Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Med Genet A ; : e63823, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39091162

RESUMO

GREB1-like retinoic acid receptor coactivator (GREB1L) gene is associated with autosomal dominant renal hypodysplasia/aplasia 3 (RHDA3) and deafness, autosomal dominant 80 (DFNA80). Among the GREB1L variants reported, most of them are missense or frameshift, while no pathogenic synonymous variants have been recorded. Classical theory paid little attention to synonymous variants and classified it as nonpathogenic; however, recent studies suggest that the variants might be equally important. Here, we report a 7-year-old girl with new symptoms of clitoromegaly, uterovaginal, and ovarian agenesis as well as right kidney missing. A novel de novo GREB1L synonymous variant (NM_001142966: c.4731C>T, p.G1577=) was identified via whole exome sequencing. The variant was predicted to be disease-causing through in silico analysis and was classified as likely pathogenic. Minigene splicing assays confirmed a 6 bp deletion in mutant cDNA comparing with the wild type, leading to two amino acids lost in GREB1L protein. Secondary and tertiary structure modeling showed alterations in protein structure. Our finding reveals a novel GREB1L variant with a new phenotype of urogenital system and is the first to report a pathogenic synonymous variant in GREB1L which affects mRNA splicing, suggesting synonymous variants cannot be ignored in prenatal diagnosis and genetic counseling.

2.
J Fish Biol ; 105(2): 412-430, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38982714

RESUMO

Intraspecific biodiversity is vital for species persistence in an increasingly volatile world. By embracing methods that integrate information at different spatiotemporal scales, we can directly monitor and reconstruct changes in intraspecific biodiversity. Here we combined genetics and otolith biochronologies to describe the genotypic and phenotypic diversity of Chinook salmon (Oncorhynchus tshawytscha) in the Yuba River, California, comparing cohorts that experienced a range of hydroclimatic conditions. Yuba River salmon have been heavily impacted by habitat loss and degradation, and large influxes of unmarked hatchery fish each year have led to concern about introgression and uncertainty around the viability of its wild populations, particularly the rarer spring-run salmon. Otolith strontium isotopes showed that Yuba River origin fish represented, on average, 42% (range 7%-73%) of spawners across six return years (2009-2011, 2018-2020), with large interannual variability. The remainder of adult Chinook salmon in the river were primarily strays from the nearby Feather River hatchery, and since 2018 from the Mokelumne River hatchery. Among the Yuba-origin spawners, on average, 30% (range 14%-50%) exhibited the spring-run genotype. The Yuba-origin fish also displayed a variety of outmigration phenotypes that differed in the timing and size at which they left the Yuba river. Early-migrating fry dominated the returns (mean 59%, range 33%-89%), and their contribution rates were negatively correlated with freshwater flows. It is unlikely that fry survival rates are elevated during droughts, suggesting that this trend reflects disproportionately low survival of larger later migrating parr, smolts, and yearlings along the migratory corridor in drier years. Otolith daily increments indicated generally faster growth rates in non-natal habitats, emphasizing the importance of continuing upstream restoration efforts to improve in-river growing conditions. Together, these findings show that, despite a long history of habitat degradation and hatchery introgression, the Yuba River maintains intraspecific biodiversity that should be taken into account in future management, restoration, and reintroduction plans. The finding that genotypic spring-run are reproducing, surviving, and returning to the Yuba River every year suggests that re-establishment of an independent population is possible, although hatchery-wild interactions would need to be carefully considered. Integrating methods is critical to monitor changes in key genetic, physiological, and behavioral traits to assess population viability and resilience.


Assuntos
Biodiversidade , Membrana dos Otólitos , Rios , Salmão , Animais , Membrana dos Otólitos/química , Salmão/genética , California , Genótipo , Fenótipo , Ecossistema , Variação Genética
3.
Evol Appl ; 17(7): e13741, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38957311

RESUMO

Chinook salmon (Oncorhynchus tshawytscha) display remarkable life history diversity, underpinning their ability to adapt to environmental change. Maintaining life history diversity is vital to the resilience and stability of Chinook salmon metapopulations, particularly under changing climates. However, the conditions that promote life history diversity are rapidly disappearing, as anthropogenic forces promote homogenization of habitats and genetic lineages. In this study, we use the highly modified Yuba River in California to understand if distinct genetic lineages and life histories still exist, despite reductions in spawning habitat and hatchery practices that have promoted introgression. There is currently a concerted effort to protect federally listed Central Valley spring-run Chinook salmon populations, given that few wild populations still exist. Despite this, we lack a comprehensive understanding of the genetic and life history diversity of Chinook salmon present in the Yuba River. To understand this diversity, we collected migration timing data and GREB1L genotypes from hook-and-line, acoustic tagging, and carcass surveys of Chinook salmon in the Yuba River between 2009 and 2011. Variation in the GREB1L region of the genome is tightly linked with run timing in Chinook salmon throughout their range, but the relationship between this variation and entry on spawning grounds is little explored in California's Central Valley. We found that the date Chinook salmon crossed the lowest barrier to Yuba River spawning habitat (Daguerre Point Dam) was tightly correlated with their GREB1L genotype. Importantly, our study confirms that ESA-listed spring-run Chinook salmon are spawning in the Yuba River, promoting a portfolio of life history and genetic diversity, despite the highly compressed habitat. This work highlights the need to identify and protect this life history diversity, especially in heavily impacted systems, to maintain healthy Chinook salmon metapopulations. Without protection, we run the risk of losing the last vestiges of important genetic variation.

4.
Evol Appl ; 17(2): e13626, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38343781

RESUMO

With the discovery of a major effect region (GREB1L, ROCK1) for adult migration timing in genomes of both Chinook Salmon and Steelhead, several subsequent studies have investigated the effect size and distribution of early and late migration alleles among populations in the Columbia River. Here, we synthesize the results of these studies for the major lineages of Chinook Salmon and Steelhead that include highly distinct groups in the interior Columbia River that exhibit atypical life histories from most coastal lineage populations of these two species. Whole-genome studies with high marker density have provided extensive insight into SNPs most associated with adult migration timing, and suites of markers for each species have been genotyped in large numbers of individuals to further validate phenotypic effects. For Steelhead, the largest phenotypic effect sizes have been observed in the coastal lineage (36% of variation for passage timing at Bonneville Dam; 43% of variation for tributary arrival timing) compared to the inland lineage (7.5% of variation for passage timing at Bonneville Dam; 8.4% of variation for tributary arrival timing) that overwinter in freshwater prior to spawning. For Chinook Salmon, large effect sizes have been observed in all three lineages for multiple adult migration phenotypes (Coastal lineage: percentage of variation of 27.9% for passage timing at Bonneville Dam, 28.7% for arrival timing for spawning; Interior ocean type: percentage of variation of 47.6% for passage timing at Bonneville Dam, 39.6% for tributary arrival timing, 77.9% for arrival timing for spawning; Interior stream type: percentage of variation of 35.3% for passage at Bonneville Dam, 9.8% for tributary arrival timing, 4.7% for arrival timing for spawning). Together, these results have extended our understanding of genetic variation associated with life history diversity in distinct populations of the Columbia River, however, much research remains necessary to determine the causal mechanism for this major effect region on migration timing in these species.

5.
Eur J Med Res ; 28(1): 510, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964281

RESUMO

BACKGROUND: Breast cancer is the most common malignant tumor among women worldwide. GREB1L is a protein-coding gene. Previous studies have shown that GREB1L plays a vital role in lung and gastric adenocarcinoma. Currently, there is no relevant report about its role in breast cancer. METHODS: The Cancer Genome Atlas database was used to compare the expression level of GREB1L between tumor and normal tissues. The TISIDB website was used for prognosis analysis. The LinkedOmics database was used to predict the potential biological mechanism of GREB1L in breast cancer. Immunohistochemistry was used to detect the GREB1L expression level in breast tissue. Western blotting was used to detect the GREB1L expression level in cell lines. Transwell assays, CCK-8 cell proliferation assays, and colony formation assays were used to detect the migration, invasion, proliferation, and colony formation abilities of cells. Subcutaneous xenograft models were used to detect the in vivo tumor formation abilities of cells. RESULTS: GREB1L is highly expressed in breast cancer tissues and breast cancer cells. KEGG enrichment analysis suggested that GREB1L participates in the regulation of the Hedgehog signaling pathway; changes in GREB1L expression affected the migration and invasion abilities of MCF7 and MDA-MB-231 cells. Although changes in GREB1L expression did not affect their proliferation and colony formation abilities in vitro and in vivo, they affected the expression of tumor metastasis-related genes in vivo. The overexpression of GREB1L in breast cancer predicted a favorable prognosis. CONCLUSION: These results showed that GREB1L is involved in the development of breast cancer, and it may be a potential molecular marker for predicting the prognosis of breast cancer.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Prognóstico , Transdução de Sinais
6.
Dev Cell ; 58(21): 2217-2234.e8, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37852253

RESUMO

Despite their burden, most congenital defects remain poorly understood, due to lack of knowledge of embryological mechanisms. Here, we identify Greb1l mutants as a mouse model of crisscross heart. Based on 3D quantifications of shape changes, we demonstrate that torsion of the atrioventricular canal occurs together with supero-inferior ventricles at E10.5, after heart looping. Mutants phenocopy partial deficiency in retinoic acid signaling, which reflect overlapping pathways in cardiac precursors. Spatiotemporal gene mapping and cross-correlated transcriptomic analyses further reveal the role of Greb1l in maintaining a pool of dorsal pericardial wall precursor cells during heart tube elongation, likely by controlling ribosome biogenesis and cell differentiation. Consequently, we observe growth arrest and malposition of the outflow tract, which are predictive of abnormal tube remodeling in mutants. Our work on a rare cardiac malformation opens novel perspectives on the origin of a broader spectrum of congenital defects associated with GREB1L in humans.


Assuntos
Coração Entrecruzado , Humanos , Animais , Camundongos , Morfogênese/genética , Coração , Ventrículos do Coração , Células-Tronco
7.
BMC Med Genomics ; 15(1): 237, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357908

RESUMO

BACKGROUND: Childhood hearing impairment (HI) is genetically heterogeneous with many implicated genes, however, only a few of these genes are reported in African populations. METHODS: This study used exome and Sanger sequencing to resolve the possible genetic cause of non-syndromic HI in a Ghanaian family. RESULTS: We identified a novel variant c.3041G > A: p.(Gly1014Glu) in GREB1L (DFNA80) in the index case. The GREB1L: p.(Gly1014Glu) variant had a CADD score of 26.5 and was absent from human genomic databases such as TopMed and gnomAD. In silico homology protein modeling approaches displayed major structural differences between the wildtype and mutant proteins. Additionally, the variant was predicted to probably affect the secondary protein structure that may impact its function. Publicly available expression data shows a higher expression of Greb1L in the inner ear of mice during development and a reduced expression in adulthood, underscoring its importance in the development of the inner ear structures. CONCLUSION: This report on an African individual supports the association of GREB1L variant with non-syndromic HI and extended the evidence of the implication of GREB1L variants in HI in diverse populations.


Assuntos
Perda Auditiva , Adulto , Animais , Criança , Humanos , Camundongos , Exoma , Sequenciamento do Exoma , Gana , Perda Auditiva/genética , Mutação , Linhagem , Proteínas/genética
8.
Orphanet J Rare Dis ; 17(1): 413, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371238

RESUMO

BACKGROUND: Renal hypodysplasia/aplasia-3 (RHDA3), as the most severe end of the spectrum of congenital anomalies of the kidney and urinary tract, is mainly caused by mutations in GREB1L. However, the mutations in GREB1L identified to date only explain a limited proportion of RHDA3 cases, and the mechanism of GREB1L mutations causing RHDA3 is unclear. RESULTS: According to whole-exome sequencing, a three-generation family suffering from RHDA3 was investigated with a novel missense mutation in GREB1L, c.4507C>T. All three-generation patients suffered from unilateral absent kidney. This missense mutation resulted in sharp downregulation of mRNA and protein expression, which might lead to RHDA3. Mechanistically, through RNA-sequencing, it was found that the mRNA levels of PAX2 and PTH1R, which are key molecules involved in the development of the kidney, were significantly downregulated by knocking out GREB1L in vitro. CONCLUSIONS: This novel missense mutation in GREB1L can be helpful in the genetic diagnosis of RHDA3, and the discovery of the potential mechanism that GREB1L mutations involved in RHDA3 pathogenesis can promote the adoption of optimal treatment measures and the development of personalized medicine directly targeting these effects.


Assuntos
Rim , Mutação de Sentido Incorreto , Humanos , Mutação de Sentido Incorreto/genética , Rim/patologia , Sequenciamento do Exoma/métodos , Mutação , RNA Mensageiro , Linhagem
9.
Anim Genet ; 53(5): 690-695, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35776924

RESUMO

As one of the few animals with variation in the number of rib pairs (RIB), the pig is a good model to study the mechanism of RIB regulation. Quantitative trait loci (QTL) for porcine RIB are present on Sus scrofa chromosome 7 (SSC7). Although several candidate genes exist in this QTL region on SSC7, the causal gene has yet to be verified. Beijing Black pig with 14-17 RIB is a good population for candidate gene mining and 1104 individuals were genotyped using the Illumina Porcine 50K BeadChip. A total of 14 SNPs from 95.49 to 97.78 Mb on SSC7 showed genome-wide significant association with RIB. On SSC7, a locuszoom plot using pairwise linkage disequilibrium displayed the narrowest linkage region encompassing only two genes, ABCD4 and VRTN. In mice, a transcriptome expression profile was obtained using three embryos at E9.5 (the critical period for rib formation). ABCD4 was highly expressed, but no expression of VRTN was detected. On SSC6, there were four genome-wide significant SNPs from 106.42 to 106.92 Mb associated with RIB. GREB1L and MIB1, in this region, were regarded as novel candidate genes. These results revealed a crucial candidate causal gene on SSC7 and novel genes on SSC6 for rib number and provided interesting new insights into its genetic basis.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Animais , Pequim , Estudo de Associação Genômica Ampla/veterinária , Camundongos , Polimorfismo de Nucleotídeo Único , Costelas , Sus scrofa/genética , Suínos/genética
10.
J Hered ; 111(6): 548-563, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33125465

RESUMO

The preservation of life history and other phenotypic complexity is central to the resilience of Pacific salmon stocks. Steelhead (Oncorhynchus mykiss) express a diversity of life-history strategies such as the propensity to migrate (anadromy/residency) and the timing and state of maturation upon return to freshwater (run-timing), providing an opportunity to study adaptive phenotypic complexity. Historically, the Eel River supported upwards of 1 million salmon and steelhead, but the past century has seen dramatic declines of all salmonids in the watershed. Here we investigate life-history variation in Eel River steelhead by using Rapture sequencing, on thousands of individuals, to genotype the region diagnostic for run-timing (GREB1L) and the region strongly associated with residency/anadromy (OMY5) in the Eel River and other locations, as well as determine patterns of overall genetic differentiation. Our results provide insight into many conservation-related issues. For example, we found that distinct segregation between winter and summer-run steelhead correlated with flow-dependent barriers in major forks of the Eel, that summer-run steelhead inhabited the upper Eel prior to construction of an impassable dam, and that both life history and overall genetic diversity have been maintained in the resident trout population above; and we found no evidence of the summer-run allele in the South Fork Eel, indicating that summer run-timing cannot be expected to arise from standing genetic variation in this and other populations that lack the summer-run phenotype. The results presented in this study provide valuable information for designing future restoration and management strategies for O. mykiss in Northern California and beyond.


Assuntos
Conservação dos Recursos Naturais , Variação Genética , Características de História de Vida , Oncorhynchus mykiss/fisiologia , Migração Animal , Animais , California , Ecologia , Espécies em Perigo de Extinção , Genótipo , Oncorhynchus mykiss/genética , Fenótipo , Rios , Estações do Ano
11.
Ecol Evol ; 10(17): 9486-9502, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32953077

RESUMO

Fish migrations are energetically costly, especially when moving between freshwater and saltwater, but are a viable strategy for Pacific salmon and trout (Oncorhynchus spp.) due to the advantageous resources available at various life stages. Anadromous steelhead (O. mykiss) migrate vast distances and exhibit variation for adult migration phenotypes that have a genetic basis at candidate genes known as greb1L and rock1. We examined the distribution of genetic variation at 13 candidate markers spanning greb1L, intergenic, and rock1 regions versus 226 neutral markers for 113 populations (n = 9,471) of steelhead from inland and coastal lineages in the Columbia River. Patterns of population structure with neutral markers reflected genetic similarity by geographic region as demonstrated in previous studies, but candidate markers clustered populations by genetic variation associated with adult migration timing. Mature alleles for late migration had the highest frequency overall in steelhead populations throughout the Columbia River, with only 9 of 113 populations that had a higher frequency of premature alleles for early migration. While a single haplotype block was evident for the coastal lineage, we identified multiple haplotype blocks for the inland lineage. The inland lineage had one haplotype block that corresponded to candidate markers within the greb1L gene and immediately upstream in the intergenic region, and the second block only contained candidate markers from the intergenic region. Haplotype frequencies had similar patterns of geographic distribution as single markers, but there were distinct differences in frequency between the two haplotype blocks for the inland lineage. This may represent multiple recombination events that differed between lineages where phenotypic differences exist between freshwater entry versus arrival timing as indicated by Micheletti et al. (2018a). Redundancy analyses were used to model environmental effects on allelic frequencies of candidate markers, and significant variables were migration distance, temperature, isothermality, and annual precipitation. This study improves our understanding of the spatial distribution of genetic variation underlying adult migration timing in steelhead as well as associated environmental factors and has direct conservation and management implications.

12.
Genes (Basel) ; 11(6)2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585897

RESUMO

Congenital hearing impairment is a sensory disorder that is genetically highly heterogeneous. By performing exome sequencing in two families with congenital nonsyndromic profound sensorineural hearing loss (SNHL), we identified autosomal dominantly inherited missense variants [p.(Asn283Ser); p.(Thr116Ile)] in GREB1L, a neural crest regulatory molecule. The p.(Thr116Ile) variant was also associated with bilateral cochlear aplasia and cochlear nerve aplasia upon temporal bone imaging, an ultra-rare phenotype previously seen in patients with de novo GREB1L variants. An important role of GREB1L in normal ear development has also been demonstrated by greb1l-/- zebrafish, which show an abnormal sensory epithelia innervation. Last, we performed a review of all disease-associated variation described in GREB1L, as it has also been implicated in renal, bladder and genital malformations. We show that the spectrum of features associated with GREB1L is broad, variable and with a high level of reduced penetrance, which is typically characteristic of neurocristopathies. So far, seven GREB1L variants (14%) have been associated with ear-related abnormalities. In conclusion, these results show that autosomal dominantly inherited variants in GREB1L cause profound SNHL. Furthermore, we provide an overview of the phenotypic spectrum associated with GREB1L variants and strengthen the evidence of the involvement of GREB1L in human hearing.


Assuntos
Sequenciamento do Exoma , Perda Auditiva Neurossensorial/genética , Rim/metabolismo , Proteínas de Neoplasias/genética , Animais , Pré-Escolar , Exoma/genética , Feminino , Perda Auditiva Neurossensorial/patologia , Humanos , Rim/patologia , Masculino , Proteínas de Membrana/genética , Mutação de Sentido Incorreto/genética , Crista Neural/metabolismo , Linhagem , Peixe-Zebra/genética
13.
Genet Test Mol Biomarkers ; 24(8): 520-526, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32598191

RESUMO

Background: Renal agenesis (RA) is one of the most severe congenital anomalies of the kidney and urinary tract; it is known to be highly genetically heterogeneous. The purpose of this study was to explore the clinical significance of genetic diagnostics in a Chinese RA family. Methods: Five members of an RA family and 100 healthy people were recruited. Clinical exome sequencing was conducted to explore the underlying genetic cause in the affected family. Results: Exome sequencing identified a novel missense mutation (c.2333T>A, p.Val778Asp) in the GREB1L gene. This GREB1L variant was not detected in controls and was predicted to be highly damaging to the physiological function of the GREB1L protein. Conclusion: We identified a novel c.2333T>A variant in the GREB1L gene that extends the mutational spectrum associated with renal agenesis.


Assuntos
Anormalidades Congênitas/genética , Nefropatias/congênito , Rim/anormalidades , Proteínas de Neoplasias/genética , Adulto , Idoso , Povo Asiático/genética , Pré-Escolar , Análise Mutacional de DNA/métodos , Exoma/genética , Família , Feminino , Humanos , Rim/patologia , Nefropatias/genética , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Mutação/genética , Mutação de Sentido Incorreto/genética , Proteínas de Neoplasias/metabolismo , Linhagem , Sequenciamento do Exoma/métodos
14.
Clin Genet ; 98(2): 126-137, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32378186

RESUMO

Congenital uterine anomalies (CUA) may have major impacts on the health and social well-being of affected individuals. Their expressivity is variable, with the most severe end of the spectrum being the absence of any fully or unilaterally developed uterus (aplastic uterus), which is a major feature in Mayer-Rokitansky-Kuster-Hauser syndrome (MRKH). So far, etiologies of CUA remain largely unknown. As reports of familial occurrences argue for strong genetic contributors in some cases, we performed whole exome sequencing in nine multiplex families with recurrence of uterine and kidney malformations, a condition called hereditary urogenital adysplasia. Heterozygous likely causative variants in the gene GREB1L were identified in four of these families, confirming GREB1L as an important gene for proper uterine and kidney development. The apparent mode of inheritance was autosomal dominant with incomplete penetrance. The four families included fetuses with uterovaginal aplasia and bilateral renal agenesis, highlighting the importance to investigate GREB1L in such phenotypes. Subsequent sequencing of the gene in a cohort of 68 individuals with MRKH syndrome or uterine malformation (mostly sporadic cases) identified six additional variants of unknown significance. We therefore conclude that heterozygous GREB1L variants contribute to MRKH syndrome and this probably requires additional genetic or environmental factors for full penetrance.


Assuntos
Transtornos 46, XX do Desenvolvimento Sexual/genética , Anormalidades Múltiplas/genética , Anormalidades Congênitas/genética , Rim/anormalidades , Ductos Paramesonéfricos/anormalidades , Proteínas de Neoplasias/genética , Útero/anormalidades , Transtornos 46, XX do Desenvolvimento Sexual/patologia , Anormalidades Múltiplas/patologia , Adulto , Estudos de Coortes , Anormalidades Congênitas/patologia , Feminino , Feto/anormalidades , Feto/patologia , Predisposição Genética para Doença , Humanos , Rim/metabolismo , Rim/patologia , Masculino , Ductos Paramesonéfricos/patologia , Penetrância , Útero/patologia , Sequenciamento do Exoma
15.
Hum Reprod ; 34(9): 1838-1846, 2019 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-31424080

RESUMO

The aetiology of Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome, characterized by uterovaginal agenesis in 46,XX women, remains poorly understood. Since familial occurrences are rare, genetic findings reported so far only apply to a minority of mainly sporadic cases and most studies have not included other family members enabling segregation analysis. Herein, we report on the investigation of a unique three-generation family of two female cousins with MRKH syndrome and unilateral renal agenesis (RA) and two deceased male relatives with RA. We performed whole-exome sequencing (WES) in eight family members leading to the identification of a novel pathogenic (CADD = 33) c.705G>T missense variant in GREB1L, a gene recently identified as a novel cause of RA. Previous reports include several cases of female fetuses with bilateral RA and uterus agenesis, which support GREB1L as an important gene in both kidney and female genital tract development. The pedigree is compatible with autosomal dominant inheritance with incomplete penetrance following a parent-origin-specific manner, which could be due to imprinting. To our knowledge, this is the first investigation of a larger MRKH syndrome pedigree using WES, and we suggest GREB1L as a novel and promising candidate gene in the aetiology of MRKH syndrome.


Assuntos
Transtornos 46, XX do Desenvolvimento Sexual/complicações , Transtornos 46, XX do Desenvolvimento Sexual/genética , Anormalidades Congênitas/genética , Sequenciamento do Exoma/métodos , Ductos Paramesonéfricos/anormalidades , Mutação de Sentido Incorreto , Proteínas de Neoplasias/genética , Rim Único/complicações , Rim Único/genética , Transtornos 46, XX do Desenvolvimento Sexual/diagnóstico , Adulto , Idoso , Anormalidades Congênitas/diagnóstico , Família , Feminino , Humanos , Recém-Nascido , Masculino , Linhagem , Rim Único/diagnóstico , Anormalidades Urogenitais/diagnóstico , Anormalidades Urogenitais/genética , Útero/anormalidades , Vagina/anormalidades
16.
BMC Evol Biol ; 18(1): 140, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30219030

RESUMO

BACKGROUND: Disparity in the timing of biological events occurs across a variety of systems, yet the understanding of genetic basis underlying diverse phenologies remains limited. Variation in maturation timing occurs in steelhead trout, which has been associated with greb1L, an oestrogen target gene. Previous techniques that identified this gene only accounted for about 0.5-2.0% of the genome and solely investigated coastal populations, leaving uncertainty on the genetic basis of this trait and its prevalence across a larger geographic scale. RESULTS: We used a three-tiered approach to interrogate the genomic basis of complex phenology in anadromous steelhead. First, fine scale mapping with 5.3 million SNPs from resequencing data covering 68% of the genome confirmed a 309-kb region consisting of four genes on chromosome 28, including greb1L, to be the genomic region of major effect for maturation timing. Second, broad-scale characterization of candidate greb1L genotypes across 59 populations revealed unexpected patterns in maturation phenology for inland fish migrating long distances relative to those in coastal streams. Finally, genotypes from 890 PIT-tag tracked steelhead determined associations with early versus late arrival to spawning grounds that were previously unknown. CONCLUSIONS: This study clarifies the genetic bases for disparity in phenology observed in steelhead, determining an unanticipated trait association with premature versus mature arrival to spawning grounds and identifying multiple candidate genes potentially contributing to this variation from a single genomic region of major effect. This illustrates how dense genome mapping and detailed phenotypic characterization can clarify genotype to phenotype associations across geographic ranges of species.


Assuntos
Migração Animal/fisiologia , Evolução Biológica , Genoma , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/fisiologia , Seleção Genética , Animais , Cromossomos , Variação Genética , Genética Populacional , Geografia , Haplótipos/genética , Funções Verossimilhança , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal
17.
Am J Hum Genet ; 101(5): 803-814, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100091

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) constitute a major cause of chronic kidney disease in children and 20% of prenatally detected anomalies. CAKUT encompass a spectrum of developmental kidney defects, including renal agenesis, hypoplasia, and cystic and non-cystic dysplasia. More than 50 genes have been reported as mutated in CAKUT-affected case subjects. However, the pathophysiological mechanisms leading to bilateral kidney agenesis (BKA) remain largely elusive. Whole-exome or targeted exome sequencing of 183 unrelated familial and/or severe CAKUT-affected case subjects, including 54 fetuses with BKA, led to the identification of 16 heterozygous variants in GREB1L (growth regulation by estrogen in breast cancer 1-like), a gene reported as a target of retinoic acid signaling. Four loss-of-function and 12 damaging missense variants, 14 being absent from GnomAD, were identified. Twelve of them were present in familial or simplex BKA-affected case subjects. Female BKA-affected fetuses also displayed uterus agenesis. We demonstrated a significant association between GREB1L variants and BKA. By in situ hybridization, we showed expression of Greb1l in the nephrogenic zone in developing mouse kidney. We generated a Greb1l knock-out mouse model by CRISPR-Cas9. Analysis at E13.5 revealed lack of kidneys and genital tract anomalies in male and female Greb1l-/- embryos and a slight decrease in ureteric bud branching in Greb1l+/- embryos. We showed that Greb1l invalidation in mIMCD3 cells affected tubulomorphogenesis in 3D-collagen culture, a phenotype rescued by expression of the wild-type human protein. This demonstrates that GREB1L plays a major role in early metanephros and genital development in mice and humans.


Assuntos
Anormalidades Congênitas/genética , Nefropatias/congênito , Rim/anormalidades , Mutação/genética , Proteínas de Neoplasias/genética , Proteínas/genética , Animais , Criança , Exoma/genética , Feminino , Feto/anormalidades , Heterozigoto , Humanos , Nefropatias/genética , Masculino , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Sistema Urinário/anormalidades , Anormalidades Urogenitais/genética
18.
Genetics ; 207(1): 215-228, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28739660

RESUMO

Renal agenesis (RA) is one of the more extreme examples of congenital anomalies of the kidney and urinary tract (CAKUT). Bilateral renal agenesis is almost invariably fatal at birth, and unilateral renal agenesis can lead to future health issues including end-stage renal disease. Genetic investigations have identified several gene variants that cause RA, including EYA1, LHX1, and WT1 However, whereas compound null mutations of genes encoding α and γ retinoic acid receptors (RARs) cause RA in mice, to date there have been no reports of variants in RAR genes causing RA in humans. In this study, we carried out whole exome sequence analysis of two families showing inheritance of an RA phenotype, and in both identified a single candidate gene, GREB1L Analysis of a zebrafish greb1l loss-of-function mutant revealed defects in the pronephric kidney just prior to death, and F0 CRISPR/Cas9 mutagenesis of Greb1l in the mouse revealed kidney agenesis phenotypes, implicating Greb1l in this disorder. GREB1L resides in a chromatin complex with RAR members, and our data implicate GREB1L as a coactivator for RARs. This study is the first to associate a component of the RAR pathway with renal agenesis in humans.


Assuntos
Anormalidades Congênitas/genética , Nefropatias/congênito , Rim/anormalidades , Proteínas de Neoplasias/genética , Animais , Anormalidades Congênitas/patologia , Exoma , Feminino , Humanos , Rim/embriologia , Rim/metabolismo , Rim/patologia , Nefropatias/genética , Nefropatias/patologia , Mutação com Perda de Função , Masculino , Proteínas de Membrana , Camundongos , Proteínas de Neoplasias/metabolismo , Linhagem , Proteínas/genética , Proteínas/metabolismo , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA