Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 983
Filtrar
2.
Sci Rep ; 14(1): 15844, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982309

RESUMO

Predicting the blood-brain barrier (BBB) permeability of small-molecule compounds using a novel artificial intelligence platform is necessary for drug discovery. Machine learning and a large language model on artificial intelligence (AI) tools improve the accuracy and shorten the time for new drug development. The primary goal of this research is to develop artificial intelligence (AI) computing models and novel deep learning architectures capable of predicting whether molecules can permeate the human blood-brain barrier (BBB). The in silico (computational) and in vitro (experimental) results were validated by the Natural Products Research Laboratories (NPRL) at China Medical University Hospital (CMUH). The transformer-based MegaMolBART was used as the simplified molecular input line entry system (SMILES) encoder with an XGBoost classifier as an in silico method to check if a molecule could cross through the BBB. We used Morgan or Circular fingerprints to apply the Morgan algorithm to a set of atomic invariants as a baseline encoder also with an XGBoost classifier to compare the results. BBB permeability was assessed in vitro using three-dimensional (3D) human BBB spheroids (human brain microvascular endothelial cells, brain vascular pericytes, and astrocytes). Using multiple BBB databases, the results of the final in silico transformer and XGBoost model achieved an area under the receiver operating characteristic curve of 0.88 on the held-out test dataset. Temozolomide (TMZ) and 21 randomly selected BBB permeable compounds (Pred scores = 1, indicating BBB-permeable) from the NPRL penetrated human BBB spheroid cells. No evidence suggests that ferulic acid or five BBB-impermeable compounds (Pred scores < 1.29423E-05, which designate compounds that pass through the human BBB) can pass through the spheroid cells of the BBB. Our validation of in vitro experiments indicated that the in silico prediction of small-molecule permeation in the BBB model is accurate. Transformer-based models like MegaMolBART, leveraging the SMILES representations of molecules, show great promise for applications in new drug discovery. These models have the potential to accelerate the development of novel targeted treatments for disorders of the central nervous system.


Assuntos
Barreira Hematoencefálica , Aprendizado de Máquina , Permeabilidade , Barreira Hematoencefálica/metabolismo , Humanos , Células Endoteliais/metabolismo , Simulação por Computador , Descoberta de Drogas/métodos
3.
Quant Imaging Med Surg ; 14(7): 4864-4877, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39022278

RESUMO

Background: Anxiety-driven clinical interventions have been queried due to the nondeterminacy of pure ground-glass nodules (pGGNs). Although radiomics and radiogenomics aid diagnosis, standardization and reproducibility challenges persist. We aimed to assess a risk score system for invasive adenocarcinoma in pGGNs. Methods: In a retrospective, multi-center study, 772 pGGNs from 707 individuals in The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital were grouped into training (509 patients with 558 observations) and validation (198 patients with 214 observations) sets consecutively from January 2017 to November 2021. An additional test set of 143 observations in Hainan Cancer Hospital was analyzed in the same period. Computed tomography (CT) signs and clinical features were manually collected, and the quantitative parameters were achieved by artificial intelligence (AI). The positive cutoff score was ≥3. Risk scores system 3 combined carcinoma history, chronic obstructive pulmonary disease (COPD), maximum diameters, nodule volume, mean CT values, type II or III vascular supply signs, and other radiographic characteristics. The evaluation included the area under the curves (AUCs), accuracy, sensitivity, specificity, positive predictive values (PPV), and negative predictive values (NPV) for both the risk score systems 1, 2, 3 and the AI model. Results: The risk score system 3 [AUC, 0.840; 95% confidence interval (CI): 0.789-0.890] outperformed the AI model (AUC, 0.553; 95% CI: 0.487-0.619), risk score system 1 (AUC, 0.802; 95% CI: 0.754-0.851), and risk score system 2 (AUC, 0.816; 95% CI: 0.766-0.867), with 88.0% (0.850-0.904) accuracy, 95.6% (0.932-0.972) PPV, 0.620 (0.535-0.702) NPV, 89.6% (0.864-0.920) sensitivity, and 80.6% (0.717-0.872) specificity in the training sets. In the validation and test sets, risk score system 3 performed best with AUCs of 0.769 (0.678-0.860) and 0.801 (0.669-0.933). Conclusions: An AI-based risk scoring system using quantitative image parameters, clinical features, and radiographic characteristics effectively predicts invasive adenocarcinoma in pulmonary pGGNs.

4.
Asian Bioeth Rev ; 16(3): 373-389, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39022374

RESUMO

This paper examines the Saudi Food and Drug Authority's (SFDA) Guidance on Artificial Intelligence (AI) and Machine Learning (ML) technologies based Medical Devices (the MDS-G010). The SFDA has pioneered binding requirements designed for manufacturers to obtain Medical Device Marketing Authorization. The regulation of AI in health is at an early stage worldwide. Therefore, it is critical to examine the scope and nature of the MDS-G010, its influences, and its future directions. It is argued that the guidance is a patchwork of existing international best practices concerning AI regulation, incorporates adapted forms of non-AI-based guidelines, and builds on existing legal requirements in the SFDA's existing regulatory architecture. There is particular congruence with the approaches of the US Food and Drug Administration (FDA) and the International Medical Device Regulators Forum (IMDRF), but the SFDA goes beyond those approaches to incorporate other best practices into its guidance. Additionally, the binding nature of the MDS-G010 is complex. There are binding 'components' within the guidance, but the incorporation of non-binding international best practices which are subordinate to national law results in a lack of clarity about how penalties for non-compliance will operate.

5.
Heliyon ; 10(11): e31397, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38947449

RESUMO

Recent advancements in Artificial Intelligence (AI), particularly in generative language models and algorithms, have led to significant impacts across diverse domains. AI capabilities to address prompts are growing beyond human capability but we expect AI to perform well also as a prompt engineer. Additionally, AI can serve as a guardian for ethical, security, and other predefined issues related to generated content. We postulate that enforcing dialogues among AI-as-prompt-engineer, AI-as-prompt-responder, and AI-as-Compliance-Guardian can lead to high-quality and responsible solutions. This paper introduces a novel AI collaboration paradigm emphasizing responsible autonomy, with implications for addressing real-world challenges. The paradigm of responsible AI-AI conversation establishes structured interaction patterns, guaranteeing decision-making autonomy. Key implications include enhanced understanding of AI dialogue flow, compliance with rules and regulations, and decision-making scenarios exemplifying responsible autonomy. Real-world applications envision AI systems autonomously addressing complex challenges. We have made preliminary testing of such a paradigm involving instances of ChatGPT autonomously playing various roles in a set of experimental AI-AI conversations and observed evident added value of such a framework.

6.
Cureus ; 16(5): e61379, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38947677

RESUMO

Leukemia is a rare but fatal cancer of the blood. This cancer arises from abnormal bone marrow cells and requires prompt diagnosis for effective treatment and positive patient prognosis. Traditional diagnostic methods (e.g., microscopy, flow cytometry, and biopsy) pose challenges in both accuracy and time, demanding an inquisition on the development and use of deep learning (DL) models, such as convolutional neural networks (CNN), which could allow for a faster and more exact diagnosis. Using specific, objective criteria, DL might hold promise as a tool for physicians to diagnose leukemia. The purpose of this review was to report the relevant available published literature on using DL to diagnose leukemia. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, articles published between 2010 and 2023 were searched using Embase, Ovid MEDLINE, and Web of Science, searching the terms "leukemia" AND "deep learning" or "artificial neural network" OR "neural network" AND "diagnosis" OR "detection." After screening retrieved articles using pre-determined eligibility criteria, 20 articles were included in the final review and reported chronologically due to the nascent nature of the phenomenon. The initial studies laid the groundwork for subsequent innovations, illustrating the transition from specialized methods to more generalized approaches capitalizing on DL technologies for leukemia detection. This summary of recent DL models revealed a paradigm shift toward integrated architectures, resulting in notable enhancements in accuracy and efficiency. The continuous refinement of models and techniques, coupled with an emphasis on simplicity and efficiency, positions DL as a promising tool for leukemia detection. With the help of these neural networks, leukemia detection could be hastened, allowing for an improved long-term outlook and prognosis. Further research is warranted using real-life scenarios to confirm the suggested transformative effects DL models could have on leukemia diagnosis.

7.
Scand J Gastroenterol ; : 1-8, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950889

RESUMO

OBJECTIVES: Recently, artificial intelligence (AI) has been applied to clinical diagnosis. Although AI has already been developed for gastrointestinal (GI) tract endoscopy, few studies have applied AI to endoscopic ultrasound (EUS) images. In this study, we used a computer-assisted diagnosis (CAD) system with deep learning analysis of EUS images (EUS-CAD) and assessed its ability to differentiate GI stromal tumors (GISTs) from other mesenchymal tumors and their risk classification performance. MATERIALS AND METHODS: A total of 101 pathologically confirmed cases of subepithelial lesions (SELs) arising from the muscularis propria layer, including 69 GISTs, 17 leiomyomas and 15 schwannomas, were examined. A total of 3283 EUS images were used for training and five-fold-cross-validation, and 827 images were independently tested for diagnosing GISTs. For the risk classification of 69 GISTs, including very-low-, low-, intermediate- and high-risk GISTs, 2,784 EUS images were used for training and three-fold-cross-validation. RESULTS: For the differential diagnostic performance of GIST among all SELs, the accuracy, sensitivity, specificity and area under the receiver operating characteristic (ROC) curve were 80.4%, 82.9%, 75.3% and 0.865, respectively, whereas those for intermediate- and high-risk GISTs were 71.8%, 70.2%, 72.0% and 0.771, respectively. CONCLUSIONS: The EUS-CAD system showed a good diagnostic yield in differentiating GISTs from other mesenchymal tumors and successfully demonstrated the GIST risk classification feasibility. This system can determine whether treatment is necessary based on EUS imaging alone without the need for additional invasive examinations.

8.
Front Oncol ; 14: 1320220, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962264

RESUMO

Background: Our previous studies have demonstrated that Raman spectroscopy could be used for skin cancer detection with good sensitivity and specificity. The objective of this study is to determine if skin cancer detection can be further improved by combining deep neural networks and Raman spectroscopy. Patients and methods: Raman spectra of 731 skin lesions were included in this study, containing 340 cancerous and precancerous lesions (melanoma, basal cell carcinoma, squamous cell carcinoma and actinic keratosis) and 391 benign lesions (melanocytic nevus and seborrheic keratosis). One-dimensional convolutional neural networks (1D-CNN) were developed for Raman spectral classification. The stratified samples were divided randomly into training (70%), validation (10%) and test set (20%), and were repeated 56 times using parallel computing. Different data augmentation strategies were implemented for the training dataset, including added random noise, spectral shift, spectral combination and artificially synthesized Raman spectra using one-dimensional generative adversarial networks (1D-GAN). The area under the receiver operating characteristic curve (ROC AUC) was used as a measure of the diagnostic performance. Conventional machine learning approaches, including partial least squares for discriminant analysis (PLS-DA), principal component and linear discriminant analysis (PC-LDA), support vector machine (SVM), and logistic regression (LR) were evaluated for comparison with the same data splitting scheme as the 1D-CNN. Results: The ROC AUC of the test dataset based on the original training spectra were 0.886±0.022 (1D-CNN), 0.870±0.028 (PLS-DA), 0.875±0.033 (PC-LDA), 0.864±0.027 (SVM), and 0.525±0.045 (LR), which were improved to 0.909±0.021 (1D-CNN), 0.899±0.022 (PLS-DA), 0.895±0.022 (PC-LDA), 0.901±0.020 (SVM), and 0.897±0.021 (LR) respectively after augmentation of the training dataset (p<0.0001, Wilcoxon test). Paired analyses of 1D-CNN with conventional machine learning approaches showed that 1D-CNN had a 1-3% improvement (p<0.001, Wilcoxon test). Conclusions: Data augmentation not only improved the performance of both deep neural networks and conventional machine learning techniques by 2-4%, but also improved the performance of the models on spectra with higher noise or spectral shifting. Convolutional neural networks slightly outperformed conventional machine learning approaches for skin cancer detection by Raman spectroscopy.

9.
Cureus ; 16(6): e61523, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38957241

RESUMO

This review aims to explore the potential of artificial intelligence (AI) in coronary CT angiography (CCTA), a key tool for diagnosing coronary artery disease (CAD). Because CAD is still a major cause of death worldwide, effective and accurate diagnostic methods are required to identify and manage the condition. CCTA certainly is a noninvasive alternative for diagnosing CAD, but it requires a large amount of data as input. We intend to discuss the idea of incorporating AI into CCTA, which enhances its diagnostic accuracy and operational efficiency. Using such AI technologies as machine learning (ML) and deep learning (DL) tools, CCTA images are automated to perfection and the analysis is significantly refined. It enables the characterization of a plaque, assesses the severity of the stenosis, and makes more accurate risk stratifications than traditional methods, with pinpoint accuracy. Automating routine tasks through AI-driven CCTA will reduce the radiologists' workload considerably, which is a standard benefit of such technologies. More importantly, it would enable radiologists to allocate more time and expertise to complex cases, thereby improving overall patient care. However, the field of AI in CCTA is not without its challenges, which include data protection, algorithm transparency, as well as criteria for standardization encoding. Despite such obstacles, it appears that the integration of AI technology into CCTA in the future holds great promise for keeping CAD itself in check, thereby aiding the fight against this disease and begetting better clinical outcomes and more optimized modes of healthcare. Future research on AI algorithms for CCTA, making ethical use of AI, and thereby overcoming the technical and clinical barriers to widespread adoption of this new tool, will hopefully pave the way for profound AI-driven transformations in healthcare.

10.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38960405

RESUMO

Plasmids are extrachromosomal DNA found in microorganisms. They often carry beneficial genes that help bacteria adapt to harsh conditions. Plasmids are also important tools in genetic engineering, gene therapy, and drug production. However, it can be difficult to identify plasmid sequences from chromosomal sequences in genomic and metagenomic data. Here, we have developed a new tool called PlasmidHunter, which uses machine learning to predict plasmid sequences based on gene content profile. PlasmidHunter can achieve high accuracies (up to 97.6%) and high speeds in benchmark tests including both simulated contigs and real metagenomic plasmidome data, outperforming other existing tools.


Assuntos
Aprendizado de Máquina , Plasmídeos , Plasmídeos/genética , Análise de Sequência de DNA/métodos , Software , Biologia Computacional/métodos , Algoritmos
11.
J Neurooncol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958849

RESUMO

PURPOSE: Artificial Intelligence (AI) has become increasingly integrated clinically within neurosurgical oncology. This report reviews the cutting-edge technologies impacting tumor treatment and outcomes. METHODS: A rigorous literature search was performed with the aid of a research librarian to identify key articles referencing AI and related topics (machine learning (ML), computer vision (CV), augmented reality (AR), virtual reality (VR), etc.) for neurosurgical care of brain or spinal tumors. RESULTS: Treatment of central nervous system (CNS) tumors is being improved through advances across AI-such as AL, CV, and AR/VR. AI aided diagnostic and prognostication tools can influence pre-operative patient experience, while automated tumor segmentation and total resection predictions aid surgical planning. Novel intra-operative tools can rapidly provide histopathologic tumor classification to streamline treatment strategies. Post-operative video analysis, paired with rich surgical simulations, can enhance training feedback and regimens. CONCLUSION: While limited generalizability, bias, and patient data security are current concerns, the advent of federated learning, along with growing data consortiums, provides an avenue for increasingly safe, powerful, and effective AI platforms in the future.

12.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39000338

RESUMO

Chimeric antigen receptor (CAR) T cells represent a revolutionary immunotherapy that allows specific tumor recognition by a unique single-chain fragment variable (scFv) derived from monoclonal antibodies (mAbs). scFv selection is consequently a fundamental step for CAR construction, to ensure accurate and effective CAR signaling toward tumor antigen binding. However, conventional in vitro and in vivo biological approaches to compare different scFv-derived CARs are expensive and labor-intensive. With the aim to predict the finest scFv binding before CAR-T cell engineering, we performed artificial intelligence (AI)-guided molecular docking and steered molecular dynamics analysis of different anti-CD30 mAb clones. Virtual computational scFv screening showed comparable results to surface plasmon resonance (SPR) and functional CAR-T cell in vitro and in vivo assays, respectively, in terms of binding capacity and anti-tumor efficacy. The proposed fast and low-cost in silico analysis has the potential to advance the development of novel CAR constructs, with a substantial impact on reducing time, costs, and the need for laboratory animal use.


Assuntos
Inteligência Artificial , Antígeno Ki-1 , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptores de Antígenos Quiméricos , Anticorpos de Cadeia Única , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/genética , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , Humanos , Antígeno Ki-1/imunologia , Antígeno Ki-1/metabolismo , Animais , Camundongos , Ligação Proteica , Ressonância de Plasmônio de Superfície
13.
Mult Scler Relat Disord ; 89: 105761, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39018642

RESUMO

Medical research offers potential for disease prediction, like Multiple Sclerosis (MS). This neurological disorder damages nerve cell sheaths, with treatments focusing on symptom relief. Manual MS detection is time-consuming and error prone. Though MS lesion detection has been studied, limited attention has been paid to clinical analysis and computational risk factor prediction. Artificial intelligence (AI) techniques and Machine Learning (ML) methods offer accurate and effective alternatives to mapping MS progression. However, there are challenges in accessing clinical data and interdisciplinary collaboration. By analyzing 103 papers, we recognize the trends, strengths and weaknesses of AI, ML, and statistical methods applied to MS diagnosis. AI/ML-based approaches are suggested to identify MS risk factors, select significant MS features, and improve the diagnostic accuracy, such as Rule-based Fuzzy Logic (RBFL), Adaptive Fuzzy Inference System (ANFIS), Artificial Neural Network methods (ANN), Support Vector Machine (SVM), and Bayesian Networks (BNs). Meanwhile, applications of the Expanded Disability Status Scale (EDSS) and Magnetic Resonance Imaging (MRI) can enhance MS diagnostic accuracy. By examining established risk factors like obesity, smoking, and education, some research tackled the issue of disease progression. The performance metrics varied across different aspects of MS studies: Diagnosis: Sensitivity ranged from 60 % to 98 %, specificity from 60 % to 98 %, and accuracy from 61 % to 97 %. Prediction: Sensitivity ranged from 76 % to 98 %, specificity from 65 % to 98 %, and accuracy from 62 % to 99 %. Segmentation: Accuracy ranged up to 96.7 %. Classification: Sensitivity ranged from 78 % to 97.34 %, specificity from 65 % to 99.32 %, and accuracy from 71 % to 97.94 %. Furthermore, the literature shows that combining techniques can improve efficiency, exploiting their strengths for better overall performance.

14.
Cas Lek Cesk ; 162(7-8): 279-282, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38981712

RESUMO

The current era witnesses a highly dynamic development of Artificial Intelligence (AI) applications, impacting various human activities. Medical imaging techniques are no exception. AI can find application in image acquisition, image processing and augmentation, as well as in the actual interpretation of images. Moreover, within the domain of radiomics, AI can be instrumental in advanced analysis surpassing the capacities of the human eye and experience. While several certified commercial solutions are available, the validation and accumulation of sufficient evidence regarding their positive impact on healthcare is currently constrained. The role of AI presently leans towards being assistive, yet further evolution is anticipated. Risks and disadvantages encompass dependency on computational power, the quality of input data, and their annotation for learning purposes. The transparency of algorithmic functioning is lacking, and issues pertaining to portability may arise. The integration and utilization of AI introduce entirely new ethical and legislative aspects. Predicting the future development of AI in imaging methods is challenging, with a further increase in implementation appearing more probable.


Assuntos
Inteligência Artificial , Diagnóstico por Imagem , Humanos , Diagnóstico por Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos
15.
Cardiovasc Diagn Ther ; 14(3): 352-366, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975004

RESUMO

Background: Evaluating left ventricular diastolic function (LVDF) is crucial in echocardiography; however, the complexity and time demands of current guidelines challenge clinical use. This study aimed to develop an artificial intelligence (AI)-based framework for automatic LVDF assessment to reduce subjectivity and improve accuracy and outcome prediction. Methods: We developed an AI-based LVDF assessment framework using a nationwide echocardiographic dataset from five tertiary hospitals. This framework automatically identifies views, calculates diastolic parameters, including mitral inflow and annular velocities (E/A ratio, e' velocity, and E/e' ratio), maximal tricuspid regurgitation velocity, left atrial (LA) volume index, and left atrial reservoir strain (LARS). Subsequently, it grades LVDF according to guidelines. The AI-framework was validated on an external dataset composed of randomly screened 173 outpatients who underwent transthoracic echocardiography with suspicion for diastolic dysfunction and 33 individuals from medical check-ups with normal echocardiograms at Seoul National University Bundang Hospital, tertiary medical center in Korea, between May 2012 and June 2022. Additionally, we assessed the predictive value of AI-derived diastolic parameters and LVDF grades for a clinical endpoint, defined as a composite of all-cause death and hospitalization for heart failure, using Cox-regression risk modelling. Results: In an evaluation with 200 echocardiographic examinations (167 suspected diastolic dysfunction patients, 33 controls), it achieves an overall accuracy of 99.1% in identifying necessary views. Strong correlations (Pearson coefficient 0.901-0.959) were observed between AI-derived and manually-derived measurements of diastolic parameters, including LARS as well as conventional parameters. When following the guidelines, whether utilizing AI-derived or manually-derived parameters, the evaluation of LVDF consistently showed high concordance rates (94%). However, both methods exhibited lower concordance rates with the clinician's prior assessments (77.5% and 78.5%, respectively). Importantly, both AI-derived and manually-derived LVDF grades independently demonstrated significant prognostic value [adjusted hazard ratio (HR) =3.03; P=0.03 and adjusted HR =2.75; P=0.04, respectively] for predicting clinical outcome. In contrast, the clinician's prior grading lost its significance as a prognostic indicator after adjusting for clinical risk factors (adjusted HR =1.63; P=0.36). AI-derived LARS values significantly decreased with worsening LVDF (P for trend <0.001), and low LARS (<17%) was associated with increased risk for the clinical outcome (Log-rank P=0.04) relative to that for preserved LARS (≥17%). Conclusions: Our AI-based approach for automatic LVDF assessment on echocardiography is feasible, potentially enhancing clinical diagnosis and outcome prediction.

16.
Cureus ; 16(6): e61826, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38975538

RESUMO

Artificial intelligence (AI) has emerged as a transformative force in healthcare, particularly in the field of ophthalmology. This comprehensive review examines the current applications of AI in ophthalmology, highlighting its significant contributions to diagnostic accuracy, treatment efficacy, and patient care. AI technologies, such as deep learning algorithms, have demonstrated exceptional performance in the early detection and diagnosis of various eye conditions, including diabetic retinopathy (DR), age-related macular degeneration (AMD), and glaucoma. Additionally, AI has enhanced the analysis of ophthalmic imaging techniques like optical coherence tomography (OCT) and fundus photography, facilitating more precise disease monitoring and management. The review also explores AI's role in surgical assistance, predictive analytics, and personalized treatment plans, showcasing its potential to revolutionize clinical practice and improve patient outcomes. Despite these advancements, challenges such as data privacy, regulatory hurdles, and ethical considerations remain. The review underscores the need for continued research and collaboration among clinicians, researchers, technology developers, and policymakers to address these challenges and fully harness the potential of AI in improving eye health worldwide. By integrating AI with teleophthalmology and developing AI-driven wearable devices, the future of ophthalmic care promises enhanced accessibility, efficiency, and efficacy, ultimately reducing the global burden of visual impairment and blindness.

17.
Int J Pharm ; 661: 124405, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950660

RESUMO

High shear wet granulation (HSWG) is widely used in tablet manufacturing mainly because of its advantages in improving flowability, powder handling, process run time, size distribution, and preventing segregation. In line process analytical technology measurements are essential in capturing detailed particle dynamics and presenting real-time data to uncover the complexity of the HSWG process and ultimately for process control. This study presents an opportunity to predict the properties of the granules and tablets through torque measurement of the granulation bowl and the force exerted on a novel force probe within the powder bed. Inline force measurements are found to be more sensitive than torque measurements to the granulation process. The characteristic force profiles present the overall fingerprint of the high shear wet granulation, in which the evolution of the granule formation can improve our understanding of the granulation process. This provides rich information relating to the properties of the granules, identification of the even distribution of the binder liquid, and potential granulation end point. Data were obtained from an experimental high shear mixer across a range of key process parameters using a face-centred surface response design of experiment (DoE). A closed-form analytical model was developed from the DOE matrix using the discovery of evolutionary equations. The model is able to provide a strong predictive indication of the expected tablet tensile strength based only on the data in-line. The use of a closed form mathematical equation carries notable advantages over other AI methodologies such as artificial neural networks, notably improved interpretability/interrogability, and minimal inference costs, thus allowing the model to be used for real-time decision making and process control. The capability of accurately predicting, in real time, the required compaction force required to achieve the desired tablet tensile strength from upstream data carries the potential to ensure compression machine settings rapidly reach and are maintained at optimal values, thus maximising efficiency and minimising waste.

18.
Comput Biol Med ; 179: 108810, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38991316

RESUMO

Artificial intelligence (AI) is a field of computer science that involves acquiring information, developing rule bases, and mimicking human behaviour. The fundamental concept behind AI is to create intelligent computer systems that can operate with minimal human intervention or without any intervention at all. These rule-based systems are developed using various machine learning and deep learning models, enabling them to solve complex problems. AI is integrated with these models to learn, understand, and analyse provided data. The rapid advancement of Artificial Intelligence (AI) is reshaping numerous industries, with the pharmaceutical sector experiencing a notable transformation. AI is increasingly being employed to automate, optimize, and personalize various facets of the pharmaceutical industry, particularly in pharmacological research. Traditional drug development methods areknown for being time-consuming, expensive, and less efficient, often taking around a decade and costing billions of dollars. The integration of artificial intelligence (AI) techniques addresses these challenges by enabling the examination of compounds with desired properties from a vast pool of input drugs. Furthermore, it plays a crucial role in drug screening by predicting toxicity, bioactivity, ADME properties (absorption, distribution, metabolism, and excretion), physicochemical properties, and more. AI enhances the drug design process by improving the efficiency and accuracy of predicting drug behaviour, interactions, and properties. These approaches further significantly improve the precision of drug discovery processes and decrease clinical trial costs leading to the development of more effective drugs.

19.
Curr Opin Psychol ; 58: 101833, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38991423

RESUMO

This article briefly summarizes trust as a multi-dimensional construct, and trust in AI as a unique but related construct. It argues that because trust in AI is couched within an economic landscape, these two frameworks should be combined to understand the dynamics of trust in AI as it is currently implemented. The review focuses on healthcare and law enforcement as two industries that have adopted AI in ways that do and do not engender trust from stakeholders. The framework is applied to both industries to highlight where and why varying trust in AI is observed. Then seven research questions are posed, and researchers are encouraged to test the proposed framework in other AI-reliant contexts, like education and employment.

20.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...