Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Chem Biodivers ; 21(8): e202400190, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38860451

RESUMO

Six low molecular weight fenugreek polysaccharides (FP) were isolated and purified by ethanol stepwise precipitation (EFP-20, EFP-40, and EFP-60) and DEAE-52 cellulose column method (DFP-0, DFP-0.15, and DFP-0.3), respectively. The effects of different separation and purification techniques on the preliminary properties and biological activities of fenugreek polysaccharides were compared. The results showed that the DEAE-52 cellulose-eluted fractions had a higher total sugar content and displayed a looser structure. The molecular weights of all six fractions were in the range of 4-19 kDa, with significant changes in the ratio of galactose to mannose. All six fractions contained α-D-galactopyranose and ß-D-mannopyranose structures. Activity tests showed that all six fractions possessed antioxidant, hypoglycemic and DNA-protective activities. Among them, the DFP-0 fraction showed the highest activity. Overall, different isolation and purification methods lead to changes in the properties and bioactivities of FP, which provides a theoretical basis for the development and application of FP in functional foods and drugs.


Assuntos
Antioxidantes , DNA , Hipoglicemiantes , Polissacarídeos , Trigonella , Trigonella/química , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Polissacarídeos/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/isolamento & purificação , Hipoglicemiantes/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/química , DNA/química , Animais , Peso Molecular
2.
Food Sci Nutr ; 12(4): 2833-2845, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628208

RESUMO

Hyperlipidemia is a multifaceted metabolic disease, which is the major risk factor for atherosclerosis and cardiovascular diseases. Traditional Chinese medicine provides valuable therapeutic strategies in the treatment of hyperlipidemia. Inonotus obliquus has been used in traditional medicine to treat numerous diseases for a long time. To screen and isolate the fractions of I. obliquus polysaccharides (IOP) that can reduce blood lipid in the hyperlipemia animals and cell models, and investigate its mechanisms. The active component IOP-A2 was isolated, purified, and identified. In vivo, rats were randomly divided into blank control group (NG), the high-fat treatment group (MG), lovastatin group (PG), and IOP-A group. Compared with MG, the hyperlipidemic rats treated with IOP-A2 had decreased body weight and organ indexes, with the level of serum total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) significantly decreased (p < .05), and level of serum high-density lipoprotein cholesterol (HDL-C) significantly increased (p < .05). Hepatocyte steatosis in hepatic lobules was significantly reduced. In vitro, the accumulation of lipid droplets in the model of fatty degeneration of HepG2 cells was significantly alleviated, and cellular TC and TG content was significantly decreased (p < .01). Moreover, the expression of recombinant cytochrome P450 7A1 (CYP7A1) and Liver X Receptor α (LXRα) were up-regulated (p < .05) both in vivo and in vitro. The results showed that IOP-A2 may exert its hypolipidemic activity by promoting cholesterol metabolism and regulating the expression of the cholesterol metabolism-related proteins CYP7A1, LXRα, SR-B1, and ABCA1.

3.
Biochem Genet ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478148

RESUMO

Renal tubular epithelial cells are one of the essential functional cells in the kidney. Optimizing the isolation and culture method of primary renal tubular epithelial cells from SD mammary rats provides better experimental materials for renal tubule-related studies, which is essential for studying the pathogenesis of renal diseases, especially diabetic nephropathy and drug screening. SD rat renal tubular epithelial cells were isolated and purified by 2.5-mg/ml collagenase II or 2 mg/ml trypsin + 2.5 mg/ml collagenase II enzymatic digestion. The isolation and purification were observed at different time points (15 min, 30 min, 45 min, and 60 min) to determine the optimal extraction time for the enzymatic digestion method. After comparing the two enzymatic methods, it was determined that the trypsin + collagenase II enzymatic method was more effective. The primary renal tubular epithelial cells extracted by the trypsin + collagenase II digestion method were identified by the marker Cytokeratin 18 of renal tubular epithelial cells at 45 min of digestion with high purity. We established a simple, efficient, and reproducible method for isolation and culture of renal tubular epithelial cells in SD mammary gland rats.

4.
Foods ; 13(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38472820

RESUMO

In this study, we established a new methodology for preparing 5'-nucleotidase (5'-NT) with the aim of enhancing our understanding of its enzyme activity and laying a basis for regulating the content of umami-enhancing nucleotides in pork. 5'-NT was prepared with Sephadex gel filtration and reverse-phase high-performance liquid chromatography, and its enzymatic properties and catalytic activity were evaluated. The results show that the molecular weight of the prepared 5'-NT was 57 kDa, the optimal catalytic temperature was 40 °C, and the optimal pH was 8. Zn2+, and sucrose showed inhibitory effects on the activity of 5'-NT, while K+, Na+, Ca2+, Mg2+, glucose, fructose, and trehalose promoted the activity of the studied compound. The prepared 5'-NT exhibited higher catalytic activity and selectivity against IMP compared with its commercial counterpart, while its catalytic activity against XMP was not significant (p > 0.05). In brief, we established a new methodology for preparing 5'-NT, enhancing our understanding of its enzyme activity and providing a solid basis for regulating the content of umami-enhancing nucleotides in pork through the control of endogenous 5'-NT activity.

5.
Methods Mol Biol ; 2774: 269-278, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38441771

RESUMO

Eukaryotic mRNAs are characterized by terminal 5' cap structures and 3' polyadenylation sites, which are essential for posttranscriptional processing, translation initiation, and stability. Here, we describe a novel biosensor method designed to detect the presence of both cap structures and polyadenylation sites on mRNA molecules. This novel biosensor is sensitive to mRNA degradation and can quantitatively determine capping levels of mRNA molecules within a mixture of capped and uncapped mRNA molecules. The biosensor displays a constant dynamic range between 254 nt and 6507 nt with reproducible sensitivity to increases in capping level of at least 20% and a limit of detection of 2.4 pmol of mRNA. Overall, the biosensor can provide key information about mRNA quality before mammalian cell transfection.


Assuntos
Mamíferos , Poliadenilação , Animais , Análise Espectral , RNA Mensageiro/genética , Transfecção
6.
Int J Biol Macromol ; 254(Pt 1): 127196, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37793525

RESUMO

Nature food-derived angiotensin converting enzyme inhibitory peptides (ACEIPs) can be potent and safe therapeutics for many medical illnesses, particularly hypertension. In this study, novel ACEIPs were screened and identified from Pacific saury by bio-activity guided approach through ultrafiltration membrane, Sephadex G-25 and RP-HPLC. The antihypertensive effect of ultrafiltration fraction was confirmed with spontaneous hypertensive rats' (SHRs) model. The peptides sequences of which gave the best activity was identified by Q-Orbitrap-MS/MS and selectively synthesized based on the binding energy of molecular docking. Five peptides VVLASLK, LTLK, LEPWR, ELPPK and LPTEK were synthesized, and the peptide LEPWR (IC50 = 99.5 µM) showed the best ACE inhibitory ability. Furthermore, LEPWR against ACE in a mixed competitive pattern and formed six hydrogen bonds with ACE. Additionally, the apparent permeability coefficient (Papp) of LEPWR was 3.56 ± 0.14 × 10-6 cm/s and paracellular transport across tight junctions was the main pathway across the Caco-2 monolayer. Therefore, the Pacific saury is a good material to prepare ACEIPs, but antihypertensive mechanism of peptide LEPWR on SHRs needs further investigation.


Assuntos
Anti-Hipertensivos , Hipertensão , Ratos , Humanos , Animais , Anti-Hipertensivos/química , Inibidores da Enzima Conversora de Angiotensina/química , Peptidil Dipeptidase A/metabolismo , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Células CACO-2 , Ratos Endogâmicos SHR , Peptídeos/química , Hipertensão/tratamento farmacológico
7.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1021598

RESUMO

BACKGROUND:Frog active peptides have rich activities,such as antibacterial and anti-tumor,and are expected to solve the problem of antibiotic resistance. OBJECTIVE:The active peptide QUB2984 was discovered in the skin secretions of Agalychnis callidryas.Its structure and properties were simulated by bioinformatics.The peptide was synthesized,purified,and identified and its biological functions were investigated. METHODS:Agalychnis callidryas skin secretions were collected by electrostimulation.The sequence of QUB2984 was obtained through constructing a cDNA library with isolated mRNA.BLAST was used for peptide sequence alignment.Besides that,Iterative Threading ASSEmbly Refinement(I-TASSER)and HeliQuest tools were used for protein secondary structure simulation.It was synthesized by solid-phase peptide synthesis,purified by reverse-phase high-performance liquid chromatography,and structurally confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.The purified peptide was used to evaluate its biological activity.Its antibacterial effect was evaluated by the minimum inhibitory concentration method.Its cytotoxic effect was detected by MTT assay.Its safety was investigated by a hemolysis test. RESULTS AND CONCLUSION:(1)Peptide QUB2984 had basically α-spiral structure,with a relatively intact hydrophobic surface,and a certain destructive ability to biofilm.The third amino acid position of QUB2984 was composed of W and had a G-X-G structure.(2)The minimum inhibitory concentration of QUB2984 against gram-positive Staphylococcus aureus was 2 μmol/L,the minimum inhibitory concentration against gram-negative Escherichia coli was 2 μmol/L,and the minimum inhibitory concentration against the fungus Candida albicans was 8 μmol/L.(3)The active peptide QUB2984 had obvious inhibitory effect on human non-small cell lung cancer cells NCI-H838 at 10-5 mol/L concentration,and the hemolytic effect on horse red cells at 64 μmol/L concentration was 50%.(4)The results showed that QUB2984 had anti-bacterial and anti-cancer activity,and it had a positive charge of +3,which was conducive to contact with bacteria or cells.

8.
Molecules ; 28(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37959704

RESUMO

The flavonoids from Perilla leaves were extracted using flash extraction assisted by ultrasonic extraction with ethanol. Subsequently, macroporous resin was employed for the isolation and purification of these flavonoids, followed by an investigation into their antioxidant activity. The process conditions for the extraction of flavonoids from Perilla leaves were designed and optimized using a one-way experiment combined with a response surface methodology. The optimal extraction conditions were determined as follows: the liquid-solid ratio was 20:1, ethanol volume fraction of 60%, ultrasound temperature of 60 °C, ultrasound time of 10 min and flash evaporation time of 60 s. The optimal extraction rate of flavonoids is 9.8 mg/g. In terms of separation and purification, a high-performance macroporous resin (HPD450 resin) with high purification efficiency was selected through static analysis and adsorption experiments. The optimal enrichment conditions were as follows: loading concentration of 0.06 mg/mL, optimal loading concentration of 20 mL, elution concentration of 70% and 76 mL, providing a reference for the further development and utilization of Perilla leaf flavonoids.


Assuntos
Flavonoides , Perilla , Antioxidantes/farmacologia , Folhas de Planta , Extratos Vegetais , Etanol
9.
Plant Methods ; 19(1): 135, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012623

RESUMO

BACKGROUND: Calcium oxalate (CaOx) is the most prevalent and widespread biomineral in plants and is involved in protective and/or defensive functions against abiotic stress factors. It is, however, expected that this function has an extremely significant contribution to growth processes in plants bearing large amounts of CaOx, such as cacti growing in desert environment. RESULTS: In our research, small-sized CaOx crystals (≤ 20 µm) with tetrahedral or spherical shapes were observed to dominate in each epidermal and cortical cell from the tubercles of Mammillaria schumannii, a species from the Cereoideae subfamily, having tubercles (main photosynthetic organs) united with adjacent ones almost into ridges on its stem. Because they have potential significant functions, differential centrifugations after mechanical blending were used to obtain these small-sized CaOx crystals, which extremely tend to adhere to tissue or suspend in solution. And then the combined Scanning Electron Microscope Energy Dispersive System (SEM-EDS) and Raman spectroscopy were further performed to demonstrate that the extracted crystals were mainly CaC2O4·2H2O. Interestingly, spherical druses had 2 obvious abnormal Raman spectroscopy peaks of -CH and -OH at 2947 and 3290 cm-1, respectively, which may be attributed to the occluded organic matrix. The organic matrix was further extracted from spherical crystals, which could be polysaccharide, flavone, or lipid compounds on the basis of Raman spectroscopy bands at 2650, 2720, 2770, and 2958 cm-1. CONCLUSIONS: Here we used a highlightedly improved method to effectively isolate small-sized CaOx crystals dominating in the epidermal and cortical cells from tubercles of Mammillaria schumannii, which extremely tended to adhere plant tissues or suspend in isolation solution. And then we further clarified the organic matrix getting involved in the formation of CaOx crystals. This improved method for isolating and characterizing biomineral crystals can be helpful to understand how CaOx crystals in cacti function against harsh environments such as strong light, high and cold temperature, and aridity.

10.
MethodsX ; 11: 102435, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37876828

RESUMO

Accurate genomic sequencing demands high-quality double-stranded RNA (dsRNA). Existing methods for dsRNA extraction from yeast, fungi, and plants primarily rely on cellulose, suitable only for small volume extractions, or the time-consuming lithium chloride precipitation. To streamline the traditional phenol-chloroform-based dsRNA extraction method, the main challenge is the reduction of mitochondrial DNA (mtDNA) and Single Stranded RNA (ssRNA) to no detectable levels after gel electrophoresis. This challenge is successfully addressed through the modified approach described here, involving phenol extraction at low pH, followed by the addition of ammonium sulfate to the aqueous buffer. The dsRNA isolated using this novel method exhibits comparable quality to that obtained through cellulose purification, and it is readily amenable to RT-PCR. Moreover, a single batch of yeast cell RNA isolation requires only 2-3 h of hands-on time, thus simplifying and expediting the process significantly.•Buffers were redesigned from [32,33,35].•No DNASE, Ribonuclease A or beads were used during the purification.•Simple and inexpensive dsRNA extraction and purification method is described.

11.
Microb Pathog ; 183: 106308, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37595812

RESUMO

Bacterial extracellular vesicles (BEVs) are nanosized lipid bilayers generated from membranes that are filled with components derived from bacteria. BEVs are important for the physiology, pathogenicity, and interactions between bacteria and their hosts as well. BEVs represent an important mechanism of transport and interaction between cells. Recent advances in biomolecular nanotechnology have enabled the desired properties to be engineered on the surface of BEVs and decoration with desired and diverse biomolecules and nanoparticles, which have potential biomedical applications. BEVs have been the focus of various fields, including nanovaccines, therapeutic agents, and drug delivery vehicles. In this review, we delineate the fundamental aspects of BEVs, including their biogenesis, cargo composition, function, and interactions with host cells. We comprehensively summarize the factors influencing the biogenesis of BEVs. We further highlight the importance of the isolation, purification, and characterization of BEVs because they are essential processes for potential benefits related to host-microbe interactions. In addition, we address recent advancements in BEVs in biomedical applications. Finally, we provide conclusions and future perspectives as well as highlight the remaining challenges of BEVs for different biomedical applications.


Assuntos
Vesículas Extracelulares , Nanopartículas , Sistemas de Liberação de Medicamentos , Excipientes , Interações Microbianas
12.
J Appl Microbiol ; 134(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37429603

RESUMO

AIM: Blue pigments have broad applications in foods, cosmetics, and clothing. However, natural blue pigments are rare. At present, the majority of blue pigments for sale are chemically synthetic. Owing to the safety risks of chemical pigments, it is an urgent demand to develop novel natural blue pigments. METHODS AND RESULTS: The fermentation medium and culture conditions of blue pigment produced by Quambalaria cyanescens QY229 were optimized by Plackett-Burman (PB) experimental design and response surface methodology (RSM) for the first time. The stability, bioactivity, and toxicity of the obtained blue pigment were studied after isolation and purification. CONCLUSION: The results showed that the optimal fermentation parameters were 34.61 g·L-1 of peptone concentration, 31.67°C of growing temperature, and 72.33 mL of medium volume in a 250-mL flask, and the yield of blue pigment reached 348.2 ± 7.1 U·mL-1. QY229 blue pigment is stable to light, heat, pH, most metal ions, and additives, and has certain antioxidant and inhibitory activity of α-glucosidase in vitro. QY229 blue pigment at concentrations of 0-1.25 mg·mL-1 was nontoxic to Caenorhabditis elegans in an acute toxicity trial.


Assuntos
Basidiomycota , Fermentação , Temperatura , Temperatura Alta , Meios de Cultura/química
13.
Pharmaceutics ; 15(5)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37242660

RESUMO

In recent years, small extracellular vesicles (sEVs) have been regarded as the next generation of novel delivery systems after lipid nanoparticles because of their advantages and huge prospects in drug delivery. Studies have shown that sEVs are abundant in milk and therefore can be a large and economical source of sEVs. Natural milk-derived small extracellular vesicles (msEVs) have important functions such as immune regulation, anti-bacterial infection, anti-oxidative, etc., and play a beneficial role in human health at multiple levels, including intestinal health, bone/muscle metabolism, and microbiota regulation. In addition, because they can pass the gastrointestinal barrier and have low immunogenicity, good biocompatibility, and stability, msEVs are considered a crucial oral drug delivery vehicle. Moreover, msEVs can be further engineered for targeted delivery to prolong the circulation time or enhance local drug concentrations. However, msEVs separation and purification, complex contents, and quality control hinder their application in drug delivery. This paper provides a comprehensive review of the biogenesis and characteristics, isolation and purification, composition, loading methods, and function of msEVs, based on which their applications in biomedical fields are further explored.

14.
Sheng Wu Gong Cheng Xue Bao ; 39(5): 2027-2039, 2023 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-37212229

RESUMO

The discovery of new enzymes for poly(ethylene terephthalate) (PET) degradation has been a hot topic of research globally. Bis-(2-hydroxyethyl) terephthalate (BHET) is an intermediate compound in the degradation of PET and competes with PET for the substrate binding site of the PET-degrading enzyme, thereby inhibiting further degradation of PET. Discovery of new BHET degradation enzymes may contribute to improving the degradation efficiency of PET. In this paper, we discovered a hydrolase gene sle (ID: CP064192.1, 5085270-5086049) from Saccharothrix luteola, which can hydrolyze BHET into mono-(2-hydroxyethyl) terephthalate (MHET) and terephthalic acid (TPA). BHET hydrolase (Sle) was heterologously expressed in Escherichia coli using a recombinant plasmid, and the highest protein expression was achieved at a final concentration of 0.4 mmol/L of isopropyl-ß-d-thiogalactoside (IPTG), an induction duration of 12 h and an induction temperature of 20 ℃. The recombinant Sle was purified by nickel affinity chromatography, anion exchange chromatography, and gel filtration chromatography, and its enzymatic properties were also characterized. The optimum temperature and pH of Sle were 35 ℃ and 8.0, and more than 80% of the enzyme activity could be maintained in the range of 25-35 ℃ and pH 7.0-9.0 and Co2+ could improve the enzyme activity. Sle belongs to the dienelactone hydrolase (DLH) superfamily and possesses the typical catalytic triad of the family, and the predicted catalytic sites are S129, D175, and H207. Finally, the enzyme was identified as a BHET degrading enzyme by high performance liquid chromatography (HPLC). This study provides a new enzyme resource for the efficient enzymatic degradation of PET plastics.


Assuntos
Actinomycetales , Hidrolases , Actinomycetales/enzimologia , Actinomycetales/genética , Hidrolases/genética , Hidrolases/metabolismo , Ácidos Ftálicos/metabolismo , Polietilenotereftalatos/metabolismo , Escherichia coli/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
Food Chem ; 423: 136315, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37167672

RESUMO

Hyperlipidaemia, a common chronic disease, is the cause of cardiovascular diseases such as myocardial infarction and atherosclerosis. Generally, drugs for lowering blood lipids have disadvantages such as short or poor efficacy, high toxicity, and side effects. Rapeseed active peptides are excellent substitutes for lipid-lowering drugs because of their high biological safety, strong penetration, and easy absorption by the human body. This study separated and purified the rapeseed peptides using gel chromatography and mass spectrometry. Rapeseed peptides amino acid sequences were determined to obtain Glu-Phe-Leu-Glu-Leu-Leu (EFLELL) peptides with good hypolipidaemic activity and IC50 values of 0.1973 ± 0.05 mM (sodium taurocholate), 0.375 ± 0.03 mM (sodium cholate), and 0.203 ± 0.06 mM (sodium glycine cholate). The EFLELL hypolipidaemic activity was evaluated, and its mechanism of action was investigated using cell lines. Rapeseed peptide treatment significantly decreased the total cholesterol (T-CHO), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) levels, and the protein and gene expression levels of proprotein convertase subtilisin/kexin type 9 (PCSK9) and low-density lipoprotein cholesterol (LDLR) suggested the mechanism. Molecular docking revealed that the binding energy between rapeseed peptide and LDLR-PCSK9 molecules was -6.3 kcal/mol and -8.1 kcal/mol. In conclusion, the rapeseed peptide EFLELL exerts a favourable hypolipidaemic effect by modulating the LDLR-PCSK9 signalling pathway.


Assuntos
Brassica napus , Pró-Proteína Convertase 9 , Humanos , Pró-Proteína Convertase 9/química , Pró-Proteína Convertase 9/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Simulação de Acoplamento Molecular , Receptores de LDL/genética , Receptores de LDL/metabolismo , Peptídeos/farmacologia , LDL-Colesterol
16.
Phytochemistry ; 210: 113673, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37030588

RESUMO

Six undescribed tanshinones, (+)-2-Cl-tanshindiol C (1), (-)-2-Cl-tanshindiol C (2), (+)-tanshinoic acid D (3), (-)-tanshinoic acid D (4), (-)-tanshinoic acid E (5), and (+)-tanshinoic acid E (6), were isolated from the rhizome of Salvia miltiorrhiza Bunge. Their structures were elucidated based on the spectroscopic data (UV, IR, HR-ESI-MS, and NMR). The bioactive assays of all these compounds for the antioxidant activities in cardiomyocytes upon hypoxia stimulation were evaluated. The results suggested that compounds 5 and 6 exhibited good antioxidant activities in cardiomyocytes and the cell survival rates were 46.3% and 57.9% (10-5 mol/L), respectively.


Assuntos
Salvia miltiorrhiza , Salvia miltiorrhiza/química , Antioxidantes/farmacologia , Abietanos/farmacologia , Abietanos/química , Rizoma/química , Raízes de Plantas/química
17.
Appl Biochem Biotechnol ; 195(1): 451-466, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36087231

RESUMO

In this study, a strain of Bacillus amyloliquefaciens D1, with a notably high production of neutral protease, was isolated from Morchella crassipes. The protease was purified to 10.4-fold with a specific activity of 4542.9 U/mg and 2.7% recovery. The enzyme was purified by 70% (NH4)2SO4 and DEAE-Cellulose-52 column. The estimated molecular mass of the purified protease obtained by SDS-PAGE was approximately 40 kDa. The enzyme was optimally active at pH 6.0 and 50 °C. Furthermore, the maximum hydrolysis rate (Vmax) and apparent Michaelis-Menten constant (Km) values of the purified protease were 8.2 mg/mL and 65.7 µg/(min mL). The enzymatic properties and rapid and efficient purification of Bacillus amyloliquefaciens D1 provide the basis for its potential commercialization and industrial development. Moreover, more essential amino acids, such as isoleucine, leucine, and phenylalanine, would be released when the strain fermented soybean milk, and then a better amino acid profile would be formed in soybean milk. Results suggest that this strain exhibits great potential in fermented soybean milk, and the enzyme could lay a foundation for its industrial application and further research.


Assuntos
Bacillus amyloliquefaciens , Peptídeo Hidrolases , Animais , Aminoácidos/metabolismo , Bacillus amyloliquefaciens/metabolismo , Endopeptidases/metabolismo , Fermentação , Concentração de Íons de Hidrogênio , Peptídeo Hidrolases/química , Glycine max , Temperatura , Leite de Soja
18.
Chinese Journal of Biotechnology ; (12): 2027-2039, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-981187

RESUMO

The discovery of new enzymes for poly(ethylene terephthalate) (PET) degradation has been a hot topic of research globally. Bis-(2-hydroxyethyl) terephthalate (BHET) is an intermediate compound in the degradation of PET and competes with PET for the substrate binding site of the PET-degrading enzyme, thereby inhibiting further degradation of PET. Discovery of new BHET degradation enzymes may contribute to improving the degradation efficiency of PET. In this paper, we discovered a hydrolase gene sle (ID: CP064192.1, 5085270-5086049) from Saccharothrix luteola, which can hydrolyze BHET into mono-(2-hydroxyethyl) terephthalate (MHET) and terephthalic acid (TPA). BHET hydrolase (Sle) was heterologously expressed in Escherichia coli using a recombinant plasmid, and the highest protein expression was achieved at a final concentration of 0.4 mmol/L of isopropyl-β-d-thiogalactoside (IPTG), an induction duration of 12 h and an induction temperature of 20 ℃. The recombinant Sle was purified by nickel affinity chromatography, anion exchange chromatography, and gel filtration chromatography, and its enzymatic properties were also characterized. The optimum temperature and pH of Sle were 35 ℃ and 8.0, and more than 80% of the enzyme activity could be maintained in the range of 25-35 ℃ and pH 7.0-9.0 and Co2+ could improve the enzyme activity. Sle belongs to the dienelactone hydrolase (DLH) superfamily and possesses the typical catalytic triad of the family, and the predicted catalytic sites are S129, D175, and H207. Finally, the enzyme was identified as a BHET degrading enzyme by high performance liquid chromatography (HPLC). This study provides a new enzyme resource for the efficient enzymatic degradation of PET plastics.


Assuntos
Actinomycetales/genética , Hidrolases/metabolismo , Ácidos Ftálicos/química , Polietilenotereftalatos/metabolismo
19.
Molecules ; 29(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38202727

RESUMO

Polysaccharides are the main effective components of Cynomorium songaricum's stem that perform biological activities and have positive impacts on immune enhancement. In this study, the polysaccharide CSP-III of Cynomorium songaricum's stem was isolated using a DEAE-52 cellulose column through Sephadex G-100 gel column chromatography. Upon analysis, the monosaccharide composition of CSP-III included Mannose (Man), Glucuronic acid (GlcA), Galacturonic acid (GalA), Rhamnose (Rha), Glucose (Glc), Galactose (Gal), and Arabinose (Ara), at a molar ratio of 0.01:0.11:0.03:0.57:0.02:0.32:1. The molecular weight of CSP-III was 4018234 Da. Meanwhile, the capacity of CSP-III, at various concentrations, to stimulate the proliferation of mouse spleen lymphocytes in vitro was compared, and the influence of CSP-III on cell proliferation was examined using RAW264.7 mouse mononuclear macrophages as a model. The influence of CSP-III on the expression of important phosphorylating proteins in the MAPK signaling pathway was initially analyzed by Western blotting. In RAW264.7 cells, CSP-III promoted the phosphorylation of JNK proteins, which thus activated the MAPK signaling cascade and exerted immunomodulatory effects. Moreover, according to in vivo studies using cyclophosphamide (CTX)-induced immunosuppression mouse models, CSP-III improved the CTX-induced histopathological damage, promoted T and B lymphocyte proliferation, upregulated CD4+ and CD8+ T-lymphocyte counts in the spleen, increased the serum levels of IgG and IgM, and activated three essential proteins of the MAPK signaling pathway. As revealed by analysis of intestinal flora, CSP-III improved the immune function by maintaining the homeostasis of the bacterial flora by boosting the relative abundances of some beneficial bacterial groups, such as Bacteroidetes, Desmodium, and Actinomyces, and reducing the relative abundance of Aspergillus phylum. Through in vitro and in vivo experiments, our present study demonstrates that polysaccharides from the stem of Cynomorium songaricum possess strong immunoregulatory effects. Findings in this work provide theoretical support for the potential application of Cynomorium songaricum in the field of health food.


Assuntos
Cynomorium , Humanos , Animais , Camundongos , Imunomodulação , Terapia de Imunossupressão , Ativação Linfocitária , Sistema de Sinalização das MAP Quinases
20.
Food Res Int ; 162(Pt A): 111997, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461233

RESUMO

In this study, the static adsorption-desorption performance of seven macroporous resins for bound polyphenols from mung bean coat dietary fiber (MBDF-BP) was compared, and NKA-9 macroporous resin was preferably screened for subsequent separation and purification. The composition of the purified products was identified and quantified, 44 major compounds were detected, with the main phenolic acid being p-hydroxybenzoic acid, which contained up to 8881.90 µg/g DW. The purification enriched flavonoids, with high contents of catechin (1419.03 µg/g DW) and vitexin (615.88 µg/g DW). The MBDF-BP purified products (pMBDF-BP) produced significant reversible inhibitory activity against α-glucosidase in a mixed-type inhibition manner, which was superior to the reported crude extracts. The antioxidant activity assays showed that pMBDF-BP exhibited distinct scavenging effects on DPPH•, ABTS+•, •OH free radicals, as well as reactive oxygen species (ROS) in Caenorhabditis elegans (C. elegans). These results demonstrated that NKA-9 macroporous resin could effectively enrich MBDF-BP extracts and enhance its antioxidant activity, which was promising to explore new sights into the applications of bound polyphenols from mung bean coat dietary fiber in functional foods or dietary supplements, thus contributing to the scientific utilization of mung bean coat resources and increasing the added value of related products.


Assuntos
Vigna , Animais , Polifenóis , Antioxidantes , Caenorhabditis elegans , Fibras na Dieta , Resinas Vegetais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA