Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 458
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(45): 18849-18853, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34748331

RESUMO

The use of molecular crystalline materials for the separation and purification of chemical raw materials, particularly polar compounds with similar physical and chemical properties, represents an ongoing challenge. This is particularly true for volatile feedstocks that form binary azeotropes. Here we report a new cavity-extended version of calix[4]pyrrole (C4P) that readily forms nonporous adaptive crystals (NACs). These C4P-based NACs allow pyridine to be separated from toluene/pyridine mixtures with nearly 100% purity, as well as the removal of 1,4-dioxane from 1,4-dioxane/water mixtures with high adsorption capacity. Removal of the polar guest (pyridine or 1,4-dioxane) from the guest-loaded NACs by heating under vacuum produces the guest-free crystalline form. In the case of both guests, the C4P material could be reused as demonstrated through 10 uptake and release cycles without apparent performance loss.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34747097

RESUMO

A series of calix[4]pyrrole-based crosslinked polymer networks designed for iodine capture is reported. These materials were prepared by Sonogashira coupling of α,α,α,α-tetra(4-alkynylphenyl)calix[4]pyrrole with bishalide building blocks with different electronic properties and molecular sizes. Despite their low Brunauer-Emmett-Teller surface areas, iodine vapor adsorption capacities of up to 3.38 g g-1 were seen, a finding ascribed to the presence of a large number of effective sorption sites including macrocyclic π-rich cavities, aryl units, and alkyne groups within the material. One particular system, C[4]P-BTP, was found to be highly effective at iodine capture from water (uptake capacity of 3.24 g g-1 from a concentrated aqueous KI/I2 solution at ambient temperature). Fast capture kinetics (kobs =7.814 g g-1 min-1 ) were seen. Flow-through adsorption experiments revealed that C[4]P-BTP is able to remove 93.2 % of iodine from an aqueous source phase at a flow rate of 1 mL min-1 .

3.
Adv Mater ; : e2108163, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34802162

RESUMO

xxxx. This article is protected by copyright. All rights reserved.

4.
J Am Chem Soc ; 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34812619

RESUMO

Reported herein are two functionalized crown ether strapped calix[4]pyrroles, H1 and H2. As inferred from competitive salt binding experiments carried out in nitrobenzene-d5 and acetonitrile-d3, these hosts capture LiCl selectively over four other test salts, viz. NaCl, KCl, MgCl2, and CaCl2. Support for the selectivity came from density functional theory (DFT) calculations carried out in a solvent continuum. These theoretical analyses revealed a higher innate affinity for LiCl in the case of H1, but a greater selectivity relative to NaCl in the case of H2, recapitulating that observed experimentally. Receptors H1 and H2 were outfitted with methacrylate handles and subject to copolymerization with acrylate monomers and cross-linkers to yield gels, G1 and G2, respectively. These two gels were found to adsorb lithium chloride preferentially from an acetonitrile solution containing a mixture of LiCl, NaCl, KCl, MgCl2, and CaCl2 and then release the lithium chloride in methanol. The gels could then be recycled for reuse in the selective adsorption of LiCl. As such, the present study highlights the use of solvent polarity switching to drive separations with potential applications in lithium purification and recycling.

5.
Proc Natl Acad Sci U S A ; 118(47)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34789566

RESUMO

We report a molecular switching ensemble whose states may be regulated in synergistic fashion by both protonation and photoirradiation. This allows hierarchical control in both a kinetic and thermodynamic sense. These pseudorotaxane-based molecular devices exploit the so-called Texas-sized molecular box (cyclo[2]-(2,6-di(1H-imidazol-1-yl)pyridine)[2](1,4-dimethylenebenzene); 14+, studied as its tetrakis-PF6 - salt) as the wheel component. Anions of azobenzene-4,4'-dicarboxylic acid (2H+•2) or 4,4'-stilbenedicarboxylic acid (2H+•3) serve as the threading rod elements. The various forms of 2 and 3 (neutral, monoprotonated, and diprotonated) interact differently with 14+, as do the photoinduced cis or trans forms of these classic photoactive guests. The net result is a multimodal molecular switch that can be regulated in synergistic fashion through protonation/deprotonation and photoirradiation. The degree of guest protonation is the dominating control factor, with light acting as a secondary regulatory stimulus. The present dual input strategy provides a complement to more traditional orthogonal stimulus-based approaches to molecular switching and allows for the creation of nonbinary stimulus-responsive functional materials.

6.
J Am Chem Soc ; 143(44): 18635-18642, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34719924

RESUMO

Encryption is critical to information security; however, existing chemical-based information encryption strategies are still in their infancy. We report here a new approach to chemical encryption involving a supramolecular gel QR (quick response) code with multiple encryption functions. Three color "turn-on" supramolecular polymer gels, G1-G3, were prepared that produce pink, purple, and yellow colors when subject to treatment with acetic acid vapor, UV light, and methanolic FeCl3, respectively. As the result of hydrogen-bonding interactions at the gel interfaces, the three gels can be assembled to produce gel G4. Engraving a QR code pattern onto G4 then gave gel G5. When one or two stimuli are applied to the individual pieces corresponding to the QR engraved versions of the gels G1-G3 making up G5, a complete scannable pattern is not displayed, and the stored information cannot be recognized. Only when three different stimuli are applied at the same time does G5 give a complete recognizable pattern allowing the stored information to be retrieved. This strategy was applied to the decryption-based opening of a coded lock.

7.
Chem Sci ; 12(35): 11647-11651, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34659699

RESUMO

Crystalline supramolecular architectures mediated by cations, anions, ion pairs or neutral guest species are well established. However, the robust crystallization of a well-designed receptor mediated by labile anionic solvate clusters remains unexplored. Herein, we describe the synthesis and crystalline behaviors of a trimacrocyclic hexasubstituted benzene 2 in the presence of guanidium halide salts and chloroform. Halide hexasolvate clusters, viz. [Cl(CHCl3)6]-, [Br(CHCl3)6]-, and [I(CHCl3)6]-, were found to be critical to the crystallization process, as suggested by the single-crystal structures, X-ray powder diffraction (XRPD), thermogravimetric analysis (TGA), scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS), and NMR spectroscopy. This study demonstrates the hitherto unexpected role that labile ionic solvate clusters can play in stabilizing supramolecular architectures.

8.
Chem Commun (Camb) ; 57(86): 11386-11389, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34647549

RESUMO

We report a chemiluminescent probe (CLPT1) that permits the paired detection of tyrosinase (Tyr) and biological thiols. Tyr only leads to a poor chemiluminescence response, a finding ascribed to the formation of a stable o-benzoquinone intermediate. The addition of glutathione (GSH), or ascorbate to the o-benzoquinone intermediate results in thiol conjugation or reduction to this intermediate, respectively. This produces a strong chemiluminescence response. Thiol co-dependence was demonstrated in live cells using the cell permeable analogue, CLPT3. The present chemiluminescence-based strategy allows the concurrent detection of tyrosinase activity and biological thiols.

9.
Chemistry ; 27(65): 16173-16180, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34532908

RESUMO

A pair of meso-unsubstituted expanded carbaporphyrins containing two carbazole moieties were prepared in high isolated yields (82 and 76 %, respectively). The two macrocycles, namely 3 and 4, differ with respect to their substitution at the carbazole N-atoms i. e. by H and i-Bu, respectively. As prepared in their free-base forms, macrocycles 3 and 4 adopt figure-of-eight conformations and are best characterized as 40 π-electron, non-aromatic species possessing a decaphyrin(1.1.0.0.0.1.1.0.0.0) skeleton. Protonation of 3 with either trifluoroacetic acid (TFA) or perchloric acid (HClO4 ) produces a parallelogram-shaped structure. A similar structure is produced when N-functionalized system 4 is treated with TFA. In contrast, protonation of 4 with HClO4 leads it to adopt a twisted Möbius strip-like structure in the solid state, thus allowing access to three distinct conformational states as a function of the conditions.

10.
Chem Soc Rev ; 50(18): 10025-10043, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34346444

RESUMO

Water compatible supramolecular polymers (WCSPs) combine aqueous compatibility with the reversibility and environmental responsiveness of supramolecular polymers. WCSPs have seen application across a number of fields, including stimuli-responsive materials, healable materials, and drug delivery, and are attracting increasing attention from the design, synthesis, and materials perspectives. In this review, we summarize the chemistry of WCSPs from 2016 to mid-2021. For the sake of discussion, we divide WCSPs into five categories based on the core supramolecular approaches at play, namely hydrogen-bonding arrays, electrostatic interactions, large π-conjugated subunits, host-guest interactions, and peptide-based systems, respectively. We discuss both synthesis and polymer structure, as well as the underlying design expectations. The goal of this overview is to deepen our understanding of the strategies that have been exploited to prepare WCSPs, as well as their properties and uses. Thus, a section devoted to potential applications is included in this review.

11.
Chem Sci ; 12(29): 9916-9921, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34377389

RESUMO

Photoacoustic imaging (PAI) relies on the use of contrast agents with high molar absorptivity in the NIR-I/NIR-II region. Expanded porphyrins, synthetic analogues of natural tetrapyrrolic pigments (e.g. heme and chlorophyll), constitute as potentially attractive platforms due to their NIR-II absorptivity and their ability to respond to stimuli. Here, we evaluate two expanded porphyrins, naphthorosarin (1) and octaphyrin (4), as stimuli responsive PA contrast agents for functional PAI. Both undergo proton-coupled electron transfer to produce species that absorb well in the NIR-II region. Octaphyrin (4) was successfully encapsulated into 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) (DSPE-PEG2000) nanoparticles to afford OctaNPs. In combination with PAI, OctaNPs allowed changes in the acidic environment of the stomach to be visualized and cancerous versus healthy tissues to be discriminated.

12.
Chem Sci ; 12(29): 10054-10062, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34377399

RESUMO

Precise detection of cellular senescence may allow its role in biological systems to be evaluated more effectively, while supporting studies of therapeutic candidates designed to evade its detrimental effect on physical function. We report here studies of α-l-fucosidase (α-fuc) as a biomarker for cellular senescence and the development of an α-fuc-responsive aggregation induced emission (AIE) probe, termed QM-NHαfuc designed to complement more conventional probes based on ß-galactosidase (ß-gal). Using QM-NHαfuc, the onset of replicative-, reactive oxygen species (ROS)-, ultraviolet A (UVA)-, and drug-induced senescence could be probed effectively. QM-NHαfuc also proved capable of identifying senescent cells lacking ß-gal expression. The non-invasive real-time senescence tracking provided by QM-NHαfuc was validated in an in vivo senescence model. The results presented in this study lead us to suggest that the QM-NHαfuc could emerge as a useful tool for investigating senescence processes in biological systems.

13.
J Am Chem Soc ; 143(35): 14115-14124, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34374290

RESUMO

Breast cancer consists of heterogenic subpopulations, which determine the prognosis and response to chemotherapy. Among these subpopulations, a very limited number of cancer cells are particularly problematic. These cells, known as breast cancer stem cells (BCSCs), are thought responsible for metastasis and recurrence. They are thus major contributor to the unfavorable outcomes seen for many breast cancer patients. BCSCs are more prevalent in the hypoxic niche. This is an oxygen-deprived environment that is considered crucial to their proliferation, stemness, and self-renewal but also one that makes BCSCs highly refractory to traditional chemotherapeutic regimens. Here we report a small molecule construct, AzCDF, that allows the therapeutic targeting of BCSCs and which is effective in normally refractory hypoxic tumor environments. A related system, AzNap, has been developed that permits CSC imaging. Several design elements are incorporated into AzCDF, including the CAIX inhibitor acetazolamide (Az) to promote localization in MDA-MB-231 CSCs, a dimethylnitrothiophene subunit as a hypoxia trigger, and a 3,4-difluorobenzylidene curcumin (CDF) as a readily released therapeutic payload. This allows AzCDF to serve as a hypoxia-liable molecular platform that targets BCSCs selectively which decreases CSC migration, retards tumor growth, and lowers tumorigenesis rates as evidenced by a combination of in vitro and in vivo studies. To the best of our knowledge, this is the first time a CSC-targeting small molecule has been shown to prevent tumorigenesis in an animal model.

14.
J Am Chem Soc ; 143(31): 12355-12360, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34320322

RESUMO

A long-standing question in porphyrin chemistry is why pyrrole monomers selectively form tetrapyrrolic macrocycles, whereas the corresponding tripyrrolic macrocycles are never observed. Calix[3]pyrrole, a tripyrrolic porphyrinogen-like macrocycle bearing three sp3-carbon linkages, is a missing link molecule that might hold the key to this enigma; however, it has remained elusive. Here we report the synthesis and strain-induced transformations of calix[3]pyrrole and its furan analogue, calix[3]furan. These macrocycles are readily accessed from cyclic oligoketones. Crystallographic and theoretical analyses reveal that these three-subunit systems possess the largest strain energy among known calix[n]-type macrocycles. The ring-strain triggers transformation of calix[3]pyrrole into first calix[6]pyrrole and then calix[4]pyrrole under porphyrin cyclization conditions. The present results help explain the absence of naturally occurring three-pyrrole macrocycles and the fact that they are not observed as products or intermediate during classic porphyrin syntheses.

15.
Chem Soc Rev ; 50(17): 9391-9429, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34232230

RESUMO

Chemical tools that allow the real-time monitoring of organ function and the visualisation of organ-related processes at the cellular level are of great importance in biological research. The upregulation/downregulation of specific biomarkers is often associated with the development of organ related diseases. Small-molecule fluorescent probes have the potential to create advances in our understanding of these disorders. Viable probes should be endowed with a number of key features that include high biomarker sensitivity, low limit of detection, fast response times and appropriate in vitro and in vivo biocompatibility. In this tutorial review, we discuss the development of probes that allow the targeting of organ related processes in vitro and in vivo. We highlight the design strategy that underlies the preparation of various promising probes, their optical response to key biomarkers, and proof-of-concept biological studies. The inherent drawbacks and limitations are discussed as are the current challenges and opportunities in the field. The hope is that this tutorial review will inspire the further development of small-molecule fluorescent probes that could aid the study of pathogenic conditions that contribute to organ-related diseases.

16.
Chemistry ; 27(60): 15006-15012, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34288158

RESUMO

We report here a set of fluorescent supramolecular organic frameworks (SOFs) that incorporate aggregation-induced emission (AIE) units within their frameworks. The fluorescent SOFs of this study were constructed by linking the tetraphenylethylene (TPE)-based tetra(amidinium) cation TPE4+ and aromatic dicarboxylate anions through amidinium-carboxylate salt bridges. The resulting self-assembled structures are characterized by fluorescence quantum yields in the range of 4.6∼14 %. This emissive behavior is ascribed to a combination of electrostatic interactions and hydrogen bonds that operate in concert to impede motions that would otherwise lead to excited state energy dissipation. Single-crystal X-ray diffraction analyses revealed that the length of the dicarboxylate anion bridges has a considerable impact on the structural features of the resulting frameworks. Nevertheless, all SOFs prepared in the context of the present study were found to display emissive features characteristic of TPE-based AIE luminogens with only a modest dependence on the structural specifics being seen. The SOFs reported here could be reversibly "broken up" and "reformed" in response to acid/base stimuli. This reversible structural behavior is consistent with their SOF nature.


Assuntos
Corantes , Compostos Heterocíclicos , Fluorescência , Ligação de Hidrogênio
17.
Chem Sci ; 12(21): 7547-7553, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-34163845

RESUMO

Recent decades have witnessed the emergence of Au(i) bis-N-heterocyclic carbenes (NHCs) as potential anticancer agents. However, these systems exhibit little interaction with serum proteins (e.g., human serum albumin), which presumably impacts their pharmacokinetic profile and tumor exposure. Anticancer drugs bound to human serum albumin (HSA) often benefit from significant advantages, including longer circulatory half-lives, tumor targeted delivery, and easier administration relative to the drug alone. In this work, we present Au(i) bis-NHCs complexes, 7 and 9, capable of binding to HSA. Complex 7 contains a reactive maleimide moiety for covalent protein conjugation, whereas its congener 9 contains a naphthalimide fluorophore for non-covalent binding. A similar drug motif was used in both cases. Complexes 7 and 9 were prepared from a carboxylic acid functionalized Au(i) bis-NHC (complex 2) using a newly developed post-synthetic amide functionalization protocol that allows coupling to both aliphatic and aromatic amines. Analytical, and in vitro techniques were used to confirm protein binding, as well as cellular uptake and antiproliferative activity in A549 human lung cancer cells. The present findings highlight a hitherto unexplored approach to modifying Au(i) bis-NHC drug candidates for protein ligation and serve to showcase the relative benefits of covalent and non-covalent HSA binding.

18.
Coord Chem Rev ; 4272021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34108734

RESUMO

Since as early as 1867, molecular sensors have been recognized as being intelligent "devices" capable of addressing a variety of issues related to our environment and health (e.g., the detection of toxic pollutants or disease-related biomarkers). In this review, we focus on fluorescence-based sensors that incorporate supramolecular chemistry to achieve a desired sensing outcome. The goal is to provide an illustrative overview, rather than a comprehensive listing of all that has been done in the field. We will thus summarize early work devoted to the development of supramolecular fluorescent sensors and provide an update on recent advances in the area (mostly from 2018 onward). A particular emphasis will be placed on design strategies that may be exploited for analyte sensing and corresponding molecular platforms. Supramolecular approaches considered include, inter alia, binding-based sensing (BBS) and indicator displacement assays (IDAs). Because it has traditionally received less treatment, many of the illustrative examples chosen will involve anion sensing. Finally, this review will also include our perspectives on the future directions of the field.

19.
Chem Commun (Camb) ; 57(46): 5678-5681, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-33977921

RESUMO

We report here strategic functionalization of the FDA approved chelator deferasirox (1) in an effort to produce organelle-targeting iron chelators with enhanced activity against A549 lung cancer cells. Derivative 8 was found to have improved antiproliferative activity relative to 1. Fluorescent cell imaging revealed that compound 8 preferentially localises within the lysosome.


Assuntos
Antineoplásicos/farmacologia , Deferasirox/farmacologia , Quelantes de Ferro/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Organelas/química , Células A549 , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Deferasirox/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Quelantes de Ferro/química , Neoplasias Pulmonares/diagnóstico por imagem , Lisossomos/química , Microscopia Confocal , Estrutura Molecular , Imagem Óptica
20.
J Am Chem Soc ; 143(19): 7541-7552, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33973784

RESUMO

Phototheranostics constitute an emerging cancer treatment wherein the core diagnostic and therapeutic functions are integrated into a single photosensitizer (PS). Achieving the full potential of this modality requires being able to tune the photosensitizing properties of the PS in question. Structural modification of the organic framework represents a time-honored strategy for tuning the photophysical features of a given PS system. Here we report an easy-to-implement metal selection approach that allows for fine-tuning of excited-state energy dissipation and phototheranostics functions as exemplified by a set of lanthanide (Ln = Gd, Yb, Er) carbazole-containing porphyrinoid complexes. Femto- and nanosecond time-resolved spectroscopic studies, in conjunction with density functional theory calculations, revealed that the energy dissipation pathways for this set of PSs are highly dependent on the energy gap between the lowest triplet excited state of the ligand and the excited states of the coordinated Ln ions. The Yb complex displayed a balance of deactivation mechanisms that made it attractive as a potential combined photoacoustic imaging and photothermal/photodynamic therapy agent. It was encapsulated into mesoporous silica nanoparticles (MSN) to provide a biocompatible construct, YbL@MSN, which displays a high photothermal conversion efficiency (η = 45%) and a decent singlet oxygen quantum yield (ΦΔ = 31%). Mouse model studies revealed that YbL@MSN allows for both photoacoustic imaging and synergistic photothermal- and photodynamic-therapy-based tumor reduction in vivo. Our results lead us to suggest that metal selection represents a promising approach to fine-tuning the excited state properties and functional features of phototheranostics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...