Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem X ; 21: 101065, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38187949

RESUMO

Sulfur containing compounds including glucosinolates (GLS), sulforaphane (SFN) and S-methyl-l-cysteine sulfoxide (SMCSO) have been proposed to be partly responsible for the beneficial health effects of cruciferous vegetables. As such, greater understanding of their measurements within foods is important to estimate intake in humans and to inform dietary intervention studies. Herein is described a simple and sensitive method for simultaneous analysis of 20 GLS, SFN and SMCSO by liquid chromatography mass spectrometry. Analytes were effectively retained and resolved on an Xbridge C18 column. Detection can be achieved using high resolution or unit resolution mass spectrometry; the latter making the method more applicable to large studies. Quantitative analysis using calibration standards was demonstrated for 10 GLS, SFN and SMCSO. A further 10 GLS were tentatively identified using high resolution mass spectrometry. The use of surrogate GLS standards was shown to be unreliable, with closely related GLS displaying significantly different ionisation efficiencies.

2.
Food Chem ; 172: 47-55, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25442522

RESUMO

Broccoli is grown around the world at a wide range of photoperiods and temperatures, which may influence both sensory quality and phytochemical contents. Florets produced in phytotron and at two semi-field sites (70 °N and 58 °N) were examined for effects of contrasting temperatures and photoperiods on sensory quality and contents of glucosinolates, flavonols and vitamin C. Growth conditions associated with high northern latitudes of low temperature and long photoperiods, produced bigger floral buds, and florets with sweeter taste and less colour hue than more southern conditions. The contents of vitamin C did not vary, while the response of individual glucosinolates varied with temperature and day length, and contents of quercetin and kaempferol were lower in phytotron than under semi-field conditions. Thus, our results show that contrasting temperatures and photoperiods influence the sensory quality of broccoli florets, while contents of different bioactive phytochemicals are not influenced in a unidirectional pattern.


Assuntos
Ácido Ascórbico/análise , Brassica/química , Brassica/efeitos da radiação , Flavonóis/análise , Glucosinolatos/análise , Humanos , Fotoperíodo , Paladar , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA