Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 518
Filtrar
1.
Small Methods ; : e2401141, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39149767

RESUMO

Passive radiative cooling represents a transformative approach to achieving sustainable cooling on Earth without relying on energy consumption. In this research, the optical characteristics of five readily accessible metal-organic frameworks (MOFs): ZIF-67(Co), MOF-74(Ni), HKUST-1(Cu), MOF-801(Zr), and UiO-66(Zr) are meticulously explored. The objective is to identify the pivotal factors that influence their ability to facilitate radiative cooling. Through an in-depth analysis encompassing spectroscopic features, surface texture, and porosity, it is found that the MOFs' cooling efficacy is largely influenced by their optical bandgaps and functional groups, although other factors like chemical composition and structural characteristics remain to be considered. Notably, UiO-66(Zr) emerged as the standout performer, boasting an impressive solar reflectance of 91% and a mid-infrared emissivity of 96.8%. Remarkably, a fabric treated with UiO-66(Zr) achieved a substantial sub-ambient cooling effect, lowering temperatures by up to 5 °C and delivering a cooling power of 26 W m-2 at 300 K. The findings underscore the vast potential of MOFs in offering new opportunities to advance passive radiative cooling technologies, paving the way for their extensive application in this field.

2.
ACS Nano ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179534

RESUMO

Quantum photonics promises significant advances in secure communications, metrology, sensing, and information processing/computation. Single-photon sources are fundamental to this endeavor. However, the lack of high-quality single photon sources remains a significant obstacle. We present here a paradigm for the control of single photon emitters (SPEs) and single photon purity by integrating monolayer WS2 with the organic ferroelectric polymer poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)). We demonstrate that the ferroelectric domains in the P(VDF-TrFE) film control the purity of single photon emission from the adjacent WS2. By switching the ferroelectric polarization, we reversibly tune the single photon purity between the semiclassical and quantum light regimes, with single photon purities as high as 94%. This demonstrates a method for modulating and encoding quantum photonic information, complementing more complex approaches. This multidimensional heterostructure introduces an approach for control of quantum emitters by combining the nonvolatile ferroic properties of a ferroelectric with the radiative properties of the zero-dimensional atomic-scale emitters embedded in the two-dimensional WS2 semiconductor monolayer.

3.
Nano Lett ; 24(32): 9777-9783, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39088739

RESUMO

2D quantum materials have opened infinite doors, hosting intriguing phenomena and featuring incredible engineering potential. Whether these qualities can boost the use of 2D crystals for quantum applications remains an open field with yet unexplored paths.

4.
Sci Total Environ ; 951: 175709, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39179047

RESUMO

The mechanism by which algal organic matter (AOM) affects the clogging of ceramic emitters remains unclear, which partially reduces the operational life of agricultural water distribution systems. This paper systematically investigated the clogging phenomenon of ceramic emitters under three different AOM concentrations. The results of irrigation tests revealed that the AOM significantly affects the degree of clogging of ceramic emitters, with higher AOM concentrations leading to faster flow reduction. By analyzing the original irrigation water and effluent and characterizing the clogged emitter surface, it was demonstrated that AOM was intercepted by the ceramic emitter, forming a dense biofilm. Infrared spectroscopy analysis revealed that polysaccharides and humic substances were the main clogging components. The clogging kinetics showed that as the AOM concentration increased, the clogging of the filter cake layer gradually become dominant. Further, the mechanism of interaction between AOM and silica ceramic emitters was explored from a microscopic perspective using molecular dynamics (MD) simulation with bovine serum albumin (BSA), sodium alginate (SA), and humic acid (HA) as model clogging substances in AOM. The simulation results indicated a strong interaction between AOM molecules and silica molecules dominated by electrostatic attraction, with the strength of the interaction as SA > HA > BSA. It was hypothesized that early clogging was mainly formed by polysaccharides and humic substances combining with silica molecules, while BSA was retained later by combining with organics on the clogging layer or through size exclusion. This study provides insights into bio-clogging in microporous ceramic emitters and may offer a theoretical basis for developing measures to control emitter clogging.

5.
Discov Nano ; 19(1): 133, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39180606

RESUMO

We propose a meta-emitter based on micro-electro-mechanical system (MEMS) technology. The main structure of the meta-emitter unit cell is composed of four symmetrically split crosses of Au and SiO2 bilayer cantilevers. By changing the size of the cantilevers, this MEMS-based meta-emitter can realize the tunable perfect absorption, and the absorption spectrum is within the longwave infrared (LWIR) wavelength from 8.90 to 11.90 µm. When the surface temperature of the meta-emitter rises, the electrothermal actuation mechanism is performed through the different thermal expansion coefficient (TEC) of the bilayer cantilevers. Therefore, the cantilevers will be bent downward and the bending height of the cantilevers decreases linearly. In such case, the peak value of thermal radiation power can be tuned from the wavelength of 9.52 µm to 10.48 µm when the temperature of meta-emitter is increased from 293 to 1290 K. This proposed MEMS-based meta-emitter is an excellent LWIR light source and has potential application prospects in gas sensing, infrared spectroscopy analysis, medical care and so on.

6.
J Med Phys ; 49(2): 137-147, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39131433

RESUMO

The utilization of actinium-225 (225Ac) radionuclides in targeted alpha therapy for cancer was initially outlined in 1993. Over the past two decades, substantial research has been conducted, encompassing the establishment of 225Ac production methods, various preclinical investigations, and several clinical studies. Currently, there is a growing number of compounds labeled with 225Ac that are being developed and tested in clinical trials. In response to the increasing demand for this nuclide, production facilities are either being built or have already been established. This article offers a concise summary of the present state of clinical advancements in compounds labeled with 225Ac. It outlines various processes involved in the production and purification of 225Ac to cater to the growing demand for this radionuclide. The article examines the merits and drawbacks of different procedures, delves into preclinical trials, and discusses ongoing clinical trials.

7.
Polymers (Basel) ; 16(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39000805

RESUMO

The existence of amplified spontaneous emission (ASE) is a fundamental principle of laser dyes. ASE indicates the spectral variation of the optical gain of a laser dye. Analyzing the spectral distribution of ASE is important for designing lasers. We demonstrate ASE investigations on planar waveguides made of a (co-)polymer. Similar to organic DFB (distributed feedback) lasers, a line grating allows a partial decoupling of the guided radiation. This decoupled radiation is detected as an indicator of the guided radiation. The diffraction of the radiation is utilized to perform a spectrally selective investigation of the ASE by spatially splitting it. This analysis method reduces the influence of isotropic photoluminescence and allows ASE to be analyzed across its entire spectrum. We were able to observe ASE in F8BT over a range from λASE,min = 530 nm to λASE,max = 570 nm and determine ASE threshold power densities lower than EASE< 2.57 µJ/cm2. The study of the power density of the ASE threshold is performed spectrally selectively.

8.
ACS Nano ; 18(33): 21886-21893, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39011947

RESUMO

We perform laser spectroscopy at liquid helium temperatures (T = 2 K) to investigate single dibenzoterrylene (DBT) molecules doped in anthracene crystals of nanoscopic height fabricated by electrohydrodynamic dripping. Using high-resolution fluorescence excitation spectroscopy, we show that zero-phonon lines of single molecules in printed nanocrystals are nearly as narrow as the Fourier-limited transitions observed for the same guest-host system in the bulk. Moreover, the spectral instabilities are comparable to or less than one line width. By recording super-resolution images of DBT molecules and varying the polarization of the excitation beam, we determine the dimensions of the printed crystals and the orientation of the crystals' axes. Electrohydrodynamic printing of organic nano- and microcrystals is of interest for a series of applications, where controlled positioning of quantum emitters with narrow optical transitions is desirable.

9.
Chemphyschem ; : e202400232, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-39031895

RESUMO

Near-infrared (NIR) light has characteristics of invisibility to human eyes, less background interference, low light scattering, and strong cell penetration. Therefore, NIR luminescent materials have significant applications in imaging, sensing, energy, information storage and display. The development of NIR luminescent materials thus has emerged as a highly dynamic area of research in the realm of contemporary materials. To date, NIR luminescent materials are roughly divided into inorganic materials and organic materials. Compared with inorganic materials, organic NIR luminescent materials have become a hot research topic in recent years due to their rich sources, easy control of structure, simple preparation process, low cost, and good film-forming properties. Among them, iridium(III) [Ir(III)] complexes exhibit excellent properties such as thermal stability, simple synthesis, easy color modulation, short excited state lifetimes, and high brightness, thus becoming one of the ideal luminescent material systems for preparing high-quality organic light-emitting diodes. Therefore, how to obtain Ir(III) complexes with NIR emission and high efficiency through molecular design is a necessary and promising research topic. This work reviews the research progress of representative NIR Ir(III) complexes bearing isoquinoline-, phenazine-, and phthalazine-based ligands reported in recent years and introduces the design strategies and electroluminescent performances of NIR Ir(III) complexes.

10.
J Hazard Mater ; 477: 135225, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39059297

RESUMO

Heavy-duty diesel vehicles (HDDVs) significantly contribute to atmospheric nitrogen oxides (NOX) and black carbon (BC), with high emitters within the HDDV fleet impacting the total emissions. However, emission patterns and contributions of high emitters are rarely explored from a fleet-perspective. We investigated NOX and BC emission factors (EFs) from 1925 HDDVs in Shenzhen by the plume-chasing method, and found that the fleet-average EFs decreased with stricter emission standards. Unexpectedly, the average NOX EF for the China IV fleet was comparable with that for the China III fleet due to possible ineffective aftertreatment in high-emitter sectors of China IV HDDVs. Decreasing trend in average NOX EF since 2017 reflected the effective emission controls by the implementation of China V standard. Besides, semi-trailer tractors exhibited a higher incidence of NOX over-emissions, whereas BC high emitters were more pronounced in box trucks. Total NOX and BC emissions from HDDVs in Shenzhen were revisited, reaching 54.0 and 1.1 Gg·yr-1, with updated NOX EF correcting a 26.2 % underestimation in national guidelines. Notably, eliminating high emitters yields greater emission reduction benefits than merely retiring old HDDVs, with BC reduction outpacing NOX. This study provides new insights into the implementation of targeted emission reduction measures for HDDVs.

11.
Cancers (Basel) ; 16(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39001374

RESUMO

The initial favorable efficacy and safety profile for Alpha DaRT have been demonstrated (NCT04377360); however, the longer-term safety and durability of the treatment are unknown. This pooled analysis of four prospective trials evaluated the long-term safety and efficacy of Alpha DaRT for the treatment of head and neck or skin tumors. A total of 81 lesions in 71 patients were treated across six international institutions, with a median follow-up of 14.1 months (range: 2-51 months). Alpha DaRT sources were delivered via a percutaneous interstitial technique and placed to irradiate the tumor volume with the margin. The sources were removed two to three weeks following implantation. A complete response was observed in 89% of treated lesions (n = 72) and a partial response in 10% (n = 8). The two-year actuarial local recurrence-free survival was 77% [95% CI 63-87]. Variables, including recurrent versus non-recurrent lesions, baseline tumor size, or histology, did not impact long-term outcomes. Twenty-seven percent of patients developed related acute grade 2 or higher toxicities, which resolved with conservative measures. No grade 2 or higher late toxicities were observed. These data support the favorable safety profile of Alpha DaRT, which is currently being explored in a pivotal US trial.

12.
Cancers (Basel) ; 16(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39001411

RESUMO

Radiopharmaceutical therapy (RPT) is evolving as a promising strategy for treating cancer. As interest grows in short-range particles, like Auger electrons, understanding the dose-response relationship at the deoxyribonucleic acid (DNA) level has become essential. In this study, we used the Geant4-DNA toolkit to evaluate DNA damage caused by the Auger-electron-emitting isotope I-125. We compared the energy deposition and single strand break (SSB) yield at each base pair location in a short B-form DNA (B-DNA) geometry with existing simulation and experimental data, considering both physical direct and chemical indirect hits. Additionally, we evaluated dosimetric differences between our high-resolution B-DNA target and a previously published simple B-DNA geometry. Overall, our benchmarking results for SSB yield from I-125 decay exhibited good agreement with both simulation and experimental data. Using this simulation, we then evaluated the SSB and double strand break (DSB) yields caused by a theranostic Br-77-labeled poly ADP ribose polymerase (PARP) inhibitor radiopharmaceutical. The results indicated a predominant contribution of chemical indirect hits over physical direct hits in generating SSB and DSB. This study lays the foundation for future investigations into the nano-dosimetric properties of RPT.

13.
Adv Mater ; : e2404388, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011790

RESUMO

Current research on organic light emitters which utilize multiple resonance-induced thermally activated delayed fluorescence (MR-TADF) materials is gaining significant interest because of the materials' ability to efficiently generate color-pure blue emission. However, the underlying reasons for high color purity remain unclear. It is shown here that these emitters share a common electronic basis, which is deduced from resonance structure considerations following Clar's rule, and which is termed as "poly-heteroaromatic omni-delocalization" (PHOD). The simple and clear design rules derived from the PHOD concept allow extending the known chemical space by new structural motifs. Based on PHOD, a set of novel high-efficiency color-pure emitters with brilliant deep-blue hue is specifically designed.

14.
Heliyon ; 10(11): e31193, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38828347

RESUMO

The pursuit of enhancing the performance of silicon-based solar cells is pivotal for the progression of solar photovoltaics as the most potential renewable energy technologies. Despite the existence of sophisticated methods like diffusion and ion implantation for doping phosphorus into p-type silicon wafers in the semiconductor industry, there is a compelling need to research spin-on doping techniques, especially in the context of tandem devices, where fabricating the bottom cell demands meticulous control over conditions. The primary challenge with existing silicon cell fabrication methods lies in their complexity, cost, and environmental concerns. Thus, this research focuses on the optimization of parameters, such as, deposition of the spin on doping layer, emitter thickness (Xj), and dopant concentration (ND) to maximize solar cell efficiency. We utilized both fabrication and simulation techniques to delve into these factors. Employing silicon wafer thickness of 625 µm, the study explored the effects of altering the count of dopant layers through the spin-on dopant (SOD) technique in the device fabrication. Interestingly, the increase of the dopant layers from 1 to 4 enhances efficiency, whereby, further addition of 6 and 8 layers worsens both series and shunt resistances, affecting the solar cell performance. The peak efficiency of 11.75 % achieved in fabrication of 4 layers dopant. By using device simulation with wxAMPS to perform a combinatorial analysis of Xj and ND, we further identified the optimal conditions for an emitter to achieve peak performance. Altering Xj between 0.05 µm and 10 µm and adjusting ND from 1e+15 cm-3 to 9e+15 cm-3, we found that maximum efficiency of 14.18 % was attained for Xj = 1 µm and ND = 9e+15 cm-3. This research addresses a crucial knowledge gap, providing insights for creating more efficient, cost-effective, and flexible silicon solar cells, thereby enhancing their viability as a sustainable energy source.

15.
Sci Rep ; 14(1): 13483, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866894

RESUMO

This study proposes the beta-emitting radioisotope 143Pr as a promising candidate for palliative treatment of metastatic bone pain due to its desirable physical decay characteristics. An optimized process was developed for the production and purification of non-carrier-added 143Pr using a medium flux research reactor. Calculations were performed to determine the optimal irradiation time and cooling period for irradiating 1 mg of natural cerium oxide to indirectly produce 143Pr through the decay of 143Ce. Following irradiation and cooling, extraction chromatography was employed to efficiently isolate 143Pr from the irradiated target material. A column containing Ln-resin was used along with nitric acid as the mobile phase and an optional oxidation step with NaBrO3/ascorbic acid to separate 143Pr from impurities such as 143Ce and 141Ce. Radionuclidic purity of over 99.995% was achieved as confirmed through gamma spectroscopy, demonstrating effective separation of 143Pr. Additional quality control analyses established the chemical and radiochemical purity of the purified 143Pr nitrate product. With a half-life of 13.6 days and maximum beta energy of 0.937 MeV, 143Pr exhibits favorable properties for palliative bone pain therapy. This study therefore provides a viable method for producing high-purity 143Pr through the optimized irradiation and purification processes described. Further investigation is warranted to explore potential clinical applications of 143Pr for palliation of metastatic bone cancer pain.


Assuntos
Neoplasias Ósseas , Cuidados Paliativos , Neoplasias Ósseas/radioterapia , Neoplasias Ósseas/complicações , Cuidados Paliativos/métodos , Humanos , Dor do Câncer/tratamento farmacológico , Compostos Radiofarmacêuticos/uso terapêutico , Compostos Radiofarmacêuticos/química , Radioisótopos/uso terapêutico , Radioisótopos/isolamento & purificação , Radioisótopos/química
16.
Nanomaterials (Basel) ; 14(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38869543

RESUMO

From quantum communications to quantum computing, single-photon emitters (SPEs) are essential components of numerous quantum technologies. Two-dimensional (2D) materials have especially been found to be highly attractive for the research into nanoscale light-matter interactions. In particular, localized photonic states at their surfaces have attracted great attention due to their enormous potential applications in quantum optics. Recently, SPEs have been achieved in various 2D materials, while the challenges still remain. This paper reviews the recent research progress on these SPEs based on various 2D materials, such as transition metal dichalcogenides (TMDs), hexagonal boron nitride (hBN), and twisted-angle 2D materials. Additionally, we summarized the strategies to create, position, enhance, and tune the emission wavelength of these emitters by introducing external fields into these 2D system. For example, pronounced enhancement of the SPEs' properties can be achieved by coupling with external fields, such as the plasmonic field, and by locating in optical microcavities. Finally, this paper also discusses current challenges and offers perspectives that could further stimulate scientific research in this field. These emitters, due to their unique physical properties and integration potential, are highly appealing for applications in quantum information and communication, as well as other physical and technological fields.

17.
Adv Mater ; : e2404174, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896111

RESUMO

Orbitronic devices operate by manipulating orbitally polarized currents. Recent studies have shown that these orbital currents can be excited by femtosecond laser pulses in a ferromagnet such as Ni and converted into ultrafast charge currents via orbital-to-charge conversion. However, the terahertz emission from orbitronic terahertz emitters based on Ni is still much weaker than that of the typical spintronic terahertz emitter. Here, this work reports a more efficient light-induced generation of orbital current from a CoPt alloy, and the terahertz emission from CoPt/Cu/MgO is comparable to that of benchmark spintronic terahertz emitters. By varying the composition of the CoPt alloy, the thickness of Cu, and the capping layer, this work confirms that THz emission primarily originates from the orbital accumulation generated within CoPt, propagating through Cu, followed by subsequent orbital-to-charge conversion due to the inverse orbital Rashba-Edelstein effect at the Cu/MgO interface. This study provides strong evidence for the efficient orbital current generation in CoPt alloy, paving the way for efficient orbital terahertz emitters.

18.
Food Chem ; 456: 140025, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38876068

RESUMO

The misuse of antibiotics may contaminate the environment and cause harm to human health. Therefore, rapid and accurate detection of antibiotics is essential. In this study, a novel electrochemiluminescence resonance energy transfer (ECL-RET) pair was designed using a new ECL emitter (CPM, Ce-TBAPy) as the donor and Co-MOF@AuPt as the acceptor. Moreover, a highly sensitive and specific "on-off-on" ECL aptasensor was constructed for detecting sulfadiazine (SDZ). The aptasensor exhibited a broad linear range (from 10.0 fg mL-1 to 100 ng mL-1) for the SDZ concentration, with limit of detection and limit of quantification values of 1.14 fg mL-1and 3.75 fg mL-1, respectively. The aptasensor achieved good results in spiking experiments with milk and egg samples, and successfully quantified SDZ in fish meal quality control sample. The prepared aptasensor presents great potential for food and environmental safety by detecting antibiotics.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Contaminação de Alimentos , Limite de Detecção , Medições Luminescentes , Leite , Sulfadiazina , Sulfadiazina/análise , Sulfadiazina/química , Leite/química , Aptâmeros de Nucleotídeos/química , Animais , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Medições Luminescentes/instrumentação , Medições Luminescentes/métodos , Contaminação de Alimentos/análise , Transferência de Energia , Ovos/análise , Antibacterianos/análise
19.
Sensors (Basel) ; 24(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38894364

RESUMO

Transfer learning (TL) techniques have proven useful in a wide variety of applications traditionally dominated by machine learning (ML), such as natural language processing, computer vision, and computer-aided design. Recent extrapolations of TL to the radio frequency (RF) domain are being used to increase the potential applicability of RFML algorithms, seeking to improve the portability of models for spectrum situational awareness and transmission source identification. Unlike most of the computer vision and natural language processing applications of TL, applications within the RF modality must contend with inherent hardware distortions and channel condition variations. This paper seeks to evaluate the feasibility and performance trade-offs when transferring learned behaviors from functional RFML classification algorithms, specifically those designed for automatic modulation classification (AMC) and specific emitter identification (SEI), between homogeneous radios of similar construction and quality and heterogeneous radios of different construction and quality. Results derived from both synthetic data and over-the-air experimental collection show promising performance benefits from the application of TL to the RFML algorithms of SEI and AMC.

20.
ACS Nano ; 18(24): 15769-15778, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38829376

RESUMO

A polarized light source covering a wide wavelength range is required in applications across diverse fields, including optical communication, photonics, spectroscopy, and imaging. For practical applications, high degrees of polarization and thermal performance are needed to ensure the stability of the radiation intensity and low energy consumption. Here, we achieved efficient emission of highly polarized and broadband thermal radiation from a suspended aligned carbon nanotube film. The anisotropic nature of the film, combined with the suspension, led to a high degree of linear polarization (∼0.9) and great thermal performance. Furthermore, we performed time-resolved measurements of thermal emission from the film, revealing a fast time response of approximately a few microseconds. We also obtained visible light emission from the device and analyzed the film's mechanical breakdown behavior to improve the emission intensity. Finally, we demonstrated that suspended devices with a constriction geometry can enhance the heating performance. These results show that carbon nanotube film-based devices, as electrically driven thermal emitters of polarized radiation, can play an important role for future development in optoelectronics and spectroscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA