Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(27): 34880-34891, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38949126

RESUMO

Lithium-rich manganese-based layered oxides (LRMOs) have recently attracted enormous attention on account of their remarkably big capacity and high working voltage. However, some inevitable inherent drawbacks impede their wide-scale commercial application. Herein, a kind of Cr-containing Co-free LRMO with a topical spinel phase (Li1.2Mn0.54Ni0.13Cr0.13O2) has been put forward. It has been found that the high valence of Cr6+ can reduce the Li+ ion content and induce the formation of a local spinel phase by combining more Li+ ions, which is beneficial to eliminate the phase boundary between the spinel phase and the bulk phase of the LRMO material, thus dramatically avoiding phase separation during the cycling process. In addition, the introduction of Cr can also expand the layer spacing and construct a stronger Cr-O bond compared with Mn-O, which enables to combine the transition metal (TM) slab to prevent the migration of TM ions and the transformation of the bulk phase to the spinel phase. Simultaneously, the synergistic effect of the successfully constructed spinel-layered biphase interface and the strong Cr-O bond can effectively impede the escape of lattice oxygen during the initial activation process of Li2MnO3 and provide the fast diffusion path for Li+ ion transmission, thus further reinforcing the configurable stability. Besides, Cr-LRMO presents an ultrahigh first discharge specific capacity of 310 mAh g-1, an initial Coulombic efficiency of as high as 92.09%, a good cycling stability (a capacity retention of 94.70% after 100 cycles at 1C), and a small voltage decay (3.655 mV per cycle), as well as a good rate capacity (up to 165.88 mAh g-1 at 5C).

2.
Small ; : e2401839, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804822

RESUMO

Co-free Li-rich Mn-based cathode materials are garnering great interest because of high capacity and low cost. However, their practical application is seriously hampered by the irreversible oxygen escape and the poor cycling stability. Herein, a reversible lattice adjustment strategy is proposed by integrating O vacancies and B doping. B incorporation increases TM─O (TM: transition metal) bonding orbitals whereas decreases the antibonding orbitals. Moreover, B doping and O vacancies synergistically increase the crystal orbital bond index values enhancing the overall covalent bonding strength, which makes TM─O octahedron more resistant to damage and enables the lattice to better accommodate the deformation and reaction without irreversible fracture. Furthermore, Mott-Hubbard splitting energy is decreased due to O vacancies, facilitating electron leaps, and enhancing the lattice reactivity and capacity. Such a reversible lattice, more amenable to deformation and forestalling fracturing, markedly improves the reversibility of lattice reactions and mitigates TM migration and the irreversible oxygen redox which enables the high cycling stability and high rate capability. The modified cathode demonstrates a specific capacity of 200 mAh g-1 at 1C, amazingly sustaining the capacity for 200 cycles without capacity degradation. This finding presents a promising avenue for solving the long-term cycling issue of Li-rich cathode.

3.
Adv Mater ; 36(31): e2404982, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38781489

RESUMO

In layered Li-rich materials, over stoichiometric Li forms an ordered occupation of LiTM6 in transition metal (TM) layer, showing a honeycomb superstructure along [001] direction. At the atomic scale, the instability of the superstructure at high voltage is the root cause of problems such as capacity/voltage decay of Li-rich materials. Here a Li-rich material with a high Li/Ni disorder is reported, these interlayer Ni atoms locate above the honeycomb superstructure and share adjacent O coordination with honeycomb TM. These Ni─O bonds act as cable-stayed bridge to the honeycomb plane, and improve the high-voltage stability. The cable-stayed honeycomb superstructure is confirmed by in situ X-ray diffraction to have a unique cell evolution mechanism that it can alleviate interlaminar lattice strain by promoting in-plane expansion along a-axis and inhibiting c-axis stretching. Electrochemical tests also demonstrate significantly improved long cycle performance after 500 cycles (86% for Li-rich/Li half cell and 82% for Li-rich/Si-C full cell) and reduced irreversible oxygen release. This work proves the feasibility of achieving outstanding stability of lithium-rich materials through superstructure regulation and provides new insights for the development of the next-generation high-energy-density cathodes.

4.
J Colloid Interface Sci ; 662: 527-534, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364477

RESUMO

In this study, we investigate the efficacy of 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane (ViD4) as an electrolyte additive to enhance the electrochemical stability of Li-rich (LRO)/Li cells. The LRO/Li cell in the 1 vol% ViD4 electrolyte displays a mere 27.9 % capacity loss after 100 cycles at 0.5C (1C = 300 mAh-1), in comparison with the 66 % observed in the baseline electrolyte. Theoretical calculations reveal that ViD4 possesses a lower calculated oxidation potential than the electrolyte solution, signifying its preferential oxidation propensity. Physical characterization results demonstrate the formation of a uniform ViD4-derived film spanning 2-3 nm on the LRO cathode surface. This film enhances the stability of the cathode/electrolyte interface and safeguards the structural integrity of LRO. Moreover, ViD4 acts as a scavenger for hydrogen fluoride (HF), which is a decomposition product of LiPF6. Theoretical calculations verify the feasibility of ViD4 in effectively eliminating HF.

5.
Small ; 20(23): e2307669, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38168885

RESUMO

The unique anionic redox mechanism provides, high-capacity, irreversible oxygen release and voltage/capacity degradation to Li-rich cathode materials (LRO, Li1.2Mn0.54Co0.13Ni0.13O2). In this study, an integrated stabilized carbon-rock salt/spinel composite heterostructured layers (C@spinel/MO) is constructed by in situ self-reconstruction, and the generation mechanism of the in situ reconstructed surface is elucidated. The formation of atomic-level connections between the surface-protected phase and bulk-layered phase contributes to electrochemical performance. The best-performing sample shows a high increase (63%) of capacity retention compared to that of the pristine sample after 100 cycles at 1C, with an 86.7% reduction in surface oxygen release shown by differential electrochemical mass spectrometry. Soft X-ray results show that Co3+ and Mn4+ are mainly reduce in the carbothermal reduction reaction and participate in the formation of the spinel/MO rock-salt phase. The results of oxygen release characterized by Differential electrochemical mass spectrometry (DEMS) strongly prove the effectiveness of surface reconstruction.

6.
Angew Chem Int Ed Engl ; 63(6): e202316790, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38116869

RESUMO

Electrolyte engineering is a fascinating choice to improve the performance of Li-rich layered oxide cathodes (LRLO) for high-energy lithium-ion batteries. However, many existing electrolyte designs and adjustment principles tend to overlook the unique challenges posed by LRLO, particularly the nucleophilic attack. Here, we introduce an electrolyte modification by locally replacing carbonate solvents in traditional electrolytes with a fluoro-ether. By benefit of the decomposition of fluoro-ether under nucleophilic O-related attacks, which delivers an excellent passivation layer with LiF and polymers, possessing rigidity and flexibility on the LRLO surface. More importantly, the fluoro-ether acts as "sutures", ensuring the integrity and stability of both interfacial and bulk structures, which contributed to suppressing severe polarization and enhancing the cycling capacity retention from 39 % to 78 % after 300 cycles for the 4.8 V-class LRLO. This key electrolyte strategy with comprehensive analysis, provides new insights into addressing nucleophilic challenge for high-energy anionic redox related cathode systems.

7.
ACS Appl Mater Interfaces ; 15(39): 45764-45773, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37726198

RESUMO

Li metal batteries applying Li-rich, Mn-rich (LMR) layered oxide cathodes present an opportunity to achieve high-energy density at reduced cell cost. However, the intense oxidizing and reducing potentials associated with LMR cathodes and Li anodes present considerable design challenges for prospective electrolytes. Herein, we demonstrate that, somewhat surprisingly, a properly designed localized-high-concentration electrolyte (LHCE) based on ether solvents is capable of providing reversible performance for Li||LMR cells. Specifically, the oxidative stability of the LHCE was found to heavily rely on the ratio between salt and solvating solvent, where local-saturation was necessary to stabilize performance. Through molecular dynamics (MD) simulations, this behavior was found to be a result of aggregated solvation structures of Li+/anion pairs. This LHCE system was found to produce significantly improved LMR cycling (95.8% capacity retention after 100 cycles) relative to a carbonate control as a result of improved cathode-electrolyte interphase (CEI) chemistry from X-ray photoelectron spectroscopy (XPS), and cryogenic transmission electron microscopy (cryo-TEM). Leveraging this stability, 4 mAh cm-2 LMR||2× Li full cells were demonstrated, retaining 87% capacity after 80 cycles in LHCE, whereas the control electrolyte produced rapid failure. This work uncovers the benefits, design requirements, and performance origins of LHCE electrolytes for high-voltage Li||LMR batteries.

8.
Angew Chem Int Ed Engl ; 62(25): e202218672, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37083044

RESUMO

With ever-increasing pursuit for high-value output in recycling spent lithium-ion batteries (LIBs), traditional recycling methods of cathodes tend to be obsolete because of the complicated procedures. Herein, we first upcycle spent polycrystal LiNi0.88 Co0.095 Al0.025 O2 (S-NCA) to high value-added single-crystalline and Li-rich cathode materials through a simple but feasible LiOH-Na2 SO4 eutectic molten salt strategy. The in situ X-ray diffraction technique and a series of paratactic experiments record the evolution process of upcycling and prove that excessive Li occupies the transition metal (TM) layers. Beneficial from the single-crystalline and Li-rich nature, the regenerated NCA (R-NCA) exhibits remarkably enhanced electrochemical performances in terms of long-term cyclability, high-rate performance and low polarization. This approach can also be successfully extended to other cathode materials e.g., LiNix Coy Mnz O2 (NCM) and mixed spent NCAs with varied degree of Li loss.


Assuntos
Lítio , Cloreto de Sódio , Fontes de Energia Elétrica , Eletrodos , Íons
9.
J Colloid Interface Sci ; 640: 373-382, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36867934

RESUMO

Li-rich Mn-based layered oxides (LLOs) have emerged as one of the most promising cathode materials for the next-generation lithium-ion batteries (LIBs) because of their high energy density, high specific capacity, and environmental friendliness. These materials, however, have drawbacks such as capacity degradation, low initial coulombic efficiency (ICE), voltage decay, and poor rate performance due to irreversible oxygen release and structural deterioration during cycling. Herein, we present a facile method of triphenyl phosphate (TPP) surface treatment to create an integrated surface structure on LLOs that includes oxygen vacancies, Li3PO4, and carbon. When used for LIBs, the treated LLOs show an increased initial coulombic efficiency (ICE) of 83.6% and capacity retention of 84.2% at 1C after 200 cycles. It is suggested that the enhanced performance of the treated LLOs can be attributed to the synergetic functions of each component in the integrated surface, such as the oxygen vacancy and Li3PO4 being able to inhibit the evolution of oxygen and accelerate the transport of lithium ions, while the carbon layer can restrain undesirable interfacial side reactions and reduce the dissolution of transition metals. Furthermore, electrochemical impedance spectroscopy (EIS) and galvanostatic intermittent titration technique (GITT) prove an enhanced kinetic property of the treated LLOs cathode, and ex-situ X-ray diffractometer shows a suppressed structural transformation of TPP-treated LLOs during the battery reaction. This study provides an effective strategy for constructing an integrated surface structure on LLOs to achieve high-energy cathode materials in LIBs.

10.
Artigo em Inglês | MEDLINE | ID: mdl-36912808

RESUMO

The quest for removal of cobalt from battery materials has intensified in the face of intensifying demand for batteries. Cobalt-free lithium-rich Li1.2Ni0.13Mn0.54Fe0.13O2 (LNMFO) is synthesized under variation of chelating agent ratio and pH using the sol-gel method. Systematic search of the chelation and pH space found that the extractable capacity of the synthesized LNMFO is most clearly correlated to the ratio of chelating agent to transition metal oxide; a ratio of transition metal to citric acid of 2:1 achieves greater capacity at the expense of relative capacity retention. Charge-discharge cycling, dQ/dV analysis, XRD, and Raman at different charging potentials are used to quantify the different degrees of activation of the Li2MnO3 phase in the LNMFO powders synthesized under different chelation ratios. SEM and HRTEM analysis are employed to understand the effect of particle size and crystallography on the activation of Li2MnO3 phase in the composite particles. An unprecedented use of the marching cube algorithm to evaluate atomic scale tortuosity of crystallographic planes in HRTEM revealed that subtle undulations in the planes in addition to stacking faults correlate to the extracted capacity and stability of the various LNMFO synthesized.

11.
ACS Appl Mater Interfaces ; 15(10): 13195-13204, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36880117

RESUMO

A Li-rich Mn-based layered oxide cathode (LLO) is one of the most promising cathode materials for achieving high-energy lithium-ion batteries. Nevertheless, the intrinsic problems including sluggish kinetics, oxygen evolution, and structural degradation lead to unsatisfactory performance in rate capability, initial Coulombic efficiency, and stability of LLO. Herein, different from the current typical surface modification, an interfacial optimization of primary particles is proposed to improve the simultaneous transport of ions and electrons. The modified interfaces containing AlPO4 and carbon can effectively increase the Li+ diffusion coefficient and decrease the interfacial charge-transfer resistance, thereby achieving fast charge-transport kinetics. Moreover, the in situ high-temperature X-ray diffraction confirms that the modified interface can improve the thermal stability of LLO by inhibiting the lattice oxygen release on the surface of the delithiated cathode material. In addition, the chemical and visual analysis of the cathode-electrolyte interface (CEI) composition clarifies that a highly stable and conductive CEI film generated on the modified electrode can facilitate interfacial kinetic transmission during cycling. As a result, the optimized LLO cathode exhibits a high initial Coulombic efficiency of 87.3% at a 0.2C rate and maintains superior high-rate stability with a capacity retention of 88.2% after 300 cycles at a 5C high rate.

12.
Adv Mater ; 35(7): e2208726, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36385715

RESUMO

Layered Li-rich cathode materials with high reversible energy densities are becoming prevalent. However, owing to the activation of low-potential redox couples and the progressively irreversible structural transformation caused by the local adjustment of transition-metal ions in the intra/interlayer driven by anionic redox, continuous capacity degradation, and voltage decay emerge, thus greatly reducing the energy density and increasing the difficulty of battery system management. Herein, layered Li-rich cathode materials with higher intralayer configuration entropy have more local structural diversity and higher distortion energy, resulting in superior local structural adaptability with no drastic redox couple evolution, major local structural adjustment, or obvious layered-to-spinel phase transition. Consequently, the energy retention of the entropy-stabilization-strategy-enhanced Li-rich cathode materials is almost twice that of a typical Li-rich cathode material (Li1.20 Mn0.54 Ni0.13 Co0.13 O2 , T-LRM) after 3 months of cyclic testing. Moreover, when cycled at 1 C, the voltage degradation per cycle is less than 0.02%, that is, it results in a voltage loss of only 0.8 mV per cycle, which is excellent performance. This study paves the way for the development of Li-rich cathode materials with stabilized intralayer atomic arrangements and high local structural adaptability.

13.
Nanomaterials (Basel) ; 12(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36432339

RESUMO

Li-rich oxides are promising cathode materials for Li-ion batteries. In this work, a number of different compositions of Li-rich materials and various electrochemical testing modes were investigated. The structure, chemical composition, and morphology of the materials synthesized were studied by XRD with Rietveld refinement, ICP-OES, and SEM. The particle size distributions were determined by a laser analyzer. The galvanostatic intermittent titration technique and galvanostatic cycling with different potential limits at various current densities were used to study the materials. The electrochemical study showed that gradual increase in the upper voltage limit (formation cycles) was needed to improve further cycling of the cathode materials under study. A comparison of the data obtained in different voltage ranges showed that a lower cut-off potential of 2.5 V (2.5-4.7 V range) was required for a good cyclability with a high discharge capacity. An increase in the low cut-off potential to 3.0 V (3.0-4.8 V voltage range) did not improve the electrochemical performance of the oxides and, on the contrary, considerably decreased the discharge capacity and increased the capacity fade. The LMR35 cathode material (Li1.149Ni0.184Mn0.482Co0.184O2) demonstrated the best functional properties among all the compositions studied.

14.
J Colloid Interface Sci ; 628(Pt B): 1031-1040, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36049279

RESUMO

Benefiting from the extra contribution of O redox, Co-free Li-rich layered oxides (LRNMO) can satisfy the requirement of high specific capacities. However, during the high-voltage charging process, lattice oxygen being oxidized to O- or O2 leads to a gradual transition of the structure from layered to spinel phase, capacity and voltage decline, hindering the practical application of LRNMO in the lithium-ion battery. Here, a surface modification strategy of Li1.2Ni0.32Mn0.48O2-δ doped with Ta5+ ions is proposed, in which the Ta5+ ions occupy the lithium sites of the lattice structure on the surface layer of LRNMO and form a Ta2O5 coating layer. The modified electrode exhibits excellent rate performance and cycling stability, with 94.9% and 85.5% capacity retention rate and voltage retention rate, respectively, after 200 cycles at 1C. Moreover, the initial coulomb efficiency and ionic conductivity of the modified electrode are also apparently enhanced. Simultaneously, the decreased Li/Ni mixing degree of the modified electrode reflects the improvement of the structural stability. Therefore, the modification strategy through strong metal-oxygen bonding to integrate the surface structure to regulate the oxygen activity provides a new direction for the design of high energy density Co-free Li-rich cathode materials.

15.
ChemSusChem ; 15(20): e202201061, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35880947

RESUMO

Li-rich layered oxides (LRLO) with specific energies beyond 900 Wh kg-1 are one promising class of high-energy cathode materials. Their high Mn-content allows reducing both costs and the environmental footprint. In this work, Co-free Li1.2 Mn0.6 Ni0.2 O2 was investigated. A simple water and acid treatment step followed by a thermal treatment was applied to the LRLO to reduce surface impurities and to establish an artificial cathode electrolyte interface. Samples treated at 300 °C show an improved cycling behavior with specific first cycle capacities of up to 272 mAh g-1 , whereas powders treated at 900 °C were electrochemically deactivated due to major structural changes of the active compounds. Surface sensitive analytical methods were used to characterize the structural and chemical changes compared to the bulk material. Online DEMS measurements were conducted to get a deeper understanding of the effect of the treatment strategy on O2 and CO2 evolution during electrochemical cycling.

16.
ACS Appl Mater Interfaces ; 14(10): 12264-12275, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35239325

RESUMO

Li-rich cathodes have potential for use in next-generation Li-ion batteries (LIBs) owing to their high specific capacity and low cost. However, their intrinsic cycling decay and voltage fading limit practical applications. In addition, these cathodes contain Co, which is nonrenewable, scarce, and expensive. This situation severely limits the rapid and sustainable development of low-cost LIBs. This paper introduces a novel dilute electrolyte to overcome these limitations based on the Co-free Li-rich Li1.2Mn0.54Ni0.26O2 (LMNO) cathode. An even and robust cathode-electrolyte interface (CEI) formed on the surface of LMNO further protects it from side reactions in the dilute electrolyte. This Co-free Li-rich cathode exhibits the best electrochemical performance reported to date among Li-rich cathodes in terms of outstanding cycling stability (capacity retention of 99.8% at 0.5 C) and dramatically suppressed voltage fading (only 0.3% after 100 cycles). This study demonstrates the potential of Co-free Li-rich cathodes for applications in next-generation LIBs.

17.
ACS Appl Mater Interfaces ; 13(33): 39480-39490, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34382789

RESUMO

Li-rich Mn-based layered oxide cathodes (LLOs) are considered to be the most promising cathode candidates for lithium-ion batteries owing to their high-voltage platform and ultrahigh specific capacity originating from anionic redox. However, anionic redox results in many problems including irreversible oxygen release, voltage hysteresis, and so on. Although many efforts have been made to regulate anionic redox, a fundamental issue, the effect of lithium vacancies on anionic redox, is still unclear. Herein, we synthesized a series of LLO materials with different lithium vacancy contents by controlling the amount of lithium salt. Specifically, lithium-vacancy-type LLOs Li1.11Ni0.18Co0.18Mn0.53O2 with a pompon morphology exhibit an ultrahigh specific capacity (293.9 mA h g-1 at 0.1 C), an outstanding long-term cycling stability (173.5 mA h g-1 after 300 cycles at 1 C), and an excellent rate performance (106 mA h g-1 at 10 C). It reveals that lithium vacancy is a key factor to enhance anionic redox activity and reversibility. Lithium vacancies exhibit different inductive effects on the structure of the surface and bulk. Abundant surface oxygen vacancies and a surface spinel phase layer induced by lithium vacancies suppress irreversible oxygen release, while the bulk phase transformation and cation disorder combined with sufficient lithium vacancies in the bulk stabilize structure and improve anionic redox kinetic. The findings offer a significant theoretical guidance for the practical application of LLO materials.

18.
Nano Lett ; 21(10): 4176-4184, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33988361

RESUMO

Though low-cost and environmentally friendly, Li-Mn-O cathodes suffer from low energy density. Although synthesized Li4Mn5O12-like overlithiated spinel cathode with reversible hybrid anion- and cation-redox (HACR) activities has a high initial capacity, it degrades rapidly due to oxygen loss and side-reaction-induced electrolyte decomposition. Herein, we develop a two-step heat treatment to promote local decomposition as Li4Mn5O12 → 2LiMn2O4 + Li2MnO3 + 1/2 O2↑, which releases near-surface reactive oxygen that is harmful to cycling stability. The produced nanocomposite delivers a high discharge capacity of 225 mAh/g and energy density of over 700 Wh/kg at active-material level at a current density of 100 mA/g between 1.8 to 4.7 V. Benefiting from suppressed oxygen loss and side reactions, 80% capacity retention is achieved after 214 cycles in half cells. With industrially acceptable electrolyte amount (6 g/Ah), full cells paired with Li4Ti5O12 anode have a good retention over 100 cycles.

19.
ACS Appl Mater Interfaces ; 13(15): 17639-17648, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33825459

RESUMO

Li-rich cathode materials possess a much higher theoretical energy density than all intercalated cathode materials currently reported and thus are considered as the most promising candidate for next-generation high-energy density Li-ion batteries. However, the rapid voltage decay and the irreversible phase transition of O3-type Li-rich cathode materials often lessen their actual energy density and limit their practical applications, and thus, effectively suppressing the voltage decay of Li-rich cathodes becomes the hotspot of the current research. Herein, the F-doped O2-type Li-rich cathode materials Li1.2Mn0.54Ni0.13Co0.13O2+δ-xFx (F-O2-LRO) are designed and prepared based on the P2-type sodium-ion cathode materials Na5/6Li1/4(Mn0.54Ni0.13Co0.13)3/4O2+δ (Na-LRO) by ion exchange. It has been found that the as-prepared F-O2-LRO exhibits excellent electrochemical performance, for example, a high discharge specific capacity of 280 mA h g-1 at 0.1 C with an initial Coulombic efficiency of 94.4%, which is obviously higher than the original LRO (77.2%). After 100 cycles, the F-O2-LRO cathode can still maintain a high capacity retention of 95% at a rate of 1 C, while the capacity retention of the original LRO is only 69.1% at the same current rate. Furthermore, the voltage difference (ΔV) of F-O2-LRO before and after cycling is only 0.268 V after 100 cycles at 1 C, which is less than that of the LRO cathode (0.681 V), indicating much lower polarization. Besides, even at a high current rate of 5 C, F-O2-LRO still displays a satisfactory discharge capacity of 210 mA h g-1 with a capacity retention of 90.1% after 100 cycles. Therefore, this work put forward a new strategy for the development and industrial application of Li-rich cathode materials in high-energy Li-ion batteries.

20.
Adv Mater ; 33(50): e2005937, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33772921

RESUMO

Li-rich cathode materials have attracted increasing attention because of their high reversible discharge capacity (>250 mA h g-1 ), which originates from transition metal (TM) ion redox reactions and unconventional oxygen anion redox reactions. However, many issues need to be addressed before their practical applications, such as their low kinetic properties and inefficient voltage fading. The development of cutting-edge technologies has led to cognitive advances in theory and offer potential solutions to these problems. Herein, a recent in-depth understanding of the mechanisms and the frontier electrochemical research progress of Li-rich cathodes are reviewed. In addition, recent advances associated with various strategies to promote the performance and the development of modification methods are discussed. In particular, excluding Li-rich Mn-based (LRM) cathodes, other branches of the Li-rich cathode materials are also summarized. The consistent pursuit is to obtain energy storage devices with high capacity, reliable practicability, and absolute safety. The recent literature and ongoing efforts in this area are also described, which will create more opportunities and new ideas for the future development of Li-rich cathode materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA