Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.879
Filtrar
1.
Emerg Infect Dis ; 26(3)2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-31922954

RESUMO

We report the use of environmental samples to assess avian influenza virus activity in chickens at live poultry markets in China. Results of environmental and chicken samples correlate moderately well. However, collection of multiple environmental samples from holding, processing, and selling areas is recommended to detect viruses expected to have low prevalence.

2.
Mol Psychiatry ; 2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31900430

RESUMO

Normal development of cortical circuits, including experience-dependent cortical maturation and plasticity, requires precise temporal regulation of gene expression and molecular signaling. Such regulation, and the concomitant impact on plasticity and critical periods, is hypothesized to be disrupted in neurodevelopmental disorders. A protein that may serve such a function is the MET receptor tyrosine kinase, which is tightly regulated developmentally in rodents and primates, and exhibits reduced cortical expression in autism spectrum disorder and Rett Syndrome. We found that the peak of MET expression in developing mouse cortex coincides with the heightened period of synaptogenesis, but is precipitously downregulated prior to extensive synapse pruning and certain peak periods of cortical plasticity. These results reflect a potential on-off regulatory synaptic mechanism for specific glutamatergic cortical circuits in which MET is enriched. In order to address the functional significance of the 'off' component of the proposed mechanism, we created a controllable transgenic mouse line that sustains cortical MET signaling. Continued MET expression in cortical excitatory neurons disrupted synaptic protein profiles, altered neuronal morphology, and impaired visual cortex circuit maturation and connectivity. Remarkably, sustained MET signaling eliminates monocular deprivation-induced ocular dominance plasticity during the normal cortical critical period; while ablating MET signaling leads to early closure of critical period plasticity. The results demonstrate a novel mechanism in which temporal regulation of a pleiotropic signaling protein underlies cortical circuit maturation and timing of cortical critical period, features that may be disrupted in neurodevelopmental disorders.

3.
Artigo em Inglês | MEDLINE | ID: mdl-31912186

RESUMO

This study evaluated the adsorption and desorption of 17ß-estradiol (E2) and 17α-ethynylestradiol (EE2) on microplastics in seawater. The effects of microplastic materials and particle sizes on adsorption of E2 and EE2 were explored. Moreover, effects of salinity, pH, humic acid (HA) concentrations, and initial E2/EE2 concentrations on adsorption were also discussed. Increase in salinity, HA concentration, and initial E2/EE2 concentration would enhance adsorption of E2/EE2 on microplastics. Adsorption capacity of E2/EE2 firstly increased to reach the highest at pH of 8.0 and then decreased when pH further increased. Pseudo-second-order kinetics better fitted adsorption data of E2 while pseudo-first-order model yielded better fitting results for EE2. Freundlich isotherm was better to fit the adsorption data of E2 while Langmuir isotherm yielded better fitting results for EE2. Desorption capacity of E2/EE2 on microplastics was over 40% of its adsorption capacity. This study provides new insights on microplastics and endocrine disrupting chemicals.

4.
Artigo em Inglês | MEDLINE | ID: mdl-31905138

RESUMO

Deep convolutional neural networks (CNNs) have been successfully applied to a wide variety of problems in computer vision, including salient object detection. To accurately detect and segment salient objects, it is necessary to extract and combine high-level semantic features with low-level fine details simultaneously. This is challenging for CNNs because repeated subsampling operations such as pooling and convolution lead to a significant decrease in the feature resolution, which results in the loss of spatial details and finer structures. Therefore, we propose augmenting feedforward neural networks by using the multistage refinement mechanism. In the first stage, a master net is built to generate a coarse prediction map in which most detailed structures are missing. In the following stages, the refinement net with layerwise recurrent connections to the master net is equipped to progressively combine local context information across stages to refine the preceding saliency maps in a stagewise manner. Furthermore, the pyramid pooling module and channel attention module are applied to aggregate different-region-based global contexts. Extensive evaluations over six benchmark datasets show that the proposed method performs favorably against the state-of-the-art approaches.

5.
IEEE Trans Cybern ; 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31940576

RESUMO

This article explores the global stochastic synchronization of the Kuramoto-oscillator networks with duplex topological structures. The initial phase diameter can be arbitrarily large and the coupling gain of the Kuramoto-oscillator networks can be relatively weak. In particular, two different scenarios of the noise diffusion process are introduced, which cover the noise affecting the sinusoidal coupling process in the Kuramoto-oscillator layer and the networked communication in the control layer, respectively. The local and global connectivity criteria, related to the network topologies, coupling strength, and control gains, are derived rigorously to achieve the global stochastic asymptotic phase agreement and frequency synchronization, respectively. Finally, the validity of the theoretical results is verified via numerical simulation, which further shows that phase agreement is robust to noise perturbation, while frequency synchronization is peculiarly sensitive.

6.
Vaccine ; 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31948819

RESUMO

BACKGROUND: Children and adolescents are susceptible to influenza. Vaccination is the most important strategy for preventing influenza, yet there are few studies on the immunogenicity and safety of quadrivalent inactivated influenza vaccine (QIV) containing two A strains (H1N1 and H3N2) and two B lineages (Victoria and Yamagata). Therefore, to further clarify the immunogenicity and safety of QIV in children and adolescents, a meta-analysis was performed to provide a reference for the development of influenza prevention strategies. METHODS: PubMed, EMBASE and Cochrane Library were searched for articles published as of February 12, 2019. Random clinical trials comparing the immunogenicity and safety of QIV and TIV among children and adolescents were selected. The main outcomes were comparisons of immunogenicity (seroprotection rate [SPR] and seroconversion rate [SCR] and adverse events using risk ratios (RRs). The meta-analysis was performed using random-effects models. RESULTS: Among the 6 months up to 3 years group, QIV showed a higher SPR for B lineages than for TIV-B/Yamagata, with pooled RRs of 3.07 (95% CI: 2.58-3.66) and 1.06 (95% CI: 1.01-1.11), respectively. For the 3 years through 18 years, QIV had a higher SCR and SPR for the Yamagata lineage than for TIV-B/Victoria, with pooled RRs of 2.30 (95% CI: 1.83-2.88) and 1.16 (95% CI: 1.03-1.30), respectively. Compared to TIV-B/Yamagata, a higher SCR and SPR for the Victoria lineage was found for QIV, with RRs of 3.09 (95% CI: 1.99-4.78) and 1.72 (95% CI: 1.22-2.41), respectively. Regarding adverse events, only pain was more frequently reported for QIV than TIV ; the RR was 1.09 (95% CI: 1.02-1.17). CONCLUSIONS: The immunogenicity of QIV for common ingredients was similar to that of TIV, but the former exhibited significantly higher immunogenicity for the unique lineage. QIV also had the same reliable safety as TIV.

7.
EMBO Mol Med ; : e10154, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31943789

RESUMO

Diabetic retinopathy (DR) is a common complication of diabetes and leads to blindness. Anti-VEGF is a primary treatment for DR. Its therapeutic effect is limited in non- or poor responders despite frequent injections. By performing a comprehensive analysis of the semaphorins family, we identified the increased expression of Sema4D during oxygen-induced retinopathy (OIR) and streptozotocin (STZ)-induced retinopathy. The levels of soluble Sema4D (sSema4D) were significantly increased in the aqueous fluid of DR patients and correlated negatively with the success of anti-VEGF therapy during clinical follow-up. We found that Sema4D/PlexinB1 induced endothelial cell dysfunction via mDIA1, which was mediated through Src-dependent VE-cadherin dysfunction. Furthermore, genetic disruption of Sema4D/PlexinB1 or intravitreal injection of anti-Sema4D antibody reduced pericyte loss and vascular leakage in STZ model as well as alleviated neovascularization in OIR model. Moreover, anti-Sema4D had a therapeutic advantage over anti-VEGF on pericyte dysfunction. Anti-Sema4D and anti-VEGF also conferred a synergistic therapeutic effect in two DR models. Thus, this study indicates an alternative therapeutic strategy with anti-Sema4D to complement or improve the current treatment of DR.

8.
EBioMedicine ; 51: 102604, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31901857

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common cancers, whereas the molecular mechanism remains largely unknown. PRAS40 (encoded by AKT1S1) phosphorylation was increased in human melanoma, prostate cancer and lung cancer specimens, which was considered as the results of Akt activation. However the mechanism in detail and its role in HCC stay elusive. METHODS: PRAS40 expression and phosphorylation were analyzed in HCC specimens, and the survival rates of patients were investigated. Functional analyses of PRAS40 in HCC were performed in vivo and in vitro. The miR-124-3p binding sites in PRAS40 were investigated using luciferase assay. MiR-124-3p expression in HCC specimens was examined by In Situ hybridization, and the correlation to PRAS40 level was evaluated. FINDINGS: The phosphorylation, protein and mRNA levels of PRAS40 were increased significantly in HCC specimens from our cohorts and TCGA database, which was positively correlated to the poor prognosis of HCC patients. Compared to Akt1s1+/+ mice, hepatocarcinogenesis was suppressed in Akt1s1-/- mice, and the activation of Akt was impaired. PRAS40 depletion resulted in the inhibition of HCC cellular proliferation. Tumor suppressor miR-124-3p was found to downregulate PRAS40 expression by targeting its 3'UTR. MiR-124-3p levels were inversely correlated to PRAS40 protein and phosphorylation levels in HCC specimens. The proliferation inhibition by miR-124-3p mimics was partially reversed by exogenous PRAS40 introduction in HCC cells. INTERPRETATION: PRAS40 hyperexpression induced by loss of miR-124-3p contributes to PRAS40 hyperphosphorylation and hepatocarcinogenesis. These results could be expected to offer novel clues for understanding hepatocarcinogenesis and developing approaches.

9.
Int Immunopharmacol ; 80: 106152, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31926447

RESUMO

Acute lung injury (ALI) is a devastating clinical disorder with a high mortality rate and for which there is no effective treatment. The main characteristic of ALI is uncontrolled inflammation, and macrophages play a critical role in the development of this disorder. Trametinib, an inhibitor of MAPK/ERK kinase (MEK) activity that possesses anti-inflammatory properties, has been approved for clinical use. Herein, the influence of trametinib and its underlying mechanism were investigated using a lipopolysaccharide (LPS)-induced murine ALI model. We found that trametinib treatment prevented the LPS-facilitated expression of proinflammatory mediators in macrophages, and this anti-inflammatory action was closely correlated with suppression of the MEK-ERK-early growth response (Egr)-1 pathway. Furthermore, trametinib treatment alleviated LPS-induced ALI in mice, and attenuated edema, proinflammatory mediator production, and neutrophil infiltration. Trametinib pretreatment also attenuated the MEK-ERK-Egr-1 pathway in lung tissues. In conclusion, these data demonstrate that trametinib pretreatment suppresses inflammation in LPS-activated macrophages in vitro and protects against murine ALI established by LPS administration in vivo through inhibition of the MEK-ERK-Egr-1 pathway. Therefore, trametinib might have therapeutic potential for ALI.

10.
Life Sci ; 243: 117291, 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31927049

RESUMO

AIMS: Chronic obstructive pulmonary disease (COPD) is a disease with high morbidity and mortality worldwide, which can cause serious social and economic burdens. Allyl isothiocyanate (AITC) is one of the most common natural isothiocyanates and has been shown to have anti-inflammatory and antioxidant biological activities. The purpose of this study was to investigate whether AITC regulated Multidrug resistance-associated protein 1 (MRP1), reactive oxide species (ROS) and reduced glutathione (GSH) levels via Nrf2 and Notch1 signaling pathways to treat COPD and whether there was an interaction between these two pathways. MAIN METHODS: Lung function indexes and histopathological changes in mice were determined by lung function instrument and HE staining, respectively. The protein expression was analyzed using immunohistochemistry and Western blotting. The mRNA expression was measured by RT-PCR in human bronchial epithelial cell line 16HBE. The contents of ROS, GSH and GSSG were detected by kits in 16HBE cells. KEY FINDINGS: The protein expression of Notch1, Hes1, MRP1, Nrf2, and HO-1 in lung tissues of WT mice and untransfected cells were significantly down-regulated in COPD, then significantly ameliorated in treatment groups. The protein expression of MRP1, Notch1 and Hes1 in lung tissues of Nrf2-/- mice were markedly reduced. There was a significant reduction in expression of Nrf2, HO-1 and MRP1 in si-Notch1 transfected cells. Pretreatment with AITC markedly improved oxidative stress and GSH-redox disorder in COPD. SIGNIFICANCE: Our study demonstrates that there is a potential interaction between Nrf2 and Notch1 signaling pathways during treatment of COPD.

11.
Aging (Albany NY) ; 12(1): 945-964, 2020 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-31927529

RESUMO

Analyses of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) implicated in myocardial infarction (MI) have increased our understanding of gene regulatory mechanisms in MI. However, it is not known how their expression fluctuates over the different stages of MI progression. In this study, we used time-series gene expression data to examine global lncRNA and miRNA expression patterns during the acute phase of MI and at three different time points thereafter. We observed that the largest expression peak for mRNAs, lncRNAs, and miRNAs occurred during the acute phase of MI and involved mainly protein-coding, rather than non-coding RNAs. Functional analysis indicated that the lncRNAs and miRNAs most sensitive to MI and most unstable during MI progression were usually related to fewer biological functions. Additionally, we developed a novel computational method for identifying dysregulated competing endogenous lncRNA-miRNA-mRNA triplets (LmiRM-CTs) during MI onset and progression. As a result, a new panel of candidate diagnostic biomarkers defined by seven lncRNAs was suggested to have high classification performance for patients with or without MI, and a new panel of prognostic biomarkers defined by two lncRNAs evidenced high discriminatory capability for MI patients who developed heart failure from those who did not.

12.
J Cell Physiol ; 235(3): 2478-2491, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31489966

RESUMO

Thoracic aortic aneurysm (TAA), a serious cardiovascular disease that causes morbidity and mortality worldwide. At present, few biomarkers can accurately diagnose the appearance of TAA before dissection or rupture. Our research has the intention to investigate the developing applicable biomarkers for TAA promising clinically diagnostic biomarkers or probable regulatory targets for TAA. In our research, we built correlation networks utilizing the expression profile of peripheral blood mononuclear cell obtained from a public microarray data set (GSE9106). Furthermore, we chose the turquoise module, which has the strongest significance with TAA and was further analyzed. Fourteen genes that overlapped with differentially expressed proteins in the medial aortic layer were obtained. Subsequently, we verified the results applying quantitative polymerase chain reaction (Q-PCR) to our clinical specimen. In general, the Q-PCR results coincide with the majority of the expression profile. Fascinatingly, a notable change occurred in CLU, DES, MYH10, and FBLN5. In summary, using weighted gene coexpression analysis, our study indicates that CLU, DES, MYH10, and FBLN5 were identified and validated to be related to TAA and might be candidate biomarkers or therapeutic targets for TAA.

13.
mSystems ; 4(6)2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822600

RESUMO

Bumble bees are important pollinators in natural and agricultural ecosystems. Their social colonies are founded by individual queens, which, as the predominant reproductive females of colonies, contribute to colony function through worker production and fitness through male and new queen production. Therefore, queen health is paramount, but even though there has been an increasing emphasis on the role of gut microbiota for animal health, there is limited information on the gut microbial dynamics of bumble bee queens. Employing 16S rRNA amplicon sequencing and quantitative PCR, we investigate how the adult life stage and physiological state influence a queen's gut bacterial community diversity and composition in unmated, mated, and ovipositing queens of Bombus lantschouensis We found significant shifts in total gut microbe abundance and microbiota composition across queen states. There are specific compositional signatures associated with different stages, with unmated and ovipositing queens showing the greatest similarity in composition and mated queens being distinct. The bacterial genera Gilliamella, Snodgrassella, and Lactobacillus were relatively dominant in unmated and ovipositing queens, with Bifidobacterium dominant in ovipositing queens only. Bacillus, Lactococcus, and Pseudomonas increased following queen mating. Intriguingly, however, further analysis of unmated queens matching the mated queens in age showed that changes are independent of the act of mating. Our study is the first to explore the gut microbiome of bumble bee queens across key life stages from adult eclosion to egg laying and provides useful information for future studies of the function of gut bacteria in queen development and colony performance.IMPORTANCE Bumble bee queens undergo a number of biological changes as they transition through adult emergence, mating, overwintering, foraging, and colony initiation including egg laying. Therefore, they represent an important system to understand the link between physiological, behavioral, and environmental changes and host-associated microbiota. It is plausible that the bumble bee queen gut bacteria play a role in shaping the ability of the queen to survive environmental extremes and reproduce, due to long-established coevolutionary relationships between the host and microbiome members.

14.
Chemosphere ; 244: 125497, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31809938

RESUMO

Perfluorobutanesulfonate (PFBS), a short-chain perfluoroalkyl substance, is used in many industrial products. Preliminary evidence suggests that exposure to PFBS may increase the risk of infertility. The aim of this study was to investigate the influence of PFBS on ovarian function. Herein, we show that exposure of adult female mice to PFBS (200 mg/kg/day) (PFBS-mice) caused a decrease in the levels of serum total triiodothyronine and thyroxine, which depended on the activation of peroxisome proliferator-activated receptor α (PPARα). The numbers of secondary, early antral and antral follicles were reduced in PFBS-mice with an increase in the atretic follicles, and these changes were recovered by the replacement of L-thyroxinein or the treatment with PPARα antagonist GW6471. PFBS-induced hypothyroxinemia led to a decrease in the levels of Akt, mTOR and p70S6K phosphorylation in ovarian granular cells and cumulus cells, which suppressed the proliferation of these cells and enhanced autophagic death of granular cells and cumulus cells. The levels of serum estradiol and progesterone were reduced in PFBS-mice with a low expression of the steroidogenic genes Star and P450scc in ovarian tissues, which were sensitive to the replacement of L-thyroxinein or the blockade of PPARα. The results indicate that exposure to PFBS (≥200 mg/kg/day) through reducing thyroid hormones causes down-regulation of Akt-mTOR signaling in granular cells and cumulus cells, leading to the deficits in the development of follicles and the biosynthesis of ovarian hormones.

15.
Life Sci ; : 117141, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31811853

RESUMO

AIMS: Glibenclamide, a diabetes mellitus type 2 medication, has anti-inflammatory and autoimmune properties. This study investigated the effects of glibenclamide on transplant-induced arteriosclerosis as well as the underlying molecular events. METHODS: Male C57Bl/6 (H-2b) and BALB/c (H-2d) mice were used for aorta transplantation. We used hematoxylin and eosin (HE) and Elastic Van Gieson (EVG) staining for histological assessment, and qRT-PCR and ELISA to measure mRNA and protein levels. Mouse peritoneal macrophages were isolated for lipopolysaccharide (LPS) stimulation and glibenclamide treatment followed by ELISA, Western blot, and Transwell assays. RESULTS: Glibenclamide inhibited transplant-induced arteriosclerosis in vivo. Morphologically, glibenclamide reduced inflammatory cell accumulation and collagen deposition in the aortas. At the gene level, glibenclamide suppressed aortic cytokine mRNA levels, including interleukin-1ß (IL-1ß; 10.64 ±â€¯3.19 vs. 23.77 ±â€¯5.72; P < .05), tumor necrosis factor-α (TNF-α; 4.59 ±â€¯0.78 vs. 13.89 ±â€¯5.42; P < .05), and monocyte chemoattractant protein-1 (MCP-1; 202.66 ±â€¯23.44 vs. 1172.73 ±â€¯208.80; P < .01), while IL-1ß, TNF-α, and MCP-1 levels were also reduced in the mouse sera two weeks after glibenclamide treatment (IL-1ß, 39.40 ±â€¯13.56 ng/ml vs. 78.96 ±â€¯9.39 ng/ml; P < .01; TNF-α, 52.60 ±â€¯13.00 ng/ml vs. 159.73 ±â€¯6.76 ng/ml; P < .01; and MCP-1, 56.60 ±â€¯9.07 ng/ml vs. 223.07 ±â€¯36.28 ng/ml; P < .001). Furthermore, glibenclamide inhibited macrophage expression and secretion of inflammatory factors in vitro through suppressing activation of the nuclear factor-κB (NF-κB) pathway and MCP-1 production. CONCLUSION: Glibenclamide protected against aorta transplantation-induced arteriosclerosis by reducing inflammatory factors in vivo and inhibited macrophage migration and MCP-1 production in vitro.

16.
Immunobiology ; 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31812342

RESUMO

The genomic organization of goat immunoglobulin light chains (Igλ and Igκ) loci were annotated based on the goat genome database. The goat Igλ chain located on chromosome 17 contains at least 35 Vλ gene fragments (seven potential functional genes, one ORF and 27 pseudogenes), two Jλ-Cλ clusters arranged in a Vλ(35)-Jλ2-Cλ1-Jλ1-Cλ2 pattern, with another Cλ3 on scaffold. The Igκ locus included 11 Vκ (five potential functional genes, two ORFs and four pseudogene fragments), three Jκ genes and a single Cκ gene ordered in Vκ(35)-Jκ(3)-Cκ pattern on chromosome 11. By analyzing the clonies of Igλ and Igκ, we further found Vλ2 (26.23 %) &Vλ3 (73.11 %), Vκ2 (52.07 %) &Vκ4 (46.15 %) were predominately used in the expression of λ and κ chains respectively. λ chain showed more abundance in connective diversity than κ chain. Besides, somatic hypermutation with higher frequency in both immunoglobulin light chains was the major mechanism for the goat repertoire diversity. These results demonstrated goat immunoglobulin light chain variable region genome loci and repertoire diversity.

17.
Artigo em Inglês | MEDLINE | ID: mdl-31813282

RESUMO

Finite element method is an efficient tool to investigate the biomechanics of human spine. The key to finite element method is to reconstruct a complete and accurate finite element model. In this study, a three-dimensional finite element model of thoracolumbar structure including complete pelvis (T12-pelvis) was built using computed tomography technology. The modeling process has been explained in detailed. During the process of validation, the model was assigned with non-linear material property for static or dynamic analyses. In static analysis, the vertebral geometry parameters of T12-L5, the axial displacement, the posterior disc bulge and the intradiscal pressure of intervertebral disc, range of motion under six loading cases and facet joint forces were obtained and compared with the experimental data. In dynamic analysis, motion segments were loaded with sinusoidal displacement at 1 Hz in the anterior-posterior and axial directions to verify the reaction force. The first-order resonant frequencies in the vertical direction from one motion segment and two motion segments to the entire model were obtained. The study provides a detailed and accurate method of validation to verify the finite element model of thoracolumbar spine.

18.
Hortic Res ; 6: 136, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31814989

RESUMO

Fresh-cut roses (Rosa hybrida) are one of the most important ornamental crops worldwide, with annual trade in the billions of dollars. Gray mold disease caused by the pathogen Botrytis cinerea is the most serious fungal threat to cut roses, causing extensive postharvest losses. In this study, we optimized a detached petal disc assay (DPDA) for artificial B. cinerea inoculation and quantification of disease symptoms in rose petals. Furthermore, as the identification of rose genes involved in B. cinerea resistance could provide useful genetic and genomic resources, we devised a virus-induced gene silencing (VIGS) procedure for the functional analysis of B. cinerea resistance genes in rose petals. We used RhPR10.1 as a reporter of silencing efficiency and found that the rose cultivar 'Samantha' showed the greatest decrease in RhPR10.1 expression among the cultivars tested. To determine whether jasmonic acid and ethylene are required for B. cinerea resistance in rose petals, we used VIGS to silence the expression of RhLOX5 and RhEIN3 (encoding a jasmonic acid biosynthesis pathway protein and an ethylene regulatory protein, respectively) and found that petal susceptibility to B. cinerea was affected. Finally, a VIGS screen of B. cinerea-induced rose transcription factors demonstrated the potential benefits of this method for the high-throughput identification of gene function in B. cinerea resistance. Collectively, our data show that the combination of the DPDA and VIGS is a reliable and high-throughput method for studying B. cinerea resistance in rose.

19.
Nucleic Acids Res ; 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31799605

RESUMO

RNA methylations are essential both for RNA structure and function, and are introduced by a number of distinct methyltransferases (MTases). In recent years, N6-methyladenosine (m6A) modification of eukaryotic mRNA has been subject to intense studies, and it has been demonstrated that m6A is a reversible modification that regulates several aspects of mRNA function. However, m6A is also found in other RNAs, such as mammalian 18S and 28S ribosomal RNAs (rRNAs), but the responsible MTases have remained elusive. 28S rRNA carries a single m6A modification, found at position A4220 (alternatively referred to as A4190) within a stem-loop structure, and here we show that the MTase ZCCHC4 is the enzyme responsible for introducing this modification. Accordingly, we found that ZCCHC4 localises to nucleoli, the site of ribosome assembly, and that proteins involved in RNA metabolism are overrepresented in the ZCCHC4 interactome. Interestingly, the absence of m6A4220 perturbs codon-specific translation dynamics and shifts gene expression at the translational level. In summary, we establish ZCCHC4 as the enzyme responsible for m6A modification of human 28S rRNA, and demonstrate its functional significance in mRNA translation.

20.
Bioresour Technol ; : 122505, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31806513

RESUMO

This study presents a novel approach based on addition of biochar generated from residue of cornstalk left after pretreatment and hydrolysis (RCPH-biochar) to improve hydrogen production from cornstalk hydrolysate. RCPH-biochar at concentration of 15 g L-1 substantially enhanced hydrogen generation during batch tests, with the highest cumulative hydrogen volume (3990 mL L-1) being 1.7 times that without RCPH-biochar. Then, continuous hydrogen production performance demonstrated that RCPH-biochar was capable of retaining biomass in the reactor, at 6 h hydraulic retention time, hydrogen production rate (22.8 mmol H2 L-1 h-1) was tripled compared to the control, meanwhile, glucose and xylose utilization reached to 82.3% and 54.6%, respectively. Overall material balance indicates continuous hydrogen production with RCPH-biochar enabled 63.4% higher cornstalk transfer to H2 and 53.3% more cornstalk utilization. The findings reported is a closed-loop process and is economically and environmentally attractive, which might support comprehensive cornstalk utilization with less energy input in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA