Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Environ Sci Technol ; 58(11): 4937-4947, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38446036

RESUMO

Bis(2-ethylhexyl)-tetrabromophthalate (TBPH), a typical novel brominated flame retardant, has been ubiquitously identified in various environmental and biotic media. Consequently, there is an urgent need for precise risk assessment based on a comprehensive understanding of internal exposure and the corresponding toxic effects on specific tissues. In this study, we first investigated the toxicokinetic characteristics of TBPH in different tissues using the classical pseudo-first-order toxicokinetic model. We found that TBPH was prone to accumulate in the liver rather than in the gonad, brain, and muscle of both female and male zebrafish, highlighting a higher internal exposure risk for the liver. Furthermore, long-term exposure to TBPH at environmentally relevant concentrations led to increased visceral fat accumulation, signaling potential abnormal liver function. Hepatic transcriptome analysis predominantly implicated glycolipid metabolism pathways. However, alterations in the profile of associated genes and biochemical indicators revealed gender-specific responses following TBPH exposure. Besides, histopathological observations as well as the inflammatory response in the liver confirmed the development of nonalcoholic fatty liver disease, particularly in male zebrafish. Altogether, our findings highlight a higher internal exposure risk for the liver, enhancing our understanding of the gender-specific metabolic-disrupting potential associated with TBPH exposure.


Assuntos
Retardadores de Chama , Peixe-Zebra , Animais , Masculino , Feminino , Fígado/metabolismo , Metabolismo dos Lipídeos , Retardadores de Chama/toxicidade , Retardadores de Chama/análise
2.
ACS Appl Mater Interfaces ; 16(12): 15383-15393, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38494606

RESUMO

The paper industry has long been a crucial part of our lives, providing printing materials, tissue paper, and packaging products. However, the low wet strength of commercially available paper limits its application in packaging, particularly when it comes into contact with liquids. To address this issue, researchers have explored various strategies, including the use of wet strength agents. The most widely used agent, polyamide-epichlorohydrin resin (PAE), has limitations, such as poor dimensional stability and limited recyclability. Additionally, PAE can release harmful chlorinated organics. To overcome these challenges, we report a novel approach using a hyperbranched wet strength agent (referred to as "OA-PI") based on the cross-linking of oxidized amylopectin from waxy corn and polyamines through the Schiff base reaction. The hyperbranched structure of OA-PI provides multiple binding sites, enhancing the cross-linking strength of cellulosic paper under wet conditions. The paper treated with OA-PI exhibited exceptional wet strength, significantly higher than that of PAE-treated paper and paper with traditional starch-based additives. Moreover, the biomass-based OA-PI showed improved recyclability and reduced harm from chlorinated organic compounds. This study not only enhances the wet strength of paper but also opens sustainable avenues for the design of functional adhesives.

3.
Nanoscale ; 16(9): 4434-4483, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38305732

RESUMO

After entering the human body, drugs for treating diseases, which are prone to delivery and release in an uncontrolled manner, are affected by various factors. Based on this, many researchers utilize various microenvironmental changes encountered during drug delivery to trigger drug release and have proposed stimuli-responsive drug delivery systems. In recent years, metal-organic frameworks (MOFs) have become promising stimuli-responsive agents to release the loaded therapeutic agents at the target site to achieve more precise drug delivery due to their high drug loading, excellent biocompatibility, and high stimuli-responsiveness. The MOF-based stimuli-responsive systems can respond to various stimuli under pathological conditions at the site of the lesion, releasing the loaded therapeutic agent in a controlled manner, and improving the accuracy and safety of drug delivery. Due to the changes in different physical and chemical factors in the pathological process of diseases, the construction of stimuli-responsive systems based on MOFs has become a new direction in drug delivery and controlled release. Based on the background of the rapidly increasing attention to MOFs applied in drug delivery, we aim to review various MOF-based stimuli-responsive drug delivery systems and their response mechanisms to various stimuli. In addition, the current challenges and future perspectives of MOF-based stimuli-responsive drug delivery systems are also discussed in this review.


Assuntos
Estruturas Metalorgânicas , Humanos , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos
4.
Sci Total Environ ; 921: 171133, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38395162

RESUMO

The bioavailability and toxicity of organic pollutants in aquatic organisms can be largely affected by the co-existed nanoparticles. However, the impacts of such combined exposure on the visual system remain largely unknown. Here, we systematically investigated the visual toxicity in zebrafish larvae after single or joint exposure to titanium dioxide nanoparticles (n-TiO2) and bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH) at environmentally relevant levels. Molecular dynamics simulations revealed the enhanced transmembrane capability of the complex than the individual, which accounted for the increased bioavailability of both TBPH and n-TiO2 when combined exposure to zebrafish. Transcriptome analysis showed that co-exposure to n-TiO2 and TBPH interfered with molecular pathways related to eye lens structure and sensory perception of zebrafish. Particularly, n-TiO2 or TBPH significantly suppressed the expression of ßB1-crystallin and rhodopsin in zebrafish retina and lens, which was further enhanced after co-exposure. Moreover, we detected disorganized retinal histology, stunted lens development and significant visual behavioral changes of zebrafish under co-exposure condition. The overall results suggest that combined exposure to water borne n-TiO2 and TBPH increased their bioavailability, resulted in severer damage to optic nerve development and ultimately abnormal visual behavior patterns, highlighting the higher potential health risks of co-exposure to aquatic vertebrates.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Animais , Peixe-Zebra/fisiologia , Larva/metabolismo , Nanopartículas/toxicidade , Titânio/toxicidade , Titânio/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
5.
Environ Sci Technol ; 58(10): 4581-4593, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38422554

RESUMO

An emerging environmental contaminant, bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH), can bioaccumulate in the liver and affect hepatic lipid metabolism. However, the in-depth mechanism has yet to be comprehensively explored. In this study, we utilized transgenic zebrafish Tg (Apo14: GFP) to image the interference of TBPH on zebrafish liver development and lipid metabolism at the early development stage. Using integrated lipidomic and transcriptomic analyses to profile the lipid remodeling effect, we uncovered the potential effects of TBPH on lipophagy-related signaling pathways in zebrafish larvae. Decreased lipid contents accompanied by enhanced lipophagy were confirmed by the measurements of Oil Red O staining and transmission electron microscopy in liver tissues. Particularly, the regulatory role of the foxo1 factor was validated via its transcriptional inhibitor. Double immunofluorescence staining integrated with biochemical analysis indicated that the enhanced lipophagy and mitochondrial fatty acid oxidation induced by TBPH were reversed by the foxo1 inhibitor. To summarize, our study reveals, for the first time, the essential role of foxo1-mediated lipophagy in TBPH-induced lipid metabolic disorders and hepatoxicity, providing new insights for metabolic disease studies and ecological health risk assessment of TBPH.


Assuntos
Metabolismo dos Lipídeos , Peixe-Zebra , Animais , Fígado/metabolismo , Autofagia , Lipídeos
6.
Brain Sci ; 14(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38391696

RESUMO

Accumulating evidence from behavioral studies and neuroscience suggests that motor and cognitive development are intrinsically intertwined. To explore the underlying mechanisms of this motor-cognition link, our study examined the longitudinal relationship of early motor skills and physical activity with later cognitive skills. The sample was 3188 children from the United Kingdom Millennium Cohort Study, followed at 9 months and 5, 7, and 11 years. Early motor skills were examined at 9 months. Children's daily physical activity level was measured using accelerometers at 7 years and a questionnaire was conducted at 11 years. Cognitive skills, including executive function and academic achievement, were measured at age 11. The results suggest that gross motor skills were positively associated with spatial working memory, whereas fine motor skills were predictive of good English and science outcomes. Moderate-to-vigorous activity was found to be negatively associated with English performance, although self-reported activity frequency was positively linked to math. Our results highlight the significant role of both gross and fine motor skills in cognitive development. This study also elucidates the limitations of using activity intensity to assess the impact of motor activity on children's cognitive development, suggesting that attention to the effects of specific types of physical activity would better elucidate the motor/cognition link.

7.
Adv Clin Exp Med ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353506

RESUMO

BACKGROUND: Oral chronic graft-versus-host disease (cGVHD) impacts quality of life of patients after allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, its precise pathogenesis remains unknown, with potential associations with differential microRNA (miRNA) expression and the TGF-â/Smad signaling pathway. OBJECTIVES: This study aims to explore miRNA expression profiles in the peripheral blood of oral cGVHD patients, focusing on miRNA-769-5p and its relationship with Smad2. MATERIAL AND METHODS: Peripheral venous blood samples were collected for RNA extraction from 8 patients with oral cGVHD, 8 patients without cGVHD and 8 participants from the healthy control group. The miRNA library was constructed using the Illumina Hiseq 2500 platform. We focused on identifying miRNAs associated with the TGF-â/Smad signaling pathway and subsequently conducted validation experiments. The oral cGVHD and without cGVHD groups were each expanded to include 15 individuals. Peripheral blood samples were subjected to polymerase chain reaction (PCR) analysis to assess miRNA levels and to evaluate Smad2 mRNA levels in peripheral blood mononuclear cells (PBMC). Additionally, enzyme-linked immunosorbent assay (ELISA) was conducted to determine the Smad2 protein levels in peripheral blood. RESULTS: The most significantly differentially expressed miRNAs among the 3 groups were miRNA-505-5p and miRNA-769-5p. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated an enrichment of the target genes of miRNA-769-5p in the TGF-â signaling pathway. It was observed that miRNA-769-5p expression was higher in patients without oral cGVHD in comparison to those with oral cGVHD. Receiver operating characteristic (ROC) analysis demonstrated that miRNA-769-5p holds diagnostic value for oral cGVHD. As a target of miRNA-769-5p, Smad2 mRNA exhibited a negative correlation with it. Moreover, both Smad2 mRNA and protein levels were higher in patients with oral cGVHD as opposed to those without cGVHD. CONCLUSIONS: Differential expression of miRNAs, particularly the downregulation of miRNA-769-5p, may influence the development of oral cGVHD by diminishing its inhibitory effect on the TGF-â/Smad signaling pathway through its interaction with Smad2.

8.
J. physiol. biochem ; 80(1): 189-204, Feb. 2024. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-EMG-576

RESUMO

Delayed wound healing is an urgent clinical issue. Cellular communication involving exosome-borne cargo such as miRNA is a critical mechanism involved in wound healing. This study isolated and identified human adipose tissue-derived exosomes (Exo-ATs). The specific effects of Exo-ATs on keratinocytes and fibroblasts were examined. Enriched miRNAs in Exo-ATs were analyzed, and miR-92a-3p was selected. The transfer of Exo-ATs-derived miR-92a-3p to keratinocytes and fibroblasts was verified. miR-92a-3p binding to LATS2 was examined and the dynamic effects of the miR-92a-3p/LATS2 axis were investigated. In a dorsal skin wound model, the in vivo effects of Exo-ATs on wound healing were examined. Exo-AT incubation increased keratinocytes and fibroblast proliferation, migration, and extracellular matrix (ECM) accumulation. miR-92a-3p, enriched in Exo-ATs, could be transferred to keratinocytes and fibroblasts, resulting in enhanced proliferation, migration, and ECM accumulation. Large tumor suppressor kinase 2 (LATS2) was a direct target of miR-92a-3p. miR-92a-3p inhibitor effects on keratinocytes and fibroblasts could be partially reversed by LATS2 knockdown. In a dorsal skin wound model, Exo-ATs accelerated wound healing through enhanced cell proliferation, collagen deposition, re-epithelialization, and YAP/TAZ activation. In conclusion, Exo-ATs improve skin wound healing by promoting keratinocyte and fibroblast migration and proliferation and collagen production by fibroblast, which could be partially eliminated by miR-92a inhibition through its downstream target LATS2 and the YAP/TAZ signaling. (AU)


Assuntos
Exossomos , Cicatrização , Proliferação de Células
9.
J. physiol. biochem ; 80(1): 189-204, Feb. 2024. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-229950

RESUMO

Delayed wound healing is an urgent clinical issue. Cellular communication involving exosome-borne cargo such as miRNA is a critical mechanism involved in wound healing. This study isolated and identified human adipose tissue-derived exosomes (Exo-ATs). The specific effects of Exo-ATs on keratinocytes and fibroblasts were examined. Enriched miRNAs in Exo-ATs were analyzed, and miR-92a-3p was selected. The transfer of Exo-ATs-derived miR-92a-3p to keratinocytes and fibroblasts was verified. miR-92a-3p binding to LATS2 was examined and the dynamic effects of the miR-92a-3p/LATS2 axis were investigated. In a dorsal skin wound model, the in vivo effects of Exo-ATs on wound healing were examined. Exo-AT incubation increased keratinocytes and fibroblast proliferation, migration, and extracellular matrix (ECM) accumulation. miR-92a-3p, enriched in Exo-ATs, could be transferred to keratinocytes and fibroblasts, resulting in enhanced proliferation, migration, and ECM accumulation. Large tumor suppressor kinase 2 (LATS2) was a direct target of miR-92a-3p. miR-92a-3p inhibitor effects on keratinocytes and fibroblasts could be partially reversed by LATS2 knockdown. In a dorsal skin wound model, Exo-ATs accelerated wound healing through enhanced cell proliferation, collagen deposition, re-epithelialization, and YAP/TAZ activation. In conclusion, Exo-ATs improve skin wound healing by promoting keratinocyte and fibroblast migration and proliferation and collagen production by fibroblast, which could be partially eliminated by miR-92a inhibition through its downstream target LATS2 and the YAP/TAZ signaling. (AU)


Assuntos
Exossomos , Cicatrização , Proliferação de Células
10.
J Dermatol ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38293719

RESUMO

The therapeutic strategy for the treatment of pemphigus vulgaris (PV) still needs optimization because of the multiple deficiencies of glucocorticoid and rituximab. Ofatumumab, another CD20 monoclonal antibody administrated subcutaneously, provides a possible alternative option. In this study, three patients experienced PV relapse after clinical remission induced by rituximab. With written informed consent, they received an ofatumumab (20 mg) subcutaneous injection twice (2 weeks apart) in combination with a prednisone dose adjusted according to their weight and disease severity. Over the 24-week observation, two of three patients achieved lesion clear-up under prednisone (0.2 mg/kg per day), and the other patient's pemphigus disease area index dropped from 39 to 3 with prednisone (15 mg/day). The anti-desmoglein antibody levels and CD19+ B cell counts declined compared to those at baseline. No severe adverse events were observed within the 24-week follow-up. In summary, we propose a protocol of ofatumumab for patients with refractory PV and report positive treatment outcomes of three patients who received this regimen.

11.
BMC Womens Health ; 24(1): 51, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238733

RESUMO

BACKGROUND: The present evidence is deficient for the trade-offs between the pros and cons of single blastocyst transfer (SBT) versus double blastocyst transfer (DBT) in frozen-thawed embryo transfer cycles for women in advanced reproductive age, especially in the second cycle. The current study aimed to investigate the impact of transferred blastocyst numbers on pregnancy outcomes in the first and second embryo transfer for women ≥ 35 years. METHODS: This was a retrospective cohort study including 1284 frozen-thawed blastocyst transfer (FBT) cycles from two reproductive centers. We analyzed the pregnancy outcomes after SBT and DBT in the first and second FBT cycles. Moreover, stratified analysis was conducted by maternal age. RESULTS: In the first FBT cycle, the LBR was higher in the DBT group than that in the SBT group [52.3% vs. 33.9%; adjusted odds ratio (aOR), 1.65; 95% confidence interval (CI), 1.26-2.15, P < 0.001]. However, the LBR of the DBT group showed no remarkable difference compared with that of the SBT group in the second cycle of FBT (44.3% vs. 33.3%; aOR, 1.30; 95% CI, 0.81-2.08; P = 0.271). Furthermore, stratified analysis by age showed a higher LBR for the DBT group than the SBT group in patients aged 38-42 years (43.1% vs. 33.9%; aOR, 2.27; 95% CI, 1.05-4.90; P = 0.036). CONCLUSIONS: The present study demonstrated that the SBT regimen is a better choice for both, the first and second frozen-thawed embryo transfer cycles, for women aged 35-37 years. Additionally, the DBT regimen is still recommended to achieve a high LBR in women aged 38-42 years in the second FBT cycle. These findings may be beneficial for deciding the embryo transfer regimens in women of advanced reproductive age.


Assuntos
Transferência Embrionária , Fertilização In Vitro , Gravidez , Humanos , Feminino , Estudos Retrospectivos , Resultado da Gravidez , Blastocisto , Taxa de Gravidez , Nascido Vivo
12.
J Dermatolog Treat ; 35(1): 2302071, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38247364

RESUMO

BACKGROUND: Rituximab (RTX) is considered the first-line treatment for pemphigus vulgaris (PV), which is a B-cell-mediated acquired autoimmune disease. However, no consensus on the optimum dosage has been achieved. OBJECTIVES: To investigate the efficacy and safety of low-dose RTX (a single infusion of 500 mg) for the treatment of PV, a cohort study was conducted for patients with PV, along with a 12-month follow-up following the administration of RTX. METHODS: Patients with moderate or severe PV were divided into group A (low-dose RTX combined with corticosteroids) and group B (corticosteroids alone). Data on complete remission (CR) rates, doses of corticosteroids, cumulative doses of corticosteroids at the third, sixth, and twelfth months, pemphigus disease area index and adverse effects (AEs) were collected. RESULTS: Forty-four patients with moderate or severe PV were enrolled in this study (19 in group A and 25 in group B). Patients treated with low-dose RTX had higher CR rates, lower doses of corticosteroids at the third, sixth, and twelfth months, lower cumulative doses of corticosteroids at the sixth and twelfth months, and fewer AEs than those who received corticosteroids alone. CONCLUSIONS: This study indicated that low-dose RTX may be a beneficial and secure therapy option for patients with moderate to severe PV.


Assuntos
Doenças Autoimunes , Pênfigo , Humanos , Pênfigo/tratamento farmacológico , Estudos de Coortes , Rituximab/efeitos adversos , Corticosteroides
13.
J Physiol Biochem ; 80(1): 189-204, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38041784

RESUMO

Delayed wound healing is an urgent clinical issue. Cellular communication involving exosome-borne cargo such as miRNA is a critical mechanism involved in wound healing. This study isolated and identified human adipose tissue-derived exosomes (Exo-ATs). The specific effects of Exo-ATs on keratinocytes and fibroblasts were examined. Enriched miRNAs in Exo-ATs were analyzed, and miR-92a-3p was selected. The transfer of Exo-ATs-derived miR-92a-3p to keratinocytes and fibroblasts was verified. miR-92a-3p binding to LATS2 was examined and the dynamic effects of the miR-92a-3p/LATS2 axis were investigated. In a dorsal skin wound model, the in vivo effects of Exo-ATs on wound healing were examined. Exo-AT incubation increased keratinocytes and fibroblast proliferation, migration, and extracellular matrix (ECM) accumulation. miR-92a-3p, enriched in Exo-ATs, could be transferred to keratinocytes and fibroblasts, resulting in enhanced proliferation, migration, and ECM accumulation. Large tumor suppressor kinase 2 (LATS2) was a direct target of miR-92a-3p. miR-92a-3p inhibitor effects on keratinocytes and fibroblasts could be partially reversed by LATS2 knockdown. In a dorsal skin wound model, Exo-ATs accelerated wound healing through enhanced cell proliferation, collagen deposition, re-epithelialization, and YAP/TAZ activation. In conclusion, Exo-ATs improve skin wound healing by promoting keratinocyte and fibroblast migration and proliferation and collagen production by fibroblast, which could be partially eliminated by miR-92a inhibition through its downstream target LATS2 and the YAP/TAZ signaling.


Assuntos
Exossomos , MicroRNAs , Humanos , Exossomos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fibroblastos/metabolismo , Cicatrização , Queratinócitos/metabolismo , Proliferação de Células , Tecido Adiposo/metabolismo , Colágeno/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/genética
15.
Tissue Eng Regen Med ; 21(1): 123-135, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37755664

RESUMO

BACKGROUND: Oral submucous fibrosis (OSF) is a chronic disease with carcinogenic tendency that poses a non-negligible threat to human health. Exosomes derived from human adipose mesenchymal stem cells (ADSC-Exo) reduces visceral and cutaneous fibroses, but their role in OSF has received little attention. The aim of this study was to investigate the effects of ADSC-Exo on OSF and elucidate the mechanism. METHODS: In brief, ADSCs were extracted from adipose tissues and subjected to flow cytometry and induction culture. Fibroblasts were isolated from human buccal mucosa and subjected to immunofluorescence. Myofibroblasts were obtained from fibroblasts induced by arecoline and identified. Immunofluorescence assay confirmed that myofibroblasts could take up ADSC-Exo. The effects of ADSC-Exo on the proliferative and migratory capacities of myofibroblasts were examined using the Cell Counting Kit-8 and scratch assay. Real-time quantitative polymerase chain reaction (qPCR) was performed to evaluate mothers against decapentaplegic homolog 2 (Smad2), Smad3, Smad7, collagen type 1 (Col1), Col3, alpha smooth muscle actin (α-SMA), fibronectin, and vimentin. Western blotting was performed to detect phospho (p)-Smad2, Smad2, p-Smad2/3, Smad2/3, Smad7, Col1, Col3, α-SMA, fibronectin, and vimentin. Furthermore, the dual-luciferase reporter assay was performed to prove that miR-181a-5p in ADSC-Exo directly inhibited the expression of Smad2 mRNA to regulate the transforming growth factor beta (TGF-ß) pathway. We also performed qPCR and western blotting to verify the results. RESULTS: ADSC-Exo could promote the proliferation and migration of myofibroblasts, reduce the expressions of p-smad2, Smad2, p-smad2/3, Smad2/3, Col1, αSMA, fibronectin, and vimentin and elevated the levels of Smad7 and Col3. In addition, miR-181a-5p was highly expressed in ADSC-Exo and bound to the 3'-untranslated region of Smad2. ADSC-Exo enriched with miR-181a-5p reduced collagen production in myofibroblasts and modulated the TGF-ß pathway. CONCLUSIONS: ADSC-Exo promoted the proliferative and migratory capacities of myofibroblasts and inhibited collagen deposition and trans-differentiation of myofibroblasts in vitro. miR-181a-5p in exosomes targets Smad2 to regulate the TGF-ß pathway in myofibroblasts. ADSC-Exo perform antifibrotic actions through the miR-181a-5p/Smad2 axis and may be a promising clinical treatment for OSF.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Fibrose Oral Submucosa , Humanos , Colágeno Tipo I/metabolismo , Exossomos/metabolismo , Fibronectinas/metabolismo , Fibrose , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fibrose Oral Submucosa/genética , Fibrose Oral Submucosa/terapia , Fibrose Oral Submucosa/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Vimentina/metabolismo
16.
Acta Biomater ; 175: 27-54, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38110135

RESUMO

The escalating concern over conventional antibiotic resistance has emphasized the urgency in developing innovative antimicrobial agents. In recent times, metal-organic frameworks (MOFs) have garnered significant attention within the realm of antimicrobial research due to their multifaceted antimicrobial attributes, including the sustained release of intrinsic or exogenous antimicrobial components, chemodynamically catalyzed generation of reactive oxygen species (ROS), and formation of photogenerated ROS. This comprehensive review provides a thorough overview of the synthetic approaches employed in the production of MOF-based materials, elucidating their underlying antimicrobial mechanisms in depth. The focal point lies in elucidating the research advancements across various antimicrobial modalities, encompassing intrinsic component release system, extraneous component release system, auto-catalytical system, and energy conversion system. Additionally, the progress of MOF-based antimicrobial materials in addressing wound infections, osteomyelitis, and periodontitis is meticulously elucidated, culminating in a summary of the challenges and potential opportunities inherent within the realm of antimicrobial applications for MOF-based materials. STATEMENT OF SIGNIFICANCE: Growing concerns about conventional antibiotic resistance emphasized the need for alternative antimicrobial solutions. Metal-organic frameworks (MOFs) have gained significant attention in antimicrobial research due to their diverse attributes like sustained antimicrobial components release, catalytic generation of reactive oxygen species (ROS), and photogenerated ROS. This review covers MOF synthesis and their antimicrobial mechanisms. It explores advancements in intrinsic and extraneous component release, auto-catalysis, and energy conversion systems. The paper also discusses MOF-based materials' progress in addressing wound infections, osteomyelitis, and periodontitis, along with existing challenges and opportunities. Given the lack of related reviews, our findings hold promise for future MOF applications in antibacterial research, making it relevant to your journal's readership.


Assuntos
Anti-Infecciosos , Estruturas Metalorgânicas , Osteomielite , Periodontite , Infecção dos Ferimentos , Humanos , Estruturas Metalorgânicas/farmacologia , Espécies Reativas de Oxigênio , Anti-Infecciosos/farmacologia
17.
BMC Biol ; 21(1): 285, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066646

RESUMO

BACKGROUND: Immature cumulus-oocyte complexes are retrieved to obtain mature oocytes by in vitro maturation (IVM), a laboratory tool in reproductive medicine to obtain mature oocytes. Unfortunately, the efficiency of IVM is not satisfactory. To circumvent this problem, we therefore intended to commence with the composition of ovarian follicular fluid (FF), an important microenvironment influencing oocyte growth. It is well known that FF has a critical role in oocyte development and maturation. However, the components in human FF remain largely unknown, particularly with regard to small molecular peptides. RESULTS: In current study, the follicular fluid derived from human mature and immature follicles were harvested. The peptide profiles of FF were further investigated by using combined ultrafiltration and LC-MS/MS. The differential peptides were preliminary determined by performing differentially expressed analysis. Human and mouse oocyte culture were used to verify the influence of differential peptides on oocyte development. Constructing plasmids, cell transfecting, Co-IP, PLA etc. were used to reveal the detail molecular mechanism. The results from differentially expressed peptide as well as cultured human and mouse oocytes analyses showed that highly conserved C3a-peptide, a cleavage product of complement C3a, definitely affected oocytes development. Intriguingly, C3a-peptide possessed a novel function that promoted F-actin aggregation and spindle migration, raised the percentage of oocytes at the MII stage, without increasing the chromosome aneuploidy ratio, especially in poor-quality oocytes. These effects of C3a-peptide were attenuated by C3aR morpholino inhibition, suggesting that C3a-peptide affected oocytes development by collaborating with its classical receptor, C3aR. Specially, we found that C3aR co-localized to the spindle with ß-tubulin to recruit F-actin toward the spindle and subcortical region of the oocytes through specific binding to MYO10, a key regulator for actin organization, spindle morphogenesis and positioning in oocytes. CONCLUSIONS: Our results provide a new perspective for improving IVM culture systems by applying FF components and also provide molecular insights into the physiological function of C3a-peptide, its interaction with C3aR, and their roles in enabling meiotic division of oocytes.


Assuntos
Actinas , Complemento C3a , Líquido Folicular , Oócitos , Fragmentos de Peptídeos , Animais , Feminino , Humanos , Camundongos , Actinas/metabolismo , Cromatografia Líquida , Células do Cúmulo/metabolismo , Líquido Folicular/fisiologia , Oócitos/crescimento & desenvolvimento , Espectrometria de Massas em Tandem , Complemento C3a/fisiologia , Fragmentos de Peptídeos/fisiologia , Técnicas de Maturação in Vitro de Oócitos
18.
Microorganisms ; 11(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37894092

RESUMO

The COVID-19 pandemic has highlighted the urgent need for accurate, rapid, and cost-effective diagnostic methods to identify and track the disease. Traditional diagnostic methods, such as PCR and serological assays, have limitations in terms of sensitivity, specificity, and timeliness. To investigate the potential of using protein-peptide hybrid microarray (PPHM) technology to track the dynamic changes of antibodies in the serum of COVID-19 patients and evaluate the prognosis of patients over time. A discovery cohort of 20 patients with COVID-19 was assembled, and PPHM technology was used to track the dynamic changes of antibodies in the serum of these patients. The results were analyzed to classify the patients into different disease severity groups, and to predict the disease progression and prognosis of the patients. PPHM technology was found to be highly effective in detecting the dynamic changes of antibodies in the serum of COVID-19 patients. Four polypeptide antibodies were found to be particularly useful for reflecting the actual status of the patient's recovery process and for accurately predicting the disease progression and prognosis of the patients. The findings of this study emphasize the multi-dimensional space of peptides to analyze the high-volume signals in the serum samples of COVID-19 patients and monitor the prognosis of patients over time. PPHM technology has the potential to be a powerful tool for tracking the dynamic changes of antibodies in the serum of COVID-19 patients and for improving the diagnosis and prognosis of the disease.

19.
Medicine (Baltimore) ; 102(43): e35491, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37904433

RESUMO

Clinical outcomes of colon adenocarcinoma (COAD) exhibit heterogeneity among different patients, highlighting the need for novel prognostic biomarkers. Kinesin superfamily members have been shown to play a crucial role in tumors and can predict cancer diagnosis and prognosis. However, the role of kinesin family member C2 (KIFC2) in tumors, particularly its prognostic value in COAD, remains poorly understood. Our bioinformatics analysis of the cancer genome atlas and GEO databases revealed significantly higher expression of KIFC2 in COAD, correlating with a worse prognosis in the cancer genome atlas-COAD and GSE17536 cohorts. Additionally, differentially expressed genes in COAD were enriched in immune-related pathways, and patients with higher KIFC2 expression showed fewer activated CD4 + T cells. These findings suggest KIFC2 as a potential prognostic biomarker for COAD, warranting further validation in clinical studies.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Humanos , Neoplasias do Colo/genética , Cinesinas/genética , Prognóstico , Adenocarcinoma/genética , Biomarcadores
20.
Environ Sci Technol ; 57(44): 16811-16822, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37880149

RESUMO

The novel brominated flame retardant decabromodiphenyl ethane (DBDPE) has become a ubiquitous emerging pollutant in the environment, which may evoke imperceptible effects in humans or wild animals. Hence in this study, zebrafish embryos were exposed to DBDPE (0, 0.1, 1, and 10 nM) until sexual maturity (F0), and F1 and F2 generations were cultured without further exposure to study the multi- and transgenerational toxicity and underlying mechanism. The growth showed sex-different changing profiles across three generations, and the social behavior confirmed transgenerational neurotoxicity in adult zebrafish upon life cycle exposure to DBDPE. Furthermore, maternal transfer of DBDPE was not detected, whereas parental transfer of neurotransmitters to zygotes was specifically disturbed in F1 and F2 offspring. A lack of changes in the F1 generation and opposite changing trends in the F0 and F2 generations were observed in a series of indicators for DNA damage, DNA methylation, and gene transcription. Taken together, life cycle exposure to DBDPE at environmentally relevant concentrations could induce transgenerational neurotoxicity in zebrafish. Our findings also highlighted potential impacts on wild gregarious fish, which would face higher risks from predators.


Assuntos
Poluentes Ambientais , Retardadores de Chama , Animais , Humanos , Peixe-Zebra/genética , Bromobenzenos/toxicidade , Estágios do Ciclo de Vida , Retardadores de Chama/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...