Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.548
Filtrar
1.
Small ; : e2402492, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109574

RESUMO

Enhancing active states on the catalyst surface by modulating the adsorption-desorption properties of reactant species is crucial to optimizing the electrocatalytic activity of transition metal-based nanostructured materials. In this work, an efficient optimization strategy is proposed by co-modulating the dual anions (C and S) in Ni3C/Ni3S2, the heterostructured electrocatalyst, which is prepared via a simple hot-injection method. The presence of Ni3C/Ni3S2 heterojunctions accelerates the charge carrier transfer and promotes the generation of active sites, enabling the heterostructured electrocatalyst to achieve current densities of 10/100 mA cm-2 at 1.37 V/1.53 V. The Faradaic efficiencies for formate production coupled with hydrogen evolution approach 100%, accompanied with a stability record of 350 h. Additionally, operando electrochemical impedance spectroscopy (EIS), in situ Raman spectroscopy, and density functional theory (DFT) calculations further demonstrate that the creation of Ni3C/Ni3S2 heterointerfaces originating from dual anions' (C and S) differentiation is effective in adjusting the d-band center of active Ni atoms, promoting the generation of active sites, as well as optimizing the adsorption and desorption of reaction intermediates. This dual anions co-modulation strategy to stable heterostructure provides a general route for constructing high-performance transition metal-based electrocatalysts.

2.
J Colloid Interface Sci ; 677(Pt B): 904-921, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39178670

RESUMO

It is a challenging task to design and synthesize stable, and high-performance non-precious metals bifunctional catalysts for water-splitting. Herein, the coupling between Se vacancy and interface engineering is highlighted to synthesize a unique CoFeSe hollow nanocubes structure on MXene-modified nickel foam (NF) by in-situ phase transition from bifunctionality prussian blue analogue (PBA) derivatives (VSe-CoFeSe@MXene/NF). DFT theory reveals that the Se vacancy and interface engineering modulate the surface electronic structure and optimize the surface adsorption energy of the intermediates. Experimental data also confirm that the as-prepared CoFeSe@MF catalyst exhibits advanced electrocatalytic properties, 283 mV (OER) and 67 mV (HER) are required to drive the current density of 10 mA cm-2. Notably, it is assembled into a two-electrode system for integral water decomposition, which only requires a low cell potential of 1.57 V at current of 10 mA cm-2, together with excellent durability for 48 h. The strategy is expected to provide a new direction for the design and construction of highly efficient collaborative integrated water decomposition electrocatalysts.

3.
J Colloid Interface Sci ; 677(Pt B): 1005-1013, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39178664

RESUMO

Electrochemical water splitting for hydrogen production is an ideal process for clean energy production. However, highly active and low-cost electrocatalysts are essential and challenging. In this work, a multi-component Cu-based catalyst (Ru-M-C-Cu), synergized with ruthenium (Ru) heteroatom doping, was synthesized via a facile immersion-calcination-immersion method. Based on the cotton biomass substrate, a hollow tubular structure was obtained. By virtue of its distinctive structure and high carbon content, cotton biomass assumed a dual role as a sacrificial template and a reducing agent in the eco-friendly synthesis of electrocatalysts, which was instrumental in the creation of a multi-component system augmented by heteroatom doping. The multi-component system was constructed by in-situ transformation and redox reaction during calcination in an oxygen-free environment. The Ru-M-C-Cu catalyst exhibited a competitive overpotential of 108 mV at a current density of 10 mA cm-2 for alkaline hydrogen evolution reaction (HER). The satisfactory catalytic performance of Ru-M-C-Cu can be attributed to the fact that the Ru-O-Cu catalytic centers enhanced the adsorption and desorption abilities of the Cu-O active sites toward hydrogen. Furthermore, the hollow tubular structure allowed the electrolyte to make full contact with the active sites of the Ru-M-C-Cu catalyst, thus accelerated the HER kinetics. The catalyst showed structural and chemical stability after a 12-hour successive test. Besides, the production cost of Ru-M-C-Cu was significantly reduced by 99.1 % than that of commercial 20 % Pt/C, showing the potential as an alternative catalyst by offering a more accessible and sustainable source. This work provides a new design of sustainable low-budget electrocatalysts with the proposed strategies expected for producing clean and renewable hydrogen energy.

4.
Adv Sci (Weinh) ; : e2403752, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39159050

RESUMO

Herein, a heterogeneous structure of Ni-Mo catalyst comprising Ni4Mo nanoalloys decorated on a MoOx matrix via electrodeposition is introduced. This catalyst exhibits remarkable hydrogen evolution reaction (HER) activity across a range of pH conditions. The heterogeneous Ni-Mo catalyst showed low overpotentials only of 24 and 86, 21 and 60, and 37 and 168 mV to produce a current density of 10 and 100 mA cm-2 (η10 and η100) in alkaline, acidic, and neutral media, respectively, which represents one of the most active catalysts for the HER. The enhanced activity is attributed to the hydrogen spillover effect, where hydrogen atoms migrate between the Ni4Mo alloys and the MoOx matrix, forming hydrogen molybdenum bronze as additional active sites. Additionally, the Ni4Mo facilitated the water dissociation process, which helps the Volmer step in the alkaline/neutral HER. Through electrochemical analysis, in situ Raman spectroscopy, and density functional theory calculations, the fast HER mechanism is elucidated.

5.
Small ; : e2404205, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39161199

RESUMO

Highly-efficient and cost-effective electrocatalysts toward the oxygen evolution reaction (OER) are crucial for advancing sustainable energy technologies. Herein, a novel approach leveraging corrosion engineering is presented to facilitate the in situ growth of amorphous cobalt-iron hydroxides on nickel-iron foam (CoFe(OH)x-m/NFF) within a NaCl-CoCl2 aqueous solution. By adjusting the concentration of the solution, the compositions can tailored and morphologies of these hydroxides to optimize the OER electrocatalytic performance. Specifically, the CoFe(OH)x-500/NFF electrode manifests as distinctive 3D flower-like clusters composed of remarkably thin nanosheets, measuring a mere 1 nm in thickness. By virtue of the amorphous and ultrathin nanosheet structure, the CoFe(OH)x-500/NFF electrode exhibits superior OER activity, characterized by notably low overpotentials (η100, 274 mV) and an exceptionally small Tafel slope of 40.54 mV dec-1. Moreover, the electrode's performance remains robust, maintaining low overpotentials for 168 h at 100 mA cm-2. In situ Raman spectroscopy indicates that the hydroxides experience surface structural reconstruction and transform into high-valent CoFeO2 with active Co(IV)-O sites during the OER. Theoretical calculations underscore the critical role of the NiFe substrate in enhancing the electrode's OER activity by improving electrical conductivity and modifying the adsorption energy of reaction intermediates, thereby reducing the energy barrier for the reaction.

6.
J Colloid Interface Sci ; 678(Pt A): 176-185, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39186897

RESUMO

Synergistic effects among different metals have positioned multimetallic electrocatalysts as promising facilitators for enhancing the oxygen evolution reaction (OER), though understanding their precise mechanisms has remained elusive. Delving into the unique contributions of individual metals is crucial for comprehending the complex synergy within multimetallic systems. In this study, we employed quinary (Co, Ce, Fe, Cu, and Mn) molybdates as a model to systematically investigate the role of each metal species in tailoring active sites. Our systematic analyses unveiled the presence of crucial oxygen vacancies, which can be considered as the active sites in OER. Comparative analyses of the top-performing quinary molybdates and their quaternary counterparts highlighted distinct electronic interactions and varying densities of oxygen vacancies, indicative of the diverse electron and vacancy engineering capabilities inherent to different metals. Mott-schottky plots demonstrated the predominant contribution of Mn to specific catalytic activity, followed by Ce, Fe, Cu, and Co. Leveraging an in-situ methanol probing method, it was found that the introduction of Cu, Ce, Fe, and Mn weakened intermediate adsorption, with Mn and Ce having the most significant effects, whereas Co strengthened adsorption. This work can advance our comprehension of the role played by individual metals within multimetallic catalysts, thereby promoting a more profound understanding of synergistic effects.

7.
Angew Chem Int Ed Engl ; : e202413657, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39187433

RESUMO

Regulating the catalytic reaction pathway to essentially break the activity/stability trade-off that limits RuO2 and thus achieves exceptional stability and activity for the acidic oxygen evolution reaction (OER) is important yet challenging. Herein, we propose a novel strategy of incorporating atomically dispersed V species, including O-bridged V dimers and V single atoms, into RuO2 lattices to trigger direct O-O radical coupling to release O2 without the generation of *OOH intermediates. Vn-RuO2 showed high activity with a low overpotential of 227 mV at 10 mA cm-2 and outstanding stability during a 1050 h test in acidic electrolyte. Operando spectroscopic studies and theoretical calculations revealed that compared with the V single atom-doping case, the introduction of the V dimer into RuO2 further decreases the Ru‒V atomic distance and weakens the adsorption strength of the *O intermediate to the active V site, which supports the more energetically favorable oxygen radical coupling mechanism (OCM). Furthermore, the highly asymmetric Ru-O-V local structure stabilizes the surface Ru active center by lowering the valence state and increasing the resistance against overoxidation, which result in outstanding stability. This study provides insight into ways of increasing the intrinsic catalytic activity and stability of RuO2 by atomically dispersed species modification.

8.
Adv Sci (Weinh) ; 11(32): e2401652, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39189476

RESUMO

Renewable energy-driven proton exchange membrane water electrolyzer (PEMWE) attracts widespread attention as a zero-emission and sustainable technology. Oxygen evolution reaction (OER) catalysts with sluggish OER kinetics and rapid deactivation are major obstacles to the widespread commercialization of PEMWE. To date, although various advanced electrocatalysts have been reported to enhance acidic OER performance, Ru/Ir-based nanomaterials remain the most promising catalysts for PEMWE applications. Therefore, there is an urgent need to develop efficient, stable, and cost-effective Ru/Ir catalysts. Since the structure-performance relationship is one of the most important tools for studying the reaction mechanism and constructing the optimal catalytic system. In this review, the recent research progress from the construction of unsaturated sites to gain a deeper understanding of the reaction and deactivation mechanism of catalysts is summarized. First, a general understanding of OER reaction mechanism, catalyst dissolution mechanism, and active site structure is provided. Then, advances in the design and synthesis of advanced acidic OER catalysts are reviewed in terms of the classification of unsaturated active site design, i.e., alloy, core-shell, single-atom, and framework structures. Finally, challenges and perspectives are presented for the future development of OER catalysts and renewable energy technologies for hydrogen production.

9.
J Colloid Interface Sci ; 678(Pt A): 119-129, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39182386

RESUMO

Bismuth Vanadate (BiVO4) is a promising oxide-based photoanode for electrochemical applications, yet its practical use is constrained by poor charge transport properties, particularly under dark conditions. This study introduces a novel BiVO4 variant (Bi-BiVO4-10) that incorporates abundant oxygen vacancies and in-situ formed Bi metal, significantly enhancing its electrical conductivity and catalytic performance. Bi-BiVO4-10 demonstrates superior electrochemical performances compared to conventional BiVO4 (C-BiVO4), demonstrated by its most positive half-wave potential with the highest diffusion-limiting current in the oxygen reduction reaction (ORR) and earliest onset potential in the oxygen evolution reaction (OER). Notably, Bi-BiVO4-10 is explored for the first time as an electrocatalyst for lithium-oxygen (Li-O2) cells, showing reduced overcharge (610 mV) in the first cycle and extended cycle life (1050 h), outperforming carbon (320 h) and C-BiVO4 (450 h) references. The enhancement is attributed to the synergy of oxygen vacancies, Bi metal formation, increased surface area, and improved electrical conductivity, which collectively facilitate Li2O2 growth, enhance charge transport kinetics, and ensure stable cycling. Theoretical calculations reveal enhanced chemical interactions between intermediate molecules and the defect-rich surfaces of Bi-BiVO4-10, promoting efficient discharge and charge processes in Li-O2 batteries. This research highlights the potential of unconventional BiVO4-based materials as durable electrocatalysts and for broader electrochemical applications.

10.
Small ; : e2403576, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39183525

RESUMO

Lithium-sulfur batteries have emerged as a promising energy storage device due to ultra-high theoretical capacity, but the slow kinetics of sulfur and polysulfide shuttle hinder the batteries' further development. Here, the 10% cobalt-doped pyrite iron disulfide electrocatalyst deposited on acetylene black as a separator coating in lithium-sulfur batteries is reported. The adsorption rate to the intermediate Li2S6 is significantly improved while surface oxidation of FeS2 is inhibited: iron oxide and sulfate, thus avoiding FeS2 electrocatalyst deactivation. The electrocatalytic activity has been evaluated in terms of electronic resistivity, lithium-ion diffusion, liquid-liquid, and liquid-solid conversion kinetics. The coin batteries exhibit ultra-long cycle life at 1 C with an initial capacity of 854.7 mAh g-1 and maintained at 440.8 mAh g-1 after 920 cycles. Furthermore, the separator is applied to a laminated pouch battery with a sulfur mass of 326 mg (3.7 mg cm-2) and retained the capacity of 590 mAh g-1 at 0.1 C after 50 cycles. This work demonstrates that FeS2 electrocatalytic activity can be improved when Co-doped FeS2 suppresses surface oxidation and provides a reference for low-cost separator coating design in pouch batteries.

11.
ChemSusChem ; : e202400902, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137119

RESUMO

Electrochemical nitrogen reduction reaction (e-NRR) is an eco-friendly alternative approach to generate ammonia under ambient conditions, with very low power supply. But, developing of an efficient catalyst by suppressing parallel hydrogen evolution reaction as well as avoiding the catalysts poisoning either by hydrogen or electrolyte ion is an open question. So, in order to screen the single atom catalysts (SACs) for the e-NRR, we proposed a descriptor-based approach using density functional theory (DFT) based calculations. We investigated total 24 different SACs of types TM-Pc, TM-N3C1, TM-N2C2, TM-NC3 and TM-N4, considering transition metal (TM). We have considered mainly BF3 ion to understand the role of electrolyte and extended the study for four more electrolyte ions, Cl, ClO4, SO4, OH. Herein, to predict catalytic activity for a given catalyst we have tested 16 different electronic parameters. Out of those, electronic parameter dxz↓ occupancy, identified as electronic descriptor, is showing an excellent linear correlation with catalytic activity (R2 = 0.86). Furthermore, the selectivity of e-NRR over HER is defined by using an energy parameter ∆G*H-∆G*NNH. Further, the electronic descriptor (dxz↓ occupancy) can be used to predict promising catalysts for e-NRR, thus reducing the efforts on designing future single atom catalysts (SACs).

12.
Angew Chem Int Ed Engl ; : e202411218, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137124

RESUMO

Chemical modification via functional dopants in carbon materials holds great promise for elevating catalytic activity and stability. To gain comprehensive insights into the pivotal mechanisms and establish structure-performance relationships, especially concerning the roles of dopants, remains a pressing need. Herein, we employ computational simulations to unravel the catalytic function of heteroatoms in the acidic oxygen evolution reaction (OER), focusing on a physical model of high-electronegative F and N co-doped carbon matrix. Theoretical and experimental findings elucidate that the enhanced activity originates from the F and pyridinic-N (Py-N) species that achieve carbon activation. This activated carbon significantly lowers the conversion energy barrier from O* to OOH*, shifts the potential-limiting step from OOH* formation to O* generation, and ultimately optimizes the energy barrier of the potential-limiting step. This wok elucidates that the critical role of heteroatoms in catalyzing the reaction and unlocks the potential of carbon materials for acidic OER.

13.
Artigo em Inglês | MEDLINE | ID: mdl-39139126

RESUMO

A novel FePt/PPy-C composite nanomaterial has been designed and investigated as a methanol oxidation reaction (MOR) electrocatalyst. The FePt nanoparticles with an average diameter of about 3 nm have been prepared by the co-reduction method and then loaded onto the PPy-C composite support. The electrocatalytic performance is affected by the composition of the FePt nanoparticles. The experimental results indicated that the Fe1.5Pt1/PPy-C catalyst exhibited excellent catalytic activity and stability for MOR, with mass activity and specific activity of 1.76 A mgPt-1 and 2.71 mA cm-2, respectively, which are 5.18 and 4.60 times higher than that of the commercial Pt/C catalyst. Density functional theory (DFT) has been employed to simulate the electrical structures of catalyst supports, and the mechanism of the methanol oxidation process has been further analyzed. The heterojunctions of the PPy-C interface could accelerate the electron migration from the electrocatalytic center to the electrodes. The possibility of methanol oxidation has been improved effectively, which can be confirmed by the d-band center and CO adsorption energy on FePt nanoparticles in the DFT calculation results.

14.
J Colloid Interface Sci ; 677(Pt A): 771-780, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39121661

RESUMO

Oxygen reduction reaction (ORR) serves as the foundation for various electrochemical energy storage devices. Fe/NC catalysts are expected to replace commercial Pt/C as oxygen electrode catalysts based on the structural tunability at the atomic level, abundant iron ore reserves and excellent activity. Nevertheless, the lack of durability and low active site density impede its advancement. In this work, a durable catalyst, CuFe/NC, for ORR was prepared by modulating the interfacial composition and electronic structure. The introduction of Cu nanoclusters partially eliminates the Fenton effect from Fe and optimizes the electron structure of FeNx, thereby effectively enhancing the long-term durability and activity. The prepared CuFe/NC exhibits a half-wave potential (E1/2) of 0.90 V and superior stability with a decrease in E1/2 of only 20 mV after 10,000 cycles. The assembled alkaline Zinc-Air batteries (ZABs) with CuFe/NC exhibit an open-circuit potential of 1.458 V. At a current density of 5 mA cm-2, the batteries are capable of operation for 600 h with a stable polarization. This CuFe/NC may promote the practical application of novel and renewable electrochemical energy storage devices.

15.
J Colloid Interface Sci ; 677(Pt A): 587-598, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39116558

RESUMO

Electrochemical water splitting has been considered as a key pathway to generate environmentally friendly green hydrogen energy and it is essential to design highly efficient electrocatalysts at affordable cost to facilitate the redox reactions of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this work, a novel micro-clustered Ru/CuMnBP electrocatalyst is introduced, prepared via hydrothermal deposition and soaking-assisted Ru doping approaches on Ni foam substrate. Ru/CuMnBP micro-clusters exhibit relatively low HER/OER turnover overpotentials of 11 mV and 85 mV at 10 mA/cm2 in 1 M KOH. It also demonstrates a low 2-E turnover cell voltage of 1.53 V at 10 mA/cm2 for the overall water-splitting, which is comparable with the benchmark electrodes of Pt/C||RuO2. At a super high-current density of 2000 mA/cm2, the dual functional Ru/CuMnBP demonstrates an exceptionally low 2-E cell voltage of 3.13 V and also exhibits superior stability for over 10 h in 1 M KOH. Excellent electrochemical performances originate from the large electrochemical active surface area with the micro cluster morphology, high intrinsic activity of CuMnBP micro-clusters optimized through component ratio adjustment and the beneficial Ru doping effect, which enhances active site density, conductivity and stability. The usage of Ru in small quantities via the simple soaking doping approach significantly improves electrochemical reaction rates for both HER and OER, making Ru/CuMnBP micro-clusters promising candidates for advanced electrocatalytic applications.

16.
J Colloid Interface Sci ; 677(Pt A): 677-686, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39116565

RESUMO

Developing carbon-supported Pt-based electrocatalysts with high activity and long-durability for the oxygen reduction reaction (ORR) is an enormous challenge for their commercial applications due to the corrosion of carbon supports in acid/alkaline solution at high potential. In this work, a Janus structural TaON/graphene-like carbon (GLC) was synthesized via an in-situ molecular selfassembly strategy, which was used as a dual-carrier for platinum (Pt). The as-obtained Pt/TaON/GLC presents high half-wave potential (0.94 V vs. RHE), excellent mass (1.48 A mgPt-1) and specific (1.75 mA cmPt-2) activities at 0.9 V, and superior long-term durability with a minimal loss (8.0 %) of mass activity after 10,000 cycles in alkaline solution, outperforming those of Pt/C and other catalysts. The structural characterizations and density functional theory (DFT) calculations indicate that the Pt/TaON/GLC catalyst exhibits the maximum synergies, including enhanced interfacial electron density, improved charge transfer, enhanced O2 adsorption, andsuperimposed OO cleavage. This work shows a potential strategy for preparing the high-active and long-durable Pt-based electrocatalyst by synergism-promoted interface engineering.

17.
J Colloid Interface Sci ; 677(Pt A): 974-982, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39128291

RESUMO

Heterostructures and the introduction of heterogeneous elements have been regarded as effective strategies to promote electrochemical performance. Herein, sulfur species are introduced by a simple hydrothermal vulcanization method, which constructs the open heterostructure Fe7S8/Mn(OH)2 as a bifunctional material. The open cordyceps-like morphology can make the material contact more sufficiently with the electrolyte, exposing a large number of reaction sites. Furthermore, the introduction of the heterogeneous element S successfully constructs a heterogeneous interface, the interface-modulated composite material consists of Mn atoms contributing the main density of states (DOS) near the Fermi energy level from the density functional theory (DFT) calculations, which optimizes the adsorption energy of oxygen-containing intermediates during the oxygen evolution reaction (OER) process and reduces the reaction energy barrier, being conducive to the improvement of the material's electrochemical properties. As predicted, the Fe7S8/Mn(OH)2 material exhibits remarkable electrochemical properties, such as an overpotential of 202 mV at 10 mA cm-2 for the oxygen evolution reaction and even a specific capacitance of 2198 F g-1 at 1 A g-1. This work provides new insights into the role of introducing sulfur species and controlling the structure of the material, and exemplifies novel design ideas for developing bifunctional materials for energy storage and conversion.

18.
Chem Asian J ; : e202400791, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136406

RESUMO

The H2O2 generation via the green electrochemical process is of high interest. For the H2O2 electrochemical generation, the oxygen reduction reaction (ORR) is important. Unfortunately, the ORR is kinetically sluggish and catalysts are needed. However, noble metal ORR catalysts are pricy and scarcely applicable in applications. Therefore, non-precious metal catalysts are desired. Heteroatom-doped carbons show promise as metal-free ORR catalysts. The ORR catalytic activity will be enhanced by the carbon's sp2 and/or sp3 engineering. For N, S co-doped and sp2/sp3 modulated carbon, a polymerizable ionic liquid of hydrolyzed vinyl imidazolium was studied. The carbon is studied as a metal-free catalyst for the ORR via the 2e-process. It is possible to get an onset potential of 0.88 V vs. RHE with approximately 50% selectivity for the H2O2. The current study offers a simple technique for synthesizing heteroatom-doped sp2/sp3 designed carbon as catalysts for the electroreduction of O2 to produce H2O2, and a new way of tunning the sp3/sp2 carbon catalytic activity by modulating the ionic liquid.

19.
Chem Asian J ; : e202400630, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39152731

RESUMO

The development of an efficient, low-cost and earth-abundant electrocatalyst for water splitting is crucial for the production of sustainable hydrogen energy. However their practical applications are largely restricted by their limited synthesis methods, large overpotential and low surface area. Hierarchical materials with a highly porous three-dimensional nanostructure have garnered significant attention due to their exceptional electrocatalytic properties. These hierarchical porous frameworks enable the fast electron transfer, rapid mass transport, and high density of unsaturated metal sites and maximize product selectivity. Here the process involved obtaining monodispersed microrod-shaped Ni(OH)2 through a hydrothermal reaction, followed by a heat treatment to convert it into hierarchical microrod-shaped NiO materials. N2 sorption analysis revealed that the BET surface area increased from 9 to 89 m2/g as a result of the heat treatment. The hierarchical microrod-shaped NiO materials demonstrated outstanding bifunctional electrocatalytic water splitting capabilities, excelling in both HER and OER in basic solution. Overpotential of 347 mV is achieved at 10 mA/cm2 for OER activity, with a Tafel slope of 77 mV/dec. Similarly, overpotential of 488 mV is achieved at 10 mA/cm2 for HER activity, with a Tafel slope of 62 mV/dec.

20.
ACS Nano ; 18(33): 21714-21746, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39126711

RESUMO

The electrocatalytic carbon dioxide reduction reaction (ECRR) is promising in converting environmentally harmful CO2 into useful chemicals, but the large-scale application of this technology is seriously limited by its low efficiency and selectivity. Cu-based electrocatalysts displayed attractive ability in converting CO2 to multiple products, and the product selectivity can be manipulated through various approaches. Among them, exposing specific crystal facets through crystal facet engineering has been proven to be highly effective in obtaining specific products and has attracted numerous researchers. However, to our knowledge, few reports have systematically summarized the relationship between the crystal facet control of Cu catalysts and the catalytic products. This review begins by outlining the general mechanism of CO2 electrocatalytic reduction on Cu-based catalysts, and then summarizes the preferences of low-index and high-index Cu facets regarding product selectivity and delves into the synergistic effects between facets (including different Cu facets and interactions between Cu and non-Cu facets) and their impact on CO2 reduction reaction (CO2RR). In addition, the study of the recently developed Cu single-atom catalysts in ECRR was also introduced. Finally, we provide an outlook on the development of high-performance Cu-based catalysts for applications in CO2RR. The purpose of this review is to provide a clear vein and meaningful guidance for the following studies over the crystal facet control of Cu-based electrocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA