Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 487
Filtrar
1.
Neuropathol Appl Neurobiol ; 50(4): e12996, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38982616

RESUMO

AIM: Systemic amyloidosis is a condition in which misfolded amyloid fibrils are deposited within tissues. Amyloid myopathy is a rare manifestation of systemic amyloidosis. However, whether skeletal muscle involvement is underestimated and whether such deposition guarantees clinical and pathological myopathic features remain to be investigated. METHODS: We retrospectively reviewed patients with systemic amyloidosis, in whom skeletal muscle biopsies were performed at our centre between January 2018 and June 2023. In total, 28 patients with suspected systemic amyloidosis were included. Among these, 21 presented with cardiomyopathy but lacked myopathic symptoms. The clinical and pathological data of these patients were further analysed. The amyloid type was confirmed by immunohistochemistry. RESULTS: Twenty-eight patients with suspected systemic amyloidosis underwent muscle biopsy. Amyloid deposition in the skeletal muscle was confirmed in 24 patients, including 22 with light-chain amyloidosis (AL) and two with transthyretin amyloidosis (ATTR). Among the 24 patients, seven presented with muscle weakness and decreased muscle strength (Group 1, symptomatic myopathy), whereas the remaining 17 exhibited normal muscle strength (Group 2, asymptomatic myopathy). Group 1 included four patients with AL-λ, one with AL-κ and two with ATTR. Group 2 included 15 patients with AL-λ and two patients with AL-κ. In Group 1, six patients exhibited neuropathy, whereas only one patient in Group 2 presented with subclinical neuropathy on nerve conduction studies. Amyloid deposition in the interstitium was the most obvious change, observed in all 24 patients. Neuropathic changes, including denervation atrophy and muscle fibre grouping, were also common. Except for type 2 fibre atrophy, the other myopathic changes were mild and nonspecific. No sarcolemmal disruption was observed. Immunohistochemical analysis revealed marked positivity for MAC and MHC1 expression in the regions with amyloid deposits. Clinicopathological analysis revealed no significant differences in the extent of muscular amyloid deposition between the two groups. Nevertheless, patients in Group 1 displayed more pronounced neurogenic atrophy on skeletal muscle biopsies. CONCLUSIONS: Our study indicates that amyloid deposition in skeletal muscle is commonly observed but rarely causes symptomatic myopathy in systemic amyloidosis.


Assuntos
Músculo Esquelético , Doenças Musculares , Humanos , Masculino , Músculo Esquelético/patologia , Músculo Esquelético/metabolismo , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Doenças Musculares/patologia , Doenças Musculares/metabolismo , Amiloidose/patologia , Amiloidose/complicações , Amiloidose/metabolismo , Amiloidose de Cadeia Leve de Imunoglobulina/patologia , Amiloidose de Cadeia Leve de Imunoglobulina/complicações , Amiloidose de Cadeia Leve de Imunoglobulina/metabolismo , Idoso de 80 Anos ou mais , Adulto , Biópsia
3.
Foods ; 13(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38998521

RESUMO

Background: Environmental concerns about petroleum-based plastic packaging materials and the growing demand for food have inspired researchers and the food industry to develop food packaging with better food preservation and biodegradability. Nanocomposites consisting of nanofillers, and synthetic/biopolymers can be applied to improve the physiochemical and antimicrobial properties and sustainability of food packaging. Scope and approach: This review summarized the recent advances in nanofiller and their applications in improved food packaging systems (e.g., nanoclay, carbon nanotubes), active food packaging (e.g., silver nanoparticles (Ag NPs), zinc oxide nanoparticles (ZnO NPs)), intelligent food packaging, and degradable packaging (e.g., titanium dioxide nanoparticles (e.g., TiO2 NPs)). Additionally, the migration processes and related assessment methods for nanofillers were considered, as well as the use of nanofillers to reduce migration. The potential cytotoxicity and ecotoxicity of nanofillers were also reviewed. Key findings: The incorporation of nanofillers may increase Young's modulus (YM) while decreasing the elongation at break (EAB) (y = -1.55x + 1.38, R2 = 0.128, r = -0.358, p = 0.018) and decreasing the water vapor (WVP) and oxygen permeability (OP) (y = 0.30x - 0.57, R2 = 0.039, r = 0.197, p = 0.065). Meanwhile, the addition of metal-based NPs could also extend the shelf-life of food products by lowering lipid oxidation by an average of approx. 350.74% and weight loss by approx. 28.39% during the longest storage period, and significantly increasing antibacterial efficacy against S. aureus compared to the neat polymer films (p = 0.034). Moreover, the migration process of nanofillers may be negligible but still requires further research. Additionally, the ecotoxicity of nanofillers is unclear, as the final distribution of nanocomposites in the environment is unknown. Conclusions: Nanotechnology helps to overcome the challenges associated with traditional packaging materials. Strong regulatory frameworks and safety standards are needed to ensure the appropriate use of nanocomposites. There is also a need to explore how to realize the economic and technical requirements for large-scale implementation of nanocomposite technologies.

4.
Org Lett ; 26(28): 6024-6029, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38984734

RESUMO

A new radical difluoromethylation was developed by using inexpensive and readily available difluoroacetic anhydride and N-phenyl-4-methylbenzenesulfonamide for the first time. The reaction of arylboronic acids with the new difluoromethylation reagent, N-phenyl-N-tosyldifluoroacetamide, proceeded smoothly in the presence of palladium catalyst to provide difluoromethylarenes in satisfactory to excellent yields. The electronic property (electron-donating or electron-withdrawing) of the substituent linked to the aromatic ring did not considerably influence the reactivity of arylboronic acid. Various groups, including the synthetically useful functional groups Cl, CN, and NO2, were tolerated well under the current reaction conditions.

5.
Heliyon ; 10(12): e32602, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39005914

RESUMO

Glaucoma is a chronic ocular disease characterized by optic atrophy and visual field defect. The main risk factor for glaucoma onset and progression is elevated intraocular pressure, which is caused by increased aqueous humor outflow resistance. Currently, the primary method for glaucoma therapy is the use of intraocular pressure lowering drugs. However, these drugs, when administered through eye drops, have low bioavailability, require frequent administration, and often result in adverse effects. To overcome these challenges, the application of nanotechnology for drug delivery has emerged as a promising approach. Nanoparticles can physically adsorb, encapsulate, or chemically graft drugs, thereby improving their efficacy, retention time, and reducing adverse reactions. Moreover, nanotechnology has opened up new avenues for ocular administration. This article provides a comprehensive review of nano systems for intraocular pressure lowering drugs, encompassing cholinergic agonists, ß-adrenergic antagonists, α-adrenergic agonists, prostaglandin analogs, carbonic anhydrase inhibitors, Rho kinase inhibitors, and complex preparations. The aim is to offer novel insights for the development of nanotechnology in the field of intraocular pressure lowering drugs.

6.
Adv Sci (Weinh) ; : e2401069, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874129

RESUMO

In recent decades, research on Extracellular Vesicles (EVs) has gained prominence in the life sciences due to their critical roles in both health and disease states, offering promising applications in disease diagnosis, drug delivery, and therapy. However, their inherent heterogeneity and complex origins pose significant challenges to their preparation, analysis, and subsequent clinical application. This review is structured to provide an overview of the biogenesis, composition, and various sources of EVs, thereby laying the groundwork for a detailed discussion of contemporary techniques for their preparation and analysis. Particular focus is given to state-of-the-art technologies that employ both microfluidic and non-microfluidic platforms for EV processing. Furthermore, this discourse extends into innovative approaches that incorporate artificial intelligence and cutting-edge electrochemical sensors, with a particular emphasis on single EV analysis. This review proposes current challenges and outlines prospective avenues for future research. The objective is to motivate researchers to innovate and expand methods for the preparation and analysis of EVs, fully unlocking their biomedical potential.

7.
Health Expect ; 27(4): e14127, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38940704

RESUMO

BACKGROUND: The safety of medication use among older adults is a growing concern, given the aging population. Despite widespread attention, the exploration of medication literacy in older adults, particularly from the perspective of information literacy, is in its nascent stages. METHODS: This study utilized the existing literature to define medication information literacy (MIL) as a theoretical framework. A two-round Delphi survey was conducted to identify the essential components of a MIL indicator system for older adults. The analytic hierarchy process (AHP) was then used to assign weights to each indicator. RESULTS: The study observed relatively high response rates in both rounds of the questionnaire, which, along with expert authority coefficients (Cr) of 0.86 and 0.89, underscores the credibility and expertise of the panellists. Additionally, Kendall's coefficient of concordance (Kendall's W) ranging from 0.157 to 0.33 (p < 0.05) indicates a consensus among experts on the identified indicators. Utilizing the Delphi process, a MIL indicator system for older adults was developed, comprising five primary and 23 secondary indicators. These indicators were weighted, with medication information cognition and acquisition emerging as pivotal factors in enhancing medication literacy among older adults. CONCLUSIONS: This study developed a MIL indicator system tailored for older adults using the Delphi approach. The findings can inform healthcare professionals in providing customized medication guidance and assist policymakers in crafting policies to enhance medication safety among older adults. PATIENT OR PUBLIC CONTRIBUTION: Patient and public engagement played a pivotal role in the development of our medication information literacy indicator system for older adults. Their involvement contributed to shaping research questions, facilitating study participation, and enriching evidence interpretation. Collaborations with experts in geriatric nursing, medicine, and public health, along with discussions with caregivers and individuals with lived experience, provided invaluable insights into medication management among older adults. Their input guided our research direction and ensured the relevance and comprehensiveness of our findings.


Assuntos
Técnica Delphi , Letramento em Saúde , Humanos , Idoso , Inquéritos e Questionários , Feminino , Masculino , Competência em Informação
8.
Bioengineering (Basel) ; 11(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38927843

RESUMO

(1) Background: A rise in intraocular pressure (IOP) and decreased retinal ganglion cells are frequent indicators of effective modeling of chronic ocular hypertension in mice. In this study, the sensitivity of the mouse model to pharmaceutical therapy to reduce intraocular tension was assessed, the model's safety was confirmed using a cytotoxicity test, and the success rate of the mouse model of ocular hypertension was assessed by assessing alterations in IOP and neurons in the ganglion cell layer. (2) Methods: A mouse model of chronic ocular hypertension was produced in this study by employing photocrosslinkable sericin hydrogel injection and LED lamp irradiation. The eyes of 25 C57BL/6 male mice were subjected to 405 nm UV light from the front for 2 min after being injected with 5 µL of sericin hydrogel in the anterior chamber of the left eye. IOP in the mice was measured daily, and IOP rises greater than 5 mmHg were considered intraocular hypertension. When the IOP was lowered, the intervention was repeated once, but the interval between treatments was at least 2 weeks. The right eyes were not treated with anything as a normal control group. Mice eyeballs were stained with HE, Ni-type, and immunofluorescence to assess the model's efficacy. Two common drugs (tafluprost eye drops and timolol eye drops) were provided for one week after four weeks of stable IOP, and IOP changes were assessed to determine the drug sensitivity of the mouse model of chronic ocular hypertension. Furthermore, CellTiter 96® AQueous One Solution Cell Proliferation Assay (MTS) was utilized to investigate the safety of the ocular hypertension model by evaluating the deleterious effects of photocrosslinkable sericin hydrogel on cells. (3) Results: Before injection, the basal IOP was (9.42 ± 1.28) mmHg (1 kPa = 7.5 mmHg) in the experimental group and (9.08 ± 1.21) in the control group. After injection, cataract occurred in one eye, corneal edema in one eye, endophthalmitis in one eye, iris incarceration in one eye, and eyeball atrophy in one eye. Five mice with complications were excluded from the experiment, and twenty mice were left. Four weeks after injection, the IOP of the experimental group was maintained at (19.7 ± 4.52) mmHg, and that of the control group was maintained at (9.92 ± 1.55) mmHg, and the difference between the two groups was statistically significant (p < 0.05). Before the intervention, the IOP in the experimental group was (21.7 ± 3.31) mmHg in the high IOP control group, (20.33 ± 2.00) mmHg in the tafluprost eye drops group, and (20.67 ± 3.12) mmHg in the timolol maleate eye drops group. The IOP after the intervention was (23.2 ± 1.03) mmHg, (12.7 ± 2.11) mmHg, and (10.4 ± 1.43) mmHg, respectively. Before and after the intervention, there were no significant differences in the high-IOP control group (p > 0.05), there were statistically significant differences in the timolol eye drops group (p < 0.05), and there were statistically significant differences in the tafluprost eye drops group (p < 0.05). One week after drug withdrawal, there was no significant difference in IOP among the three groups (p > 0.05). In the high-IOP group, the protein (sericin hydrogel) showed a short strips or fragmented structure in the anterior chamber, accompanied by a large number of macrophages and a small number of plasma cells. The shape of the chamber angle was normal in the blank control group. The number of retinal ganglion cells decreased significantly 8 weeks after injection of sericin hydrogel into the anterior chamber, and the difference was statistically significant compared with the blank control group (p < 0.05). After the cells were treated with photocrosslinkable sericin hydrogel, there was no significant difference in the data of the CellTiter 96® assay kit of MTS compared with the blank control group (p > 0.05). (4) Conclusions: A mouse model of chronic intraocular hypertension can be established successfully by injecting sericin in the anterior chamber and irradiating with ultraviolet light. The model can simulate the structural and functional changes of glaucoma and can effectively reduce IOP after the action of most antihypertensive drugs, and it is highly sensitive to drugs. Sericin has no obvious toxic effect on cells and has high safety.

9.
Cell Commun Signal ; 22(1): 318, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858740

RESUMO

OBJECTIVES: Interleukin 33 (IL-33) is a crucial inflammatory factor that functions as an alarm signal in endometriosis (EMs). Epithelial-mesenchymal transition (EMT), a process related to inflammatory signals, intracellular reactive oxygen species (ROS) production, and lipid peroxidation, have been proposed as potential mechanisms that contribute to the development and progression of EMs. IL-33 is highly upregulated in the ectopic milieu. Moreover, ectopic endometrial cells constitutively express interleukin-33 receptor ST2 (IL-33R). However, the role of IL-33/ST2 in the EMT of EMs remains largely unknown. In this study, we aimed to mechanistically determine the role of IL-33/ST2 in EMs-associated fibrosis. MATERIALS AND METHODS: We established a non-lethal oxidative stress model to explore the conditions that trigger IL-33 induction. We performed α-smooth muscle actin (α-SMA) protein detection, cell counting kit-8 (CCK-8) assays, and scratch assays to analyze the impact of IL-33 on primary endometrial stromal cells (ESCs) proliferation and invasion. Clinical samples from patients with or without EMs were subjected to immunohistochemical (IHC) and and immunofluorescence(IF) staining to assess the clinical relevance of IL-33 receptor ST2 and EMT-related proteins. Furthermore, we used the ectopic human endometrial epithelial cell line 12Z and normal human epithelial cell line EEC to evaluate the effects of IL-33 on Wnt/ß-catenin signaling. The effect of IL-33 on EMT-associated fibrosis was validated in vivo by intraperitoneal injections of IL-33 and antiST2. RESULTS: We observed that ectopic milieu, characterized by ROS, TGF-ß1, and high level of estrogen, triggers the secretion of IL-33 from ectopic ESCs. Ectopic endometrial lesions exhibited higher level of fibrotic characteristics and ST2 expression than that in the normal endometrium. Exogenous recombinant human (rhIL-33) enhanced ESC migration and survival. Similarly, 12Z cells displayed a higher degree of EMT characteristics with elevated expression of CCN4 and Fra-1, downstream target genes of the WNT/ß-catenin pathway, than that observed in EECs. Conversely, blocking IL-33 with neutralizing antibodies, knocking down ST2 or ß-catenin with siRNA, and ß-catenin dephosphorylation abolished its effects on EMT promotion. In vivo validation demonstrated that IL-33 significantly promotes EMs-related fibrosis through the activation of Wnt/ß-catenin signaling. CONCLUSION: Our data strongly support the vital role of the IL-33/ST2 pathway in EMs-associated fibrosis and emphasize the importance of the EMT in the pathophysiology of fibrosis. Targeting the IL-33/ST2/Wnt/ß-catenin axis may hold promise as a feasible therapeutic approach for controlling fibrosis in EMs.


Assuntos
Endometriose , Transição Epitelial-Mesenquimal , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-33 , beta Catenina , Feminino , Endometriose/metabolismo , Endometriose/patologia , Endometriose/genética , Interleucina-33/metabolismo , Interleucina-33/genética , Transição Epitelial-Mesenquimal/genética , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , beta Catenina/metabolismo , Animais , Fosforilação , Camundongos , Endométrio/patologia , Endométrio/metabolismo , Adulto , Proliferação de Células , Movimento Celular , Transdução de Sinais
10.
Anal Chem ; 96(25): 10264-10273, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38869321

RESUMO

Herein, we, for the first time, synthesize silver nanoparticles (Ag NPs) within the nanochannels of amino group-functionalized vertically ordered mesoporous silica films (NH2-VMSF) and investigate their coreaction accelerator role in the luminol-dissolved oxygen (O2) electrochemical stripping chemiluminescence (ESCL) system. The synthesized Ag NPs are capable of electrocatalytic reduction of O2 to superoxide radicals, and meanwhile, sliver ions (Ag+) electrochemically stripped from Ag NPs can promote the amount of luminol anion radicals, generating the boosted ECL intensity of the luminol-dissolved O2 system. This proposed Ag NPs@NH2-VMSF on the indium tin oxide electrode was applied to construct the ESCL aptasensor for quantitative determination of prostate-specific antigen (PSA), yielding a low detection limit [0.19 pg/mL (S/N = 3)] and a broad linear dynamic range (1 pg/mL to 100 ng/mL). Furthermore, good analytical performance of PSA in serum with satisfactory recoveries and low relative standard deviation values is achieved by our developed ESCL aptasensor, rendering it a convenient and sensitive method for PSA determination in clinical applications and further broadening the strategy of ESCL techniques.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Eletroquímicas , Medições Luminescentes , Luminol , Nanopartículas Metálicas , Oxigênio , Dióxido de Silício , Prata , Dióxido de Silício/química , Luminol/química , Prata/química , Nanopartículas Metálicas/química , Aptâmeros de Nucleotídeos/química , Oxigênio/química , Humanos , Técnicas Biossensoriais , Antígeno Prostático Específico/sangue , Antígeno Prostático Específico/análise , Limite de Detecção , Eletrodos , Luminescência
11.
Opt Express ; 32(12): 21977-21987, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38859538

RESUMO

Quantum teleportation is a building block in quantum computation and quantum communication. The continuous-variable polarization squeezed state is a key resource in quantum networks, offering advantages for long-distance distribution and direct interfacing of quantum nodes. Although polarization squeezed state has been generated and distributed between remote users, it is a long-standing goal to implement controlled quantum teleportation of the polarization squeezed state with multiple remote users. Here, we propose a feasible scheme to teleport a polarization squeezed state among multiple remote users under control. The polarization state is transferred between different remote quantum networks, and the controlled quantum teleportation of the polarization state can be implemented in one quantum network involving multiple remote users. The results show that such a controlled quantum teleportation can be realized with 36 users through about 6-km free-space or fiber quantum channels, where the fidelity of 0.352 is achieved beyond the classical limit of 0.349 with an input squeezing variance of 0.25. This scheme provides a direct reference for the experimental implementation of remote and controlled quantum teleportation of polarization states, thus enabling more teleportation-based quantum network protocols.

12.
Sci Rep ; 14(1): 13461, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38862664

RESUMO

Nowadays, what captures consumers' primary attention is how to purchase electric vehicles with long range and desirable price. Lightweight construction stands as one of the most effective approaches for prolonging range and lowering costs. As a consequence, it is particularly imperative to undertake lightweight design optimization for the battery bracket of new energy vehicles by applying 3D printing technology. To actualize this goal, Rhino software was initially employed for 3D modeling to design the battery bracket system for a pure electric vehicle in China. Subsequently, topology optimization design of the battery bracket was carried out by adopting Altair Inspire software. Last but not least, manufacturing and assembly inspection were completed using a 3D printer. The results show that the maximum displacement of the battery lower tray bracket after topology optimization is 3.20 mm, which is slightly higher than before, but still relatively small. The maximum Mises equivalent stress rose to 240.7 MPa post-optimization, but brought about a uniform stress distribution at the bottom of the bracket. In comparison, the minimum factor of safety met design requirements at 1. The mass was lessened to 0.348 kg, representing a 49.2% decrease in comparison with pre-optimization levels. The 3D-printed bracket was fabricated by employing a 3D printer, thereby achieving the aforementioned mass abatement. The battery pack parts exhibited a bright surface with low roughness and no discernible warping or deformation defects. As revealed by the assembly results, the components of the battery pack bracket are tightly coordinated with each other, with no evident assembly conflicts, revealing that the dimensional accuracy and fit of the completed parts meet production requirements. These findings lay solid groundwork for the mass production of high-performance battery pack brackets.

13.
Oncogene ; 43(30): 2295-2306, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38858591

RESUMO

Circulating tumor cells (CTCs) play a critical role as initiators in tumor metastasis, which unlocks an irreversible process of cancer progression. Regarding the fluid environment of intravascular CTCs, a comprehensive understanding of the impact of hemodynamic shear stress on CTCs is of profound significance but remains vague. Here, we report a microfluidic circulatory system that can emulate the CTC microenvironment to research the responses of typical liver cancer cells to varying levels of fluid shear stress (FSS). We observe that HepG2 cells surviving FSS exhibit a marked overexpression of TLR4 and TPPP3, which are shown to be associated with the colony formation, migration, and anti-apoptosis abilities of HepG2. Furthermore, overexpression of these two genes in another liver cancer cell line with normally low TLR4 and TPPP3 expression, SK-Hep-1 cells, by lentivirus-mediated transfection also confirms the critical role of TLR4 and TPPP3 in improving colony formation, migration, and survival capability under a fluid environment. Interestingly, in vivo experiments show SK-Hep-1 cells, overexpressed with these genes, have enhanced metastatic potential to the liver and lungs in mouse models via tail vein injection. Mechanistically, TLR4 and TPPP3 upregulated by FSS may increase FSS-mediated cell survival and metastasis through the p53-Bax signaling pathway. Moreover, elevated levels of these genes correlate with poorer overall survival in liver cancer patients, suggesting that our findings could offer new therapeutic strategies for early cancer diagnosis and targeted treatment development.


Assuntos
Células Neoplásicas Circulantes , Humanos , Linhagem Celular Tumoral , Microfluídica , Estresse Fisiológico , Feminino , Animais , Camundongos , Movimento Celular , Análise de Célula Única , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Sobrevivência Celular , Anoikis , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Prognóstico
14.
Angew Chem Int Ed Engl ; : e202408989, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837505

RESUMO

The extensive industrial applications of fuel oil, a critical strategic resource, are accompanied by significant environmental and health concerns due to the presence of sulfur-containing compounds in its composition, which result in hazardous combustion waste. Extensive research has been conducted to develop technologies for low-vulcanization fuel production to address this issue. Consequently, the investigation of catalysts for environmentally friendly and safe photocatalytic desulfurization becomes imperative. To that end, we have designed efficient MIL-101(Fe)/CQDs@g-C3N4 (MIL101/CDs-C3N4) Z-scheme heterojunction photocatalysts with high carrier separation and mobility through a thermal polymerization-hydrothermal strategy. The high concentration of photogenerated carriers facilitates the activation of oxygen and H2O2, leading to increased production of ROS (⋅O2 -, ⋅OH, h+), thereby enhancing the photocatalytic desulfurization (PODS). Additionally, DFT (Density functional theory) calculations were utilized to determine the electron migration pathways of the catalysts and adsorption energies of DBT (dibenzothiophene). Moreover, Gibbs free energy calculations indicated that MIL101/CDs-C3N4 exhibited the lowest activation energy for oxygen and H2O2. The mechanism of photocatalytic desulfurization was proposed through a combination of theoretical calculations and experimental studies. This study provides guidance for the development of MOF-based Z-scheme systems and their practical application in desulfurization processes.

17.
Chem Sci ; 15(18): 6853-6859, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38725489

RESUMO

The accumulation and deposition of amyloid fibrils, also known as amyloidosis, in tissues and organs of patients has been found to be linked to numerous devastating neurodegenerative diseases. The aggregation of proteins to form amyloid fibrils, however, is a slow pathogenic process, and is a major issue for the evaluation of the effectiveness of inhibitors in new drug discovery and screening. Here, we used microdroplet reaction technology to accelerate the amyloid fibrillation process, monitored the process to shed light on the fundamental mechanism of amyloid self-assembly, and demonstrated the value of the technology in the rapid screening of potential inhibitor drugs. Proteins in microdroplets accelerated to form fibrils in milliseconds, enabling an entire cycle of inhibitor screening for Aß40 within 3 minutes. The technology would be of broad interest to drug discovery and therapeutic design to develop treatments for diseases associated with protein aggregation and fibrillation.

18.
J Hazard Mater ; 474: 134692, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38810575

RESUMO

Long-term changes in dry deposition fluxes (DDF) and health risks for toxic elements (TE) in total suspended particles (TSP) in the Bohai Rim region are important for assessing control effects of pollution sources. Thus, we investigated the trends in DDF and concentrations for TSP and TE and health risks of TE in eight cities in the region from 2011-2020. TSP concentration and DDF showed general downward trends. Compared to the before Clear Air Action Plan (BCAAP, 2011-2012) period, concentration and DDF of TE over the Clear Air Action Plan (CAAP, 2013-2017) period substantially decreased, with the highest decrease rates in Zn, Cd, and Cr. During the study period, non-carcinogenic (HI) and total carcinogenic (TCR) risks for children and adults were 0.09 and 0.04, and 1.54 × 10-5 and 2.65 × 10-5, respectively, with Cr6+ and As being dominant contributors. Compared to the BCAAP period, HI and TCR over the CAAP period decreased by 36.8 % and 32.4 %, respectively. However, their risks increased over the Blue Sky Protection Campaign (BSPC, 2018-2020) period. Potential source contribution function suggested substantial changes in potential risk areas over different control periods, with the BSPC primarily being on land and the Yellow Sea.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Material Particulado , Poluentes Atmosféricos/análise , Humanos , China , Material Particulado/análise , Medição de Risco , Exposição por Inalação/análise , Criança , Adulto , Cidades , Poluição do Ar/análise
19.
Life Sci ; 349: 122718, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754815

RESUMO

Chronic obstructive pulmonary disease (COPD) is projected to become the third leading cause of death globally by 2030. Despite the limited treatment options available for advanced COPD, which are mostly restricted to costly lung transplants, physical ablation therapy offers promising alternatives. This technique focuses on ablating lesioned airway epithelium, reducing secretions and obstructions, and promoting normal epithelial regeneration, demonstrating significant therapeutic potential. Physical ablation therapy primarily involves thermal steam ablation, cryoablation, targeted lung denervation, and high-voltage pulsed electric field ablation. These methods help transform the hypersecretory phenotype, alleviate airway inflammation, and decrease the volume of emphysematous lung segments by targeting goblet cells and damaged lung areas. Compared to traditional treatments, endoscopic physical ablation offers fewer injuries, quicker recovery, and enhanced safety. However, its application in COPD remains limited due to inconsistent clinical outcomes, a lack of well-understood mechanisms, and the absence of standardized guidelines. This review begins by exploring the development of these ablation techniques and their current clinical uses in COPD treatment. It then delves into the therapeutic effects reported in recent clinical studies and discusses the underlying mechanisms. Finally, the review assesses the future prospects and challenges of employing ablation technology in COPD clinical practice, aiming to provide a practical reference and a theoretical basis for its use and inspire further research.


Assuntos
Técnicas de Ablação , Doença Pulmonar Obstrutiva Crônica , Doença Pulmonar Obstrutiva Crônica/terapia , Doença Pulmonar Obstrutiva Crônica/cirurgia , Humanos , Técnicas de Ablação/métodos , Pulmão , Animais
20.
FASEB J ; 38(10): e23651, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38752537

RESUMO

Singleton-Merten syndrome (SMS) is a rare immunogenetic disorder affecting multiple systems, characterized by dental dysplasia, aortic calcification, glaucoma, skeletal abnormalities, and psoriasis. Glaucoma, a key feature of both classical and atypical SMS, remains poorly understood in terms of its molecular mechanism caused by DDX58 mutation. This study presented a novel DDX58 variant (c.1649A>C [p.Asp550Ala]) in a family with childhood glaucoma. Functional analysis showed that DDX58 variant caused an increase in IFN-stimulated gene expression and high IFN-ß-based type-I IFN. As the trabecular meshwork (TM) is responsible for controlling intraocular pressure (IOP), we examine the effect of IFN-ß on TM cells. Our study is the first to demonstrate that IFN-ß significantly reduced TM cell viability and function by activating autophagy. In addition, anterior chamber injection of IFN-ß remarkably increased IOP level in mice, which can be attenuated by treatments with autophagy inhibitor chloroquine. To uncover the specific mechanism underlying IFN-ß-induced autophagy in TM cells, we performed microarray analysis in IFN-ß-treated and DDX58 p.Asp550Ala TM cells. It showed that RSAD2 is necessary for IFN-ß-induced autophagy. Knockdown of RSAD2 by siRNA significantly decreased autophagy flux induced by IFN-ß. Our findings suggest that DDX58 mutation leads to the overproduction of IFN-ß, which elevates IOP by modulating autophagy through RSAD2 in TM cells.


Assuntos
Autofagia , Proteína DEAD-box 58 , Glaucoma , Pressão Intraocular , Malha Trabecular , Animais , Feminino , Humanos , Masculino , Camundongos , Doenças da Aorta , Autofagia/efeitos dos fármacos , Proteína DEAD-box 58/metabolismo , Proteína DEAD-box 58/genética , Hipoplasia do Esmalte Dentário , Glaucoma/patologia , Glaucoma/metabolismo , Glaucoma/genética , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/patologia , Perda Auditiva Neurossensorial/metabolismo , Interferon beta/metabolismo , Pressão Intraocular/genética , Metacarpo/anormalidades , Camundongos Endogâmicos C57BL , Doenças Musculares , Mutação , Odontodisplasia , Atrofia Óptica/genética , Atrofia Óptica/metabolismo , Atrofia Óptica/patologia , Osteoporose , Linhagem , Receptores Imunológicos , Malha Trabecular/metabolismo , Malha Trabecular/efeitos dos fármacos , Calcificação Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA