conformal and does not deteriorate the excellent order of the iridium clusters. The thermal and mechanical stability of the embedded clusters is greatly enhanced. Smoluchowski ripening as well as cluster pick-up by the scanning tunneling microscopy tip are both suppressed. The only cluster decay path left takes place at an elevated temperature of around 1050 K. The cluster material penetrates through the graphene sheet, whereby it becomes bound to the underlying metal. It is argued that conformal carbon embedding is an important step towards the formation of a new type of sintering-resistant cluster lattice material for nanocatalysis and nanomagnetism.

13.
ACS Nano ; 13(9): 10210-10220, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31442021

RESUMO

For quasi-freestanding 2H-TaS2 in monolayer thickness grown by in situ molecular beam epitaxy on graphene on Ir(111), we find unambiguous evidence for a charge density wave close to a 3 × 3 periodicity. Using scanning tunneling spectroscopy, we determine the magnitude of the partial charge density wave gap. Angle-resolved photoemission spectroscopy, complemented by scanning tunneling spectroscopy for the unoccupied states, makes a tight-binding fit for the band structure of the TaS2 monolayer possible. As hybridization with substrate bands is absent, the fit yields a precise value for the doping of the TaS2 layer. Additional Li doping shifts the charge density wave to a 2 × 2 periodicity. Unexpectedly, the bilayer of TaS2 also displays a disordered 2 × 2 charge density wave. Calculations of the phonon dispersions based on a combination of density-functional theory, density-functional perturbation theory, and many-body perturbation theory enable us to provide phase diagrams for the TaS2 charge density wave as functions of doping, hybridization, and interlayer potentials, and offer insight into how they affect lattice dynamics and stability. Our theoretical considerations are consistent with the experimental work presented and shed light on previous experimental and theoretical investigations of related systems.

14.
Nano Lett ; 19(7): 4594-4600, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31251073

RESUMO

When graphene is placed on a crystalline surface, the periodic structures within the layers superimpose and moiré superlattices form. Small lattice rotations between the two materials in contact strongly modify the moiré lattice parameter, upon which many electronic, vibrational, and chemical properties depend. While precise adjustment of the relative orientation in the degree- and sub-degree-range can be achieved via careful deterministic transfer of graphene, we report on the spontaneous reorientation of graphene on a metallic substrate, Ir(111). We find that selecting a substrate temperature between 1530 and 1000 K during the growth of graphene leads to distinct relative rotational angles of 0°, ± 0.6°, ±1.1°, and ±1.7°. When modeling the moiré superlattices as two-dimensional coincidence networks, we can ascribe the observed rotations to favorable low-strain graphene structures. The dissimilar thermal expansion of the substrate and graphene is regarded as an effective compressive biaxial pressure that is more easily accommodated in graphene by small rotations rather than by compression.

15.
J Phys Chem Lett ; 10(5): 911-917, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30717591

RESUMO

We investigate the magnetic and electronic properties of europium cyclooctatetraene (EuCot) nanowires by means of low-temperature X-ray magnetic circular dichroism (XMCD) and scanning tunneling microscopy (STM) and spectroscopy (STS). The EuCot nanowires are prepared in situ on a graphene surface. STS measurements identify EuCot as an insulator with a minority band gap of 2.3 eV. By means of Eu M5,4 edge XMCD, orbital and spin magnetic moments of (-0.1 ± 0.3)µB and (+7.0 ± 0.6)µB, respectively, were determined. Field-dependent measurements of the XMCD signal at the Eu M5 edge show hysteresis for grazing X-ray incidence at 5 K, thus confirming EuCot as a ferromagnetic material. Our density functional theory calculations reproduce the experimentally observed minority band gap. Modeling the experimental results theoretically, we find that the effective interatomic exchange interaction between Eu atoms is on the order of millielectronvolts, that magnetocrystalline anisotropy energy is roughly half as big, and that dipolar energy is approximately ten times lower.

16.
Nanotechnology ; 30(8): 085304, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30523818

RESUMO

Graphene on Ir(111) is irradiated with small fluences of 500 eV He ions at temperatures close to its chemical vapor deposition growth temperature. The ion irradiation experiments explore whether it is possible to suppress the formation of wrinkles in Gr during growth. It is found that the release of thermal mismatch strain by wrinkle formation can be entirely suppressed for an irradiation temperature of 880 °C. A model for the ion beam induced suppression of wrinkle formation in supported Gr is presented, and underpinned by experiments varying the irradiation temperature or involving intercalation subsequent to irradiation.

17.
Nano Lett ; 18(9): 6045-6056, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30157652

RESUMO

We employ ultra-high vacuum (UHV) Raman spectroscopy in tandem with angle-resolved photoemission (ARPES) to investigate the doping-dependent Raman spectrum of epitaxial graphene on Ir(111). The evolution of Raman spectra from pristine to heavily Cs doped graphene up to a carrier concentration of 4.4 × 1014 cm-2 is investigated. At this doping, graphene is at the onset of the Lifshitz transition and renormalization effects reduce the electronic bandwidth. The optical transition at the saddle point in the Brillouin zone then becomes experimentally accessible by ultraviolet (UV) light excitation, which achieves resonance Raman conditions in close vicinity to the van Hove singularity in the joint density of states. The position of the Raman G band of fully doped graphene/Ir(111) shifts down by ∼60 cm-1. The G band asymmetry of Cs doped epitaxial graphene assumes an unusual strong Fano asymmetry opposite to that of the G band of doped graphene on insulators. Our calculations can fully explain these observations by substrate dependent quantum interference effects in the scattering pathways for vibrational and electronic Raman scattering.

18.
ACS Nano ; 12(7): 6871-6880, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29920200

RESUMO

The moiré of a monolayer of hexagonal boron nitride on Ir(111) is found to be a template for Ir, C, and Au cluster superlattices. Using scanning tunneling microscopy, the cluster structure and epitaxial relation to the substrate, the cluster binding site, the role of defects, as well as the thermal stability of the cluster lattice are investigated. The Ir and C cluster superlattices display a high thermal stability, before they decay by intercalation and Smoluchowski ripening. Ab initio calculations explain the extraordinarily strong Ir cluster binding through selective sp3 rehybridization of boron nitride involving B-Ir cluster bonds and a strengthening of the nitrogen bonds to the Ir substrate in a specific, initially only chemisorbed valley area within the moiré.

19.
Phys Rev Lett ; 120(10): 106801, 2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-29570315

RESUMO

We study chemically gated bilayer graphene using scanning tunneling microscopy and spectroscopy complemented by tight-binding calculations. Gating is achieved by intercalating Cs between bilayer graphene and Ir(111), thereby shifting the conduction band minima below the chemical potential. Scattering between electronic states (both intraband and interband) is detected via quasiparticle interference. However, not all expected processes are visible in our experiment. We uncover two general effects causing this suppression: first, intercalation leads to an asymmetrical distribution of the states within the two layers, which significantly reduces the scanning tunneling spectroscopy signal of standing waves mainly present in the lower layer; second, forward scattering processes, connecting points on the constant energy contours with parallel velocities, do not produce pronounced standing waves due to destructive interference. We present a theory to describe the interference signal for a general n-band material.

20.
J Am Chem Soc ; 139(29): 9895-9900, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28682606

RESUMO

We demonstrate a new synthesis route for the growth of organometallic sandwich molecular nanowires, taking the example of Eu-cyclooctatetraene (EuCot), a predicted ferromagnetic semiconductor. We employ simultaneous exposure of Cot molecules and Eu vapor in ultrahigh vacuum to an inert substrate, such as graphene. Using a Cot excess under temperature conditions of a finite residence time of the molecule, the reactand diffusion confined to two dimensions results in a clean product of ultralong wires. In situ scanning tunneling microscopy reveals not only their molecular structure but also a rich and intriguing growth morphology. The new on-surface synthesis permits experimental access to a largely unexplored class of one-dimensional organometallic systems with potential for exciting electronic and magnetic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...