Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.110
Filtrar
1.
Nat Commun ; 15(1): 3113, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600097

RESUMO

Autophagy is a conserved, catabolic process essential for maintaining cellular homeostasis. Malfunctional autophagy contributes to neurodevelopmental and neurodegenerative diseases. However, the exact role and targets of autophagy in human neurons remain elusive. Here we report a systematic investigation of neuronal autophagy targets through integrated proteomics. Deep proteomic profiling of multiple autophagy-deficient lines of human induced neurons, mouse brains, and brain LC3-interactome reveals roles of neuronal autophagy in targeting proteins of multiple cellular organelles/pathways, including endoplasmic reticulum (ER), mitochondria, endosome, Golgi apparatus, synaptic vesicle (SV) for degradation. By combining phosphoproteomics and functional analysis in human and mouse neurons, we uncovered a function of neuronal autophagy in controlling cAMP-PKA and c-FOS-mediated neuronal activity through selective degradation of the protein kinase A - cAMP-binding regulatory (R)-subunit I (PKA-RI) complex. Lack of AKAP11 causes accumulation of the PKA-RI complex in the soma and neurites, demonstrating a constant clearance of PKA-RI complex through AKAP11-mediated degradation in neurons. Our study thus reveals the landscape of autophagy degradation in human neurons and identifies a physiological function of autophagy in controlling homeostasis of PKA-RI complex and specific PKA activity in neurons.


Assuntos
Neurônios , Proteômica , Camundongos , Animais , Humanos , Neurônios/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Autofagia/fisiologia , Homeostase
2.
Int J Biol Sci ; 20(5): 1927-1946, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481801

RESUMO

The activation of NLRP3 inflammasome in microglia is critical for neuroinflammation during postoperative cognitive dysfunction (POCD) induced by sevoflurane. However, the molecular mechanism by which sevoflurane activates the NLRP3 inflammasome in microglia remains unclear. The cGAS-STING pathway is an evolutionarily conserved inflammatory defense mechanism. The role of the cGAS-STING pathway in sevoflurane-induced NLRP3 inflammasome-dependent neuroinflammation and the underlying mechanisms require further investigation. We found that prolonged anesthesia with sevoflurane induced cognitive dysfunction and triggered the neuroinflammation characterized by the activation of NLRP3 inflammasome in vivo. Interestingly, the cGAS-STING pathway was activated in the hippocampus of mice receiving sevoflurane. While the blockade of cGAS with RU.521 attenuated cognitive dysfunction and NLRP3 inflammasome activation in mice. In vitro, we found that sevoflurane treatment significantly activated the cGAS-STING pathway in microglia, while RU.521 pre-treatment robustly inhibited sevoflurane-induced NLRP3 inflammasome activation. Mechanistically, sevoflurane-induced mitochondrial fission in microglia and released mitochondrial DNA (mtDNA) into the cytoplasm, which could be abolished with Mdivi-1. Blocking the mtDNA release via the mPTP-VDAC channel inhibitor attenuated sevoflurane-induced mtDNA cytosolic escape and reduced cGAS-STING pathway activation in microglia, finally inhibiting the NLRP3 inflammasome activation. Therefore, regulating neuroinflammation by targeting the cGAS-STING pathway may provide a novel therapeutic target for POCD.


Assuntos
Inflamassomos , Complicações Cognitivas Pós-Operatórias , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , DNA Mitocondrial/metabolismo , Sevoflurano , Doenças Neuroinflamatórias , Nucleotidiltransferases/metabolismo
3.
Front Genet ; 15: 1302554, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425715

RESUMO

Introduction: The Tibetan antelope (Pantholops hodgsonii) is a remarkable mammal thriving in the extreme Qinghai-Tibet Plateau conditions. Despite the availability of its genome sequence, limitations in the scaffold-level assembly have hindered a comprehensive understanding of its genomics. Moreover, comparative analyses with other Bovidae species are lacking, along with insights into genome rearrangements in the Tibetan antelope. Methods: Addressing these gaps, we present a multifaceted approach by refining the Tibetan Antelope genome through linkage disequilibrium analysis with data from 15 newly sequenced samples. Results: The scaffold N50 of the refined reference is 3.2 Mbp, surpassing the previous version by 1.15-fold. Our annotation analysis resulted in 50,750 genes, encompassing 29,324 novel genes not previously study. Comparative analyses reveal 182 unique rearrangements within the scaffolds, contributing to our understanding of evolutionary dynamics and species-specific adaptations. Furthermore, by conducting detailed genomic comparisons and reconstructing rearrangements, we have successfully pioneered the reconstruction of the X-chromosome in the Tibetan antelope. Discussion: This effort enhances our comprehension of the genomic landscape of this species.

4.
Ecology ; : e4285, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38523437

RESUMO

Although herbivores are well known to incur positive density-dependent damage and mortality, thereby likely shaping plant community assembly, the response of belowground root feeders to changes in plant density has seldom been addressed. Locally rare plant species (with lower plant biomass per area) are often smaller with shallower roots than common species (with higher plant biomass per area) in competition-intensive grasslands. Likewise, root feeders are often distributed in the upper soil layers. We hypothesized, therefore, that root feeders would incur negative density (biomass)-dependent damage across plant species. To test this hypothesis, we investigated the diversity and abundance of plant and root feeder species in an alpine meadow and determined the diet of the root feeders using metabarcoding. Across all species, root feeder load decreased with increasing aboveground plant biomass, root biomass, and total plant biomass per area, indicating a negative density dependence of damage across plant species. Aboveground plant biomass per area increased with increasing individual plant biomass and root depth per area across species, suggesting that rare plant species were smaller in size and had shallower root systems compared to common plant species. Both root biomass per area and root feeder biomass per area decreased with soil depth, but the root feeder biomass decreased disproportionately faster compared to root biomass with increasing root depth. Root feeder load decreased with increasing root depth but was not correlated with the feeding preference of root feeder species. Moreover, the prediction derived from a random process incorporating vertical distributions of root biomass and root feeder biomass significantly accounted for interspecific variation in root feeder load. In conclusion, the data indicate that root feeders incur negative density-dependent damage across plant species. On this basis, we suggest that manipulative experiments should be conducted to determine the effect of the negative density-dependent damage on plant community structure and that different types of plant-animal interactions should be concurrently examined to fully understand the effect of plant density on overall herbivore damage across plant species.

5.
Langmuir ; 40(14): 7733-7746, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38538620

RESUMO

The mechanism of ethanol-induced fibrillation of ß-lactoglobulin (ß-lg) in the acidic aqueous solution upon heating was investigated using various techniques, mainly thioflavin T fluorescence, atomic force microscopy, nonreducing electrophoresis, mass spectrometry, Fourier transform infrared spectroscopy, and circular dichroism spectroscopy. The results showed that fibrillation occurred with a heating time increase, but high ethanol content slowed down the process. At a low ethanol volume fraction, peptides existed after heating for 2 h, with long and straight fibrils formed after 4-6 h, while at a high ethanol volume fraction, the proteins aggregated with very few peptides appeared at the early stage of heating, and short and curved fibrils formed after heating for 8 h. Ethanol weakened the hydrophobic interactions between proteins in the aqueous solution; therefore the latter could not completely balance the electrostatic repulsion, and thus suppressing the fibrillation process. It is believed that the fibrillation of ß-lg in the acidic solution upon heating is mainly dominated by the polypeptide model; however, ethanol inhibited the hydrolysis of proteins, and the self-assembly mechanism changed to the monomer model.


Assuntos
Lactoglobulinas , Água , Solventes/química , Lactoglobulinas/química , Peptídeos , Etanol , Espectroscopia de Infravermelho com Transformada de Fourier , Microscopia de Força Atômica , Dicroísmo Circular
6.
Mol Cell Biol ; 44(3): 87-102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38520226

RESUMO

Although LncRNA AA465934 expression is reduced in high glucose (HG)-treated podocytes, its role in HG-mediated podocyte injury and diabetic nephropathy (DN) remains unknown. Herein, we investigated the role of AA465934 in HG-mediated podocyte injury and DN using a spontaneous type II diabetic nephropathy (T2DN) model. The model was created by injecting AA465934 overexpressed adeno-associated virus (AAV) or control into mice. The levels of renal function, proteinuria, renal structural lesions, and podocyte apoptosis were then examined. Furthermore, AA465934 and autophagy levels, as well as tristetraprolin (TTP) and high mobility group box 1 (HMGB1) expression changes were detected. We also observed podocyte injury and the binding ability of TTP to E3 ligase proviral insertion in murine lymphomas 2 (PIM2), AA465934, or HMGB1. According to the results, AA465934 improved DN progression and podocyte damage in T2DN mice. In addition, AA465934 bound to TTP and inhibited its degradation by blocking TTP-PIM2 binding. Notably, TTP knock-down blocked the ameliorating effects of AA465934 and TTP bound HMGB1 mRNA, reducing its expression. Overexpression of HMGB1 inhibited the ability of AA465934 and TTP to improve podocyte injury. Furthermore, AA465934 bound TTP, inhibiting TTP-PIM2 binding, thereby suppressing TTP degradation, downregulating HMGB1, and reversing autophagy downregulation, ultimately alleviating HG-mediated podocyte injury and DN. Based on these findings, we deduced that the AA465934/TTP/HMGB1/autophagy axis could be a therapeutic avenue for managing podocyte injury and DN.


Assuntos
Nefropatias Diabéticas , Proteína HMGB1 , Podócitos , RNA Longo não Codificante , Animais , Camundongos , Apoptose , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Regulação para Baixo , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Podócitos/metabolismo , Podócitos/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Tristetraprolina/genética , Tristetraprolina/metabolismo
7.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473798

RESUMO

Ehrlichia chaffeensis infects human monocytes or macrophages and causes human monocytic ehrlichiosis (HME), an emerging life-threatening zoonosis. After internalization, E. chaffeensis resides in membrane-bound inclusions, E. chaffeensis-containing vesicles (ECVs), which have early endosome-like characteristics and fuse with early autophagosomes but not lysosomes, to evade host innate immune microbicidal mechanisms and obtain nutrients for bacterial intracellular growth. The mechanisms exploited by E. chaffeensis to modulate intracellular vesicle trafficking in host cells have not been comprehensively studied. Here, we demonstrate that E. chaffeensis type IV secretion system (T4SS) effector Etf-3 induces RAB15 upregulation in host cells and that RAB15, which is localized on ECVs, inhibits ECV fusion with lysosomes and induces autophagy. We found that E. chaffeensis infection upregulated RAB15 expression using qRT-PCR, and RAB15 was colocalized with E. chaffeensis using confocal microscopy. Silence of RAB15 using siRNA enhanced ECV maturation to late endosomes and fusion with lysosomes, as well as inhibited host cell autophagy. Overexpression of Etf-3 in host cells specifically induced RAB15 upregulation and autophagy. Our findings deepen the understanding of E. chaffeensis pathogenesis and adaptation in hosts as well as the function of RAB15 and facilitate the development of new therapeutics for HME.


Assuntos
Ehrlichia chaffeensis , Humanos , Regulação para Cima , Autofagossomos , Autofagia , Mecanismos de Defesa
8.
J Med Internet Res ; 26: e40406, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457201

RESUMO

BACKGROUND: College athletes are a group often affected by anxiety. Few interventional studies have been conducted to address the anxiety issues in this population. OBJECTIVE: We conducted a mobile-delivered mindfulness intervention among college athletes to study its feasibility and efficacy in lowering their anxiety level and improving their mindfulness (measured by the Five Facet Mindfulness Questionnaire [FFMQ]). METHODS: In April 2019, we recruited 290 college athletes from a public university in Shanghai, China, and 288 of them were randomized into an intervention group and a control group (closed trial), with the former (n=150) receiving a therapist-guided, smartphone-delivered mindfulness-based intervention and the latter receiving mental health promotion messages (n=138). We offered in-person instructions during the orientation session for the intervention group in a classroom, with the therapist interacting with the participants on the smartphone platform later during the intervention. We used generalized linear modeling and the intent-to-treat approach to compare the 2 groups' outcomes in dispositional anxiety, precompetition anxiety, and anxiety during competition, plus the 5 dimensions of mindfulness (measured by the FFMQ). RESULTS: Our intent-to-treat analysis and generalized linear modeling found no significant difference in dispositional anxiety, precompetition anxiety, or anxiety during competition. Only the "observation" facet of mindfulness measures had a notable difference between the changes experienced by the 2 groups, whereby the intervention group had a net gain of .214 yet fell short of reaching statistical significance (P=.09). Participants who specialized in group sports had a higher level of anxiety (ß=.19; SE=.08), a lower level of "nonjudgemental inner experience" in FFMQ (ß=-.07; SE=.03), and a lower level of "nonreactivity" (ß=-.138; SE=.052) than those specializing in individual sports. CONCLUSIONS: No significant reduction in anxiety was detected in this study. Based on the participant feedback, the time availability for mindfulness practice and session attendance for these student athletes in an elite college could have compromised the intervention's effectiveness. Future interventions among this population could explore a more student-friendly time schedule (eg, avoid final exam time) or attempt to improve cognitive and scholastic outcomes. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR1900024449; https://www.chictr.org.cn/showproj.html?proj=40865.


Assuntos
Atenção Plena , Humanos , Atenção Plena/métodos , China , Estudantes/psicologia , Ansiedade/terapia , Ansiedade/psicologia , Atletas
9.
Cancer Lett ; 589: 216832, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38537774

RESUMO

Yes-associated protein (YAP) is an essential driver of hepatocellular carcinoma (HCC) progression and the ubiquitin-proteasome system controls its abundance. However, the role of ubiquitin-specific protease 40 (USP40) in YAP stability remains unclear. Here, USP40 was first identified as a novel regulator of YAP abundance and its target genes in HCC cells. USP40 interacted with YAP to remove the lysine 48 (K48)-linked polyubiquitination of YAP at K252 and K315 sites, thereby maintaining YAP stability. USP40 facilitated the proliferation, colony formation, migration and spheroid formation of HCC cells in vitro and promoted HCC growth in vivo in a YAP-dependent manner. In turn, YAP transcriptionally activated USP40 expression in HCC cells. RNA sequencing analysis showed that about 37% of USP40-regulated genes overlapped with YAP-regulated genes. Interestingly, stiffness-induced USP40 upregulation was abolished by YAP knockdown, and USP40 knockdown attenuated stiffness-induced YAP accumulation in HCC cells. Clinical data demonstrated that USP40 was positively associated with YAP expression in HCC tissues and its high expression indicated a poor prognosis. In conclusion, the USP40/YAP positive feedback loop contributes to HCC progression, suggesting that USP40 may be a promising drug target for anti-HCC.

10.
Huan Jing Ke Xue ; 45(3): 1749-1759, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471886

RESUMO

The large-scale construction of new districts has led to severe soil heavy metal pollution. Therefore, taking Fengdong New District as the target research area, the descriptive statistics of heavy metal content characteristics and Kriging interpolation analysis have been conducted, and the potential ecological risk index and information diffusion theory were further combined to create an information diffusion model based on risk assessment. Finally, the pollution degree, ecological risk, and risk occurrence probability of Pb, Cu, Cd, and Hg were discussed. The findings revealed that the average concentrations of the four heavy metals far exceeded the background value of soil heavy metals by a factor of 1.943 (Pb), 1.419 (Cu), 3.074 (Cd), and 3.567 (Hg), respectively. Moreover, the distribution of soil heavy metals showed strong variability(CV>65%)owing to human interference. The distribution of Pb and Cu pollution were predominantly influenced by industrial production and land development for construction purposes, whereas industrial activities, agricultural practices, and transportation served as the primary sources of Cd contamination. On the other hand, industrial construction emerged as the major factor contributing to Hg pollution. The average values of individual potential ecological risk index for heavy metals of 9.716 (Pb), 7.095 (Cu), 92.292 (Cd), and 142.469 (Hg), coupled with the regional comprehensive potential ecological risk index (RI) average of 251.573, signified that the region was overall characterized by a relatively high potential ecological risk status. The overall potential ecological risk for Pb and Cu in the region were mild, whereas Cd and Hg posed moderate to high risks, indicating that Cd and Hg were the dominant driving factors behind regional heavy metal pollution. The evaluation results of the information diffusion model based on the potential ecological risk indicated that the probability ranking of different levels of comprehensive potential ecological risk was as follows:slightly high (38.98%) > moderate (38.55%) > high (5.89%) > slight (5.15%) > extremely high (3.56%). The exceeding probabilities of potential ecological risk levels for Cd and Hg were significantly higher than those for Pb and Cu. The exceeding probability of different pollution levels of Hg were slight (94.89%), moderate (66.85%), slightly high (23.62%), high (3.9%), and extremely high (2%), of which only the surpassing probability of the slight level was lower than that of Cd. The prediction error of pollution probability of each potential ecological risk level was less than 5%, demonstrating the reliability of the information diffusion model based on the risk assessment. This research will provide technical reference and support for the monitoring and management of potential ecological risks from soil heavy metals in limited sample data regions.

12.
J Agric Food Chem ; 72(6): 3045-3054, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38307881

RESUMO

A novel heparinase III from Pedobacter schmidteae (PsHep-III) with high activity and good stability was successfully cloned, expressed, and characterized. PsHep-III displayed the highest specific activity ever reported of 192.8 U mg-1 using heparin as the substrate. It was stable at 25 °C with a half-life of 323 h in an aqueous solution. PsHep-III was employed for the depolymerization of heparin, and the enzymatic hydrolyzed products were analyzed with gel permeation chromatography and high-performance liquid chromatography. PsHep-III can break glycosidic bonds in heparin like →4]GlcNAc/GlcNAc6S/GlcNS/GlcNS6S/GlcN/GlcN6S(1 → 4)ΔUA/ΔUA2S[1 → and efficiently digest heparin into seven disaccharides including N-acetylated, N-sulfated, and N-unsubstituted modification, with molecular masses of 503, 605, 563, 563, 665, 360, and 563 Da, respectively. These results indicated that PsHep-III with broad substrate specificity could be combined with heparinase I to overcome the low selectivity at the N-acetylated modification binding sites of heparinase I. This work will contribute to the application of PsHep-III for characterizing heparin and producing low-molecular-weight heparin effectively.


Assuntos
Heparina , Polissacarídeo-Liases , Heparina/análise , Heparina/química , Heparina/metabolismo , Heparina Liase/genética , Heparina Liase/química , Heparina Liase/metabolismo , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Sítios de Ligação
13.
Front Bioeng Biotechnol ; 12: 1355019, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38357710

RESUMO

Patients with osteoporosis often encounter clinical challenges of poor healing after bone transplantation due to their diminished bone formation capacity. The use of bone substitutes containing bioactive factors that increase the number and differentiation of osteoblasts is a strategy to improve poor bone healing. In this study, we developed an in situ dual-drug delivery system containing the bone growth factors PTH1-34 and simvastatin to increase the number and differentiation of osteoblasts for osteoporotic bone regeneration. Our system exhibited ideal physical properties similar to those of natural bone and allowed for customizations in shape through a 3D-printed scaffold and GelMA. The composite system regulated the sustained release of PTH1-34 and simvastatin, and exhibited good biocompatibility. Cell studies revealed that the composite system reduced osteoblast death, and promoted expression of osteoblast differentiation markers. Additionally, by radiographic analysis and histological observation, the dual-drug composite system demonstrated promising bone regeneration outcomes in an osteoporotic skull defect model. In summary, this composite delivery system, comprising dual-drug administration, holds considerable potential for bone repair and may serve as a safe and efficacious therapeutic approach for addressing bone defects in patients with osteoporosis.

14.
Funct Integr Genomics ; 24(2): 35, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368303

RESUMO

Protocadherin 8 (PCDH8), a calcium-dependent transmembrane protein in the protocadherin family, regulates cell adhesion and signal transduction. While some studies have provided indirect evidence that PCDH8 has cancer-promoting properties, this association is controversial. In particular, its involvement in thyroid cancer (THCA) remains unclear. We aimed to elucidate the role of PCDH8 in THCA using bioinformatic analysis. Subsequently, the results were experimentally validated. The analysis conducted using the R programming language and online web tools explored PCDH8 expression levels, prognostic, and clinical implications, and its relationship with the tumor immune microenvironment in THCA. Furthermore, we examined the association between PCDH8 and co-expressed genes, highlighting their involvement in several biological processes relevant to THCA. The potential of PCDH8 as a therapeutic target for this pathology was also explored. Immunohistochemical (IHC) staining was performed on samples from 98 patients with THCA, and experimental validation was carried out. PCDH8 was significantly elevated in cancer tissues and associated with poor prognosis, several clinical factors, and immune cell and checkpoint abundance. Cox regression and survival analyses, together with Receiver Operating Curves (ROC) indicated that PCDH8 was an independent prognostic factor for THCA. Furthermore, PCDH8 impacts cell viability and proliferation, promoting tumorigenesis. Also, it influences tumor cell sensitivity to various drugs. Thus, PCDH8 might be a potential therapeutic target for THCA. IHC, cell culture, MTT, and colony formation experiments further confirmed our findings. This analysis provided insights into the potential carcinogenic role of PCDH8 in THCA, as it impacts cell viability and proliferation. Thus, PCDH8 might play an important role in its prognosis, immune infiltration, and diagnosis.


Assuntos
Protocaderinas , Neoplasias da Glândula Tireoide , Humanos , Prognóstico , Neoplasias da Glândula Tireoide/genética , Proliferação de Células , Carcinogênese , Biomarcadores , Microambiente Tumoral
15.
Science ; 383(6683): 639-645, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38330109

RESUMO

Coarse columnar grains and heterogeneously distributed phases commonly form in metallic alloys produced by three-dimensional (3D) printing and are often considered undesirable because they can impart nonuniform and inferior mechanical properties. We demonstrate a design strategy to unlock consistent and enhanced properties directly from 3D printing. Using Ti-5Al-5Mo-5V-3Cr as a model alloy, we show that adding molybdenum (Mo) nanoparticles promotes grain refinement during solidification and suppresses the formation of phase heterogeneities during solid-state thermal cycling. The microstructural change because of the bifunctional additive results in uniform mechanical properties and simultaneous enhancement of both strength and ductility. We demonstrate how this alloy can be modified by a single component to address unfavorable microstructures, providing a pathway to achieve desirable mechanical characteristics directly from 3D printing.

16.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365935

RESUMO

Microorganisms colonizing plant roots co-exist in complex, spatially structured multispecies biofilm communities. However, little is known about microbial interactions and the underlying spatial organization within biofilm communities established on plant roots. Here, a well-established four-species biofilm model (Stenotrophomonas rhizophila, Paenibacillus amylolyticus, Microbacterium oxydans, and Xanthomonas retroflexus, termed as SPMX) was applied to Arabidopsis roots to study the impact of multispecies biofilm on plant growth and the community spatial dynamics on the roots. SPMX co-culture notably promoted root development and plant biomass. Co-cultured SPMX increased root colonization and formed multispecies biofilms, structurally different from those formed by monocultures. By combining 16S rRNA gene amplicon sequencing and fluorescence in situ hybridization with confocal laser scanning microscopy, we found that the composition and spatial organization of the four-species biofilm significantly changed over time. Monoculture P. amylolyticus colonized plant roots poorly, but its population and root colonization were highly enhanced when residing in the four-species biofilm. Exclusion of P. amylolyticus from the community reduced overall biofilm production and root colonization of the three species, resulting in the loss of the plant growth-promoting effects. Combined with spatial analysis, this led to identification of P. amylolyticus as a keystone species. Our findings highlight that weak root colonizers may benefit from mutualistic interactions in complex communities and hereby become important keystone species impacting community spatial organization and function. This work expands the knowledge on spatial organization uncovering interspecific interactions in multispecies biofilm communities on plant roots, beneficial for harnessing microbial mutualism promoting plant growth.


Assuntos
Biofilmes , Interações Microbianas , Hibridização in Situ Fluorescente , RNA Ribossômico 16S/genética , Simbiose
17.
Int Wound J ; 21(3): e14804, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38385817

RESUMO

The process of wound healing in the dental pulp is characterized by intricate interplay of signalling cascades, cellular responses, and extracellular matrix (ECM). The objective of this research was to examine the intricate interaction between signalling cascades, cellular responses, and extracellular matrix (ECM) dynamics that comprise the wound healing process of dental pulp. We conducted a controlled laboratory analysis of transcriptomic landscape of dental pulp tissues, including both healthy and inflamed samples, utilizing single-cell RNA sequencing. We identified significant change in cellular composition under carious conditions by analysing samples from 50 patients. Specifically, the proportion of immune cells increased from 25% to 40%, while the proportion of fibroblasts decreased from 20% to 10%. A transition towards ECM remodelling and fibrosis was indicated by this change. In addition, substantial increase inexpression of critical genes including COL1A1, FN1, IL-1B, IL-6 and TNC was detected, indicating that the extracellular matrix (ECM) was actively remodelled and that a robust inflammatory response was present, both of which are vital for tissue repair. Increased cell-cell interactions among B cells, plasma cells, macrophages and MSCs, and fibroblasts were highlighted in our study, demonstrating the intricate cellular dynamics that occur in response to dental pulp injury. The knowledge gained regarding the cellular and molecular processes underlying pulp wound healing contributed to the advancement of knowledge regarding pulp pathology and regeneration. Moreover, it established a foundation for creation of targeted therapeutic interventions that seek to maximize pulp repair and regeneration. This study represented noteworthy achievement in the field of dental surgery, establishing a solid groundwork for subsequent investigations into regenerative medicine, wound healing, and dental tissue restoration.


Assuntos
Polpa Dentária , Perfilação da Expressão Gênica , Humanos , Nível de Saúde , Fibroblastos , Análise de Sequência de RNA
18.
Meat Sci ; 212: 109473, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38422589

RESUMO

Earlier onset of rigor mortis is a critical physiological progress occurring in the development of pale soft and exudative (PSE) meat. However, how rigor cross-bridges denature under different physiological conditions and their impacts on water-holding capacity remains unclear. To address this scientific question, we firstly established a method to quantify the extent of rigor cross-bridge denaturation using skinned fibres prepared from porcine longissimus thoracis et lumborum muscle. Effects of pH and temperature on the kinetics of rigor cross-bridge denaturation, actomyosin denaturation and shrinkage of muscle fibre were studied. We then manipulated the number of rigor cross-bridges before the denaturation condition was initiated (pH 5.5, 38 °C). Results suggested that the loss of water-holding capacity in PSE meat is determined by the number of denatured rigor cross-bridges. Physiochemical analysis on myofibrils demonstrated that increase in protein oxidation, surface hydrophobicity and loss of electrostatic repulsive force between myofibrils may be involved in the mechanism.


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Suínos , Animais , Miofibrilas , Carne/análise , Água
19.
Cytokine ; 176: 156510, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38308951

RESUMO

More and more evidence shows that long non-coding RNA (lncRNA) plays an important role in the biological behavior of many kinds of malignant tumors, but the specific function of lncRNA Linc00657 in cervical cancer is still unknown. The purpose of this study is to explore the effect of Linc00657 on the malignant progression of cervical cancer and its potential mechanism. In two kinds of cervical cancer cell lines and normal cervical epithelial cells, qRT-PCR showed increased expression of Linc00657 in cervical cancer cells. Through MTT, clone formation test, flow cytometry, wound healing test and Transwell test, it has been found that overexpression of Linc00657 could promote the proliferation,migration and invasion of cervical cancer cells,and inhibit apoptosis. Through the StarBase database, it was found that there may be a mutual regulatory relationship between Linc00657 and Skp2, and Skp2 may be the downstream target of Linc00657. QRT-PCR detection confirmed that the expression of Skp2 was increased in cervical cancer cells with overexpression of Linc00657. TIMER2 database found that Skp2 was associated with lipid metabolic enzymes and immune cell infiltration. It was found that Linc00657 knockdown inhibited tumor growth and metastasis and inhibited the expression of Skp2 in vivo. In short, our research shows that Linc00657 has carcinogenic properties in cervical cancer, and LINC00657 promotes the occurrence of cervical cancer by up-regulating the expression of Skp2. We predict that Linc00657/mir30s/Skp2 axis plays a role in the malignant progression of cervical cancer. In addition, Skp2 may participate in cancer immune response and promote lymph node metastasis of cervical cancer through lipid reprogramming. These findings also provide promising targets for the diagnosis and treatment of cervical cancer.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias do Colo do Útero , Feminino , Humanos , Linhagem Celular Tumoral , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias do Colo do Útero/genética , Carcinogênese/genética , Lipídeos , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Movimento Celular/genética , MicroRNAs/metabolismo , Microambiente Tumoral/genética
20.
Front Immunol ; 15: 1299484, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380329

RESUMO

Introduction: Peanut allergy is an immunoglobulin E (IgE) mediated food allergy. Rubia cordifolia L. (R. cordifolia), a Chinese herbal medicine, protects against peanut-induced anaphylaxis by suppressing IgE production in vivo. This study aims to identify IgE-inhibitory compounds from the water extract of R. cordifolia and investigate the underlying mechanisms using in vitro and in vivo models. Methods: Compounds were isolated from R. cordifolia water extract and their bioactivity on IgE production was assessed using a human myeloma U266 cell line. The purified active compound, xanthopurpurin (XPP), was identified by LC-MS and NMR. Peanut-allergic C3H/HeJ mice were orally administered with or without XPP at 200µg or 400µg per mouse per day for 4 weeks. Serum peanut-specific IgE levels, symptom scores, body temperatures, and plasma histamine levels were measured at challenge. Cytokines in splenocyte cultures were determined by ELISA, and IgE + B cells were analyzed by flow cytometry. Acute and sub-chronic toxicity were evaluated. IL-4 promoter DNA methylation, RNA-Seq, and qPCR analysis were performed to determine the regulatory mechanisms of XPP. Results: XPP significantly and dose-dependently suppressed the IgE production in U266 cells. XPP significantly reduced peanut-specific IgE (>80%, p <0.01), and plasma histamine levels and protected the mice against peanut-allergic reactions in both early and late treatment experiments (p < 0.05, n=9). XPP showed a strong protective effect even 5 weeks after discontinuing the treatment. XPP significantly reduced the IL-4 level without affecting IgG or IgA and IFN-γ production. Flow cytometry data showed that XPP reduced peripheral and bone marrow IgE + B cells compared to the untreated group. XPP increased IL-4 promoter methylation. RNA-Seq and RT-PCR experiments revealed that XPP regulated the gene expression of CCND1, DUSP4, SDC1, ETS1, PTPRC, and IL6R, which are related to plasma cell IgE production. All safety testing results were in the normal range. Conclusions: XPP successfully protected peanut-allergic mice against peanut anaphylaxis by suppressing IgE production. XPP suppresses murine IgE-producing B cell numbers and inhibits IgE production and associated genes in human plasma cells. XPP may be a potential therapy for IgE-mediated food allergy.


Assuntos
Anafilaxia , Hipersensibilidade Alimentar , Hipersensibilidade a Amendoim , Camundongos , Humanos , Animais , Hipersensibilidade a Amendoim/terapia , Anafilaxia/prevenção & controle , Histamina , Interleucina-4 , Medula Óssea , Camundongos Endogâmicos C3H , Imunoglobulina E , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...