Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.589
Filtrar
1.
J Environ Sci (China) ; 149: 242-253, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181639

RESUMO

Poly(butylene succinate-co-furandicarboxylate) (PBSF) and poly(butylene adipate-co-furandicarboxylate) (PBAF) are novel furandicarboxylic acid-based biodegradable copolyesters with great potential to replace fossil-derived terephthalic acid-based copolyesters such as poly(butylene succinate-co-terephthalate) (PBST) and poly(butylene adipate-co-terephthalate) (PBAT). In this study, quantum chemistry techniques after molecular dynamics simulations are employed to investigate the degradation mechanism of PBSF and PBAF catalyzed by Candida antarctica lipase B (CALB). Computational analysis indicates that the catalytic reaction follows a four-step mechanism resembling the ping-pong bibi mechanism, with the initial two steps being acylation reactions and the subsequent two being hydrolysis reactions. Notably, the first step of the hydrolysis is identified as the rate-determining step. Moreover, by introducing single-point mutations to expand the substrate entrance tunnel, the catalytic distance of the first acylation step decreases. Additionally, energy barrier of the rate-determining step is decreased in the PBSF system by site-directed mutations on key residues increasing hydrophobicity of the enzyme's active site. This study unprecedently show the substrate binding pocket and hydrophobicity of the enzyme's active site have the potential to be engineered to enhance the degradation of copolyesters catalyzed by CALB.


Assuntos
Proteínas Fúngicas , Lipase , Poliésteres , Lipase/metabolismo , Lipase/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Poliésteres/química , Poliésteres/metabolismo , Biodegradação Ambiental , Simulação de Dinâmica Molecular , Hidrólise , Modelos Químicos
2.
Bioresour Technol ; : 131394, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39218365

RESUMO

Biodiesel serves as a crucial biofuel alternative to petroleum-based diesel fuels, achieved through enzymatic transesterification of oil substrates. This study aims to investigate stabilized lipase (LP) within calcium carbonate (CaCO3) microparticles as a catalyst for solvent-free transesterification in biodiesel synthesis. The specific hydrolysis activity of the in-situ immobilized LP was 66% of that of free LP. However, the specific transesterification activity of immobilized LP in the solvent-free phase for biodiesel production was 2.29 times higher than that of free LP. These results suggest that the interfacial activation of LP molecules is facilitated by the inorganic CaCO3 environment. The immobilized LP demonstrated higher biodiesel production levels with superior stability compared to free LP, particularly regarding methanol molar ratio and temperature. To the best of our knowledge, there are no previous reports on the in-situ immobilization of LP in a CaCO3 carrier without any crosslinker as an interfacial-activated biocatalyst for biodiesel production.

3.
J Biol Eng ; 18(1): 46, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223667

RESUMO

Effective enzyme stabilization through immobilization is essential for the functional usage of enzymatic reactions. We propose a new method for synthesizing elastic hydroxyapatite microgel (E-HAp-M) materials and immobilizing lipase using this mesoporous mineral via the ship-in-a-bottle-neck strategy. The physicochemical parameters of E-HAp-M were thoroughly studied, revealing that E-HAp-M provides efficient space for enzyme immobilization. As a model enzyme, lipase (LP) was entrapped and then cross-linked enzyme structure, preventing leaching from mesopores, resulting in highly active and stable LP/E-HAp-M composites. By comparing LP activity under different temperature and pH conditions, it was observed that the cross-linked LP exhibited improved thermal stability and pH resistance compared to the free enzyme. In addition, they demonstrated a 156% increase in catalytic activity compared with free LP in hydrolysis reactions at room temperature. The immobilized LP maintained 45% of its initial activity after 10 cycles of recycling and remained stable for over 160 days. This report presents the first demonstration of a stabilized cross-linked LP in E-HAp-M, suggesting its potential application in enzyme-catalyzed processes within biocatalysis technology.

4.
Iran J Biotechnol ; 22(2): e3797, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39220339

RESUMO

Background: The lipase enzyme (EC: 3.1.1.3) is one of the most important catalysts in food, dairy, detergent, and textile industries. Objective: This study was performed to identify, isolate and characterize of lipase producing bacterial strain from agrifood wastes and to identify and characterize of their lipase genes. Materials and Methods: In the present study, two lipase-producing isolates were identified from the effluent of Golbahar meat products and Soveyda vegetable oil factories using in silico and in vitro approaches. Results: The results of morphological, biochemical, and molecular characterizations showed that both lipase-producing isolates belong to the Bacillus amyloliquefaciens species. Phylogenetic analysis confirmed the results of phenotypic, biochemical, and molecular characterizations. The results showed differences between LipA and LipB in the Golbahar and Soveyda isolates. Three different amino acids (residues 14, 100, and 165) were observed in LipA and one different amino acid (residue 102) was detected in LipB extracellular lipases. The protein molecular weight of the two extracted lipases ranged from 20 to 25 kDa. The identified extracellular lipases also had different physicochemical features. The maximum lipase activity of the Golbahar and Soveyda isolates was observed at 45 °C and at the pH of 8, but the Golbahar isolates exhibited higher lipase activity compared to the Soveyda isolates. The Golbahar and Soveyda isolates exhibited different activities in the presence of some ions, inhibitors, denaturing agents, and organic solvents and the Golbahar isolates showed better lipase activity than the Soveyda isolates. Conclusions: In this study, two extracellular lipase-producing isolates of B. amyloliquefaciens were identified from different food industries, and their characteristics were investigated. The results of various investigations showed that the lipases produced by the Golbahar isolate have better characteristics than the lipases of the Soveyda isolate. The Golbahar lipases have a suitable temperature and pH activity range and maintain their activity in the presence of some ions, inhibitors, denaturing agents, and organic solvents. After further investigation, the Golbahar isolate lipase can be used in various industries. In addition, this lipase can be used enzyme engineering processes and its activity can be arbitrarily changed by targeted mutations. The results of this study can increase our knowledge of extracellular lipases and may turn out to have industrial applications.

5.
PeerJ ; 12: e17914, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39221269

RESUMO

Background: Sapota, Manilkara zapota L., are tasty, juicy, and nutrient-rich fruits, and likewise used for several medicinal uses. Methods: The current study represents an integrated metabolites profiling of sapota fruits pulp via GC/MS and UPLC/MS, alongside assessment of antioxidant capacity, pancreatic lipase (PL), and α-glucosidase enzymes inhibitory effects. Results: GC/MS analysis of silylated primary polar metabolites led to the identification of 68 compounds belonging to sugars (74%), sugar acids (18.27%), and sugar alcohols (7%) mediating the fruit sweetness. Headspace SPME-GC/MS analysis led to the detection of 17 volatile compounds belonging to nitrogenous compounds (72%), ethers (7.8%), terpenes (7.6%), and aldehydes (5.8%). Non-polar metabolites profiling by HR-UPLC/MS/MS-based Global Natural Products Social (GNPS) molecular networking led to the assignment of 31 peaks, with several novel sphingolipids and fatty acyl amides reported for the first time. Total phenolic content was estimated at 6.79 ± 0.12 mg gallic acid equivalent/gram extract (GAE/g extract), but no flavonoids were detected. The antioxidant capacities of fruit were at 1.62 ± 0.2, 1.49 ± 0.11, and 3.58 ± 0.14 mg Trolox equivalent/gram extract (TE/g extract) via DPPH, ABTS, and FRAP assays, respectively. In vitro enzyme inhibition assays revealed a considerable pancreatic lipase inhibition effect (IC50 = 2.2 ± 0.25 mg/mL), whereas no inhibitory effect towards α-glucosidase enzyme was detected. This study provides better insight into sapota fruit's flavor, nutritional, and secondary metabolites composition mediating for its sensory and health attributes.


Assuntos
Antioxidantes , Frutas , Lipase , Lipase/antagonistas & inibidores , Lipase/metabolismo , Frutas/química , Frutas/metabolismo , Antioxidantes/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , alfa-Glucosidases/metabolismo , Espectrometria de Massas em Tandem/métodos
6.
J Enzyme Inhib Med Chem ; 39(1): 2398561, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39223707

RESUMO

Obesity is acknowledged as a significant risk factor for various metabolic diseases, and the inhibition of human pancreatic lipase (hPL) can impede lipid digestion and absorption, thereby offering potential benefits for obesity treatment. Anthraquinones is a kind of natural and synthetic compounds with wide application. In this study, the inhibitory effects of 31 anthraquinones on hPL were evaluated. The data shows that AQ7, AQ26, and AQ27 demonstrated significant inhibitory activity against hPL, and exhibited selectivity towards other known serine hydrolases. Then the structure-activity relationship between anthraquinones and hPL was further analysed. AQ7 was found to be a mixed inhibition of hPL through inhibition kinetics, while AQ26 and AQ27 were effective non-competitive inhibition of hPL. Molecular docking data revealed that AQ7, AQ26, and AQ27 all could associate with the site of hPL. Developing hPL inhibitors for obesity prevention and treatment could be simplified with this novel and promising lead compound.


Assuntos
Antraquinonas , Relação Dose-Resposta a Droga , Descoberta de Drogas , Inibidores Enzimáticos , Lipase , Pâncreas , Relação Estrutura-Atividade , Antraquinonas/farmacologia , Antraquinonas/química , Antraquinonas/síntese química , Lipase/antagonistas & inibidores , Lipase/metabolismo , Humanos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Estrutura Molecular , Pâncreas/enzimologia , Simulação de Acoplamento Molecular , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/síntese química
7.
Bioresour Technol ; : 131368, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39209228

RESUMO

Partial acylglycerols are valued for their emulsifying and stabilizing properties, yet precise green synthesis remains challenging due to low yield and selectivity. This study aimed to elucidate the "lipase selectivity-substrate structure-product composition" relationship to enhance the yield of targeted partial acylglycerol. The results showed that lipase exhibited a greater selectivity towards fatty acids with shorter chain lengths and higher unsaturation. Hydroxyl donors also affected the esterification process, with the enzyme-acyl complex exhibiting selectivity towards hydroxyl donors as follows: glycerol > monoacylglycerol > diacylglycerol. Substrate ratio significantly influenced enzymatic reactions; a 10:1 ratio favored triacylglycerol formation (>80 %), while a 1:1 ratio produced > 90 % partial acylglycerols. Molecular docking simulations revealed that substrates primarily interacted with lipase through hydrogen bonding and hydrophobic interactions. A comprehensive understanding of lipase selectivity patterns could facilitate the design of more efficient reaction systems, enabling the conversion of basic lipid resources into desired high value-added products.

8.
Int J Biol Macromol ; : 135211, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39216567

RESUMO

Immobilization of enzymes on suitable supports is a critical approach for enhancing enzyme stability, reusability, and overall catalytic efficiency. This study explores the immobilization of Candida rugosa lipase on zirconium-based 2-methylimidazole (ZrMI) nanoparticles, aiming to develop a stable and reusable biocatalyst. The ZrMI was produced via a solvothermal technique and analyzed using various characterization methods. Candida rugose lipase was immobilized using cross-linking agents, achieving an 87 % immobilization efficiency. The immobilized enzyme exhibited significantly enhanced thermal stability, broader pH tolerance, and increased catalytic efficiency compared to free C. rugose lipase. The ZrMI@lipase retained 69 % of its enzymatic activity following a 60-day storage period at 4 °C. Notably, it displayed significant reusability, maintaining 65 % of its original activity after undergoing 15 catalytic cycles. Examination of the kinetics revealed that the immobilized enzyme possessed a heightened substrate affinity (Km of 4.1 mM) and maximal reaction rate (Vmax of 85.7 µmol/mL/min) in comparison to the free enzyme (Km of 5.4 mM and Vmax of 69 µmol/mL/min), indicating enhanced catalytic efficiency. Validation through zeta potential and hydrodynamic size assessments verified the successful binding of the enzyme and the consistent colloidal characteristics. These results suggest that ZrMI is a promising support for C. rugose lipase immobilization, offering improved stability and reusability for various industrial applications. The study highlights the potential of ZrMI@lipase as an efficient and durable biocatalyst, contributing to advancements in enzyme immobilization technology and sustainable industrial processes.

9.
Biomolecules ; 14(8)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39199285

RESUMO

This study aimed to explore the capacity of immobilized lipases on the acetylation of six aglycon flavonoids, namely myricetin, quercetin, luteolin, naringenin, fisetin and morin. For this purpose, lipase B from Candida antarctica (CaLB) and lipase from Thermomyces lanuginosus (TLL) were immobilized onto the surface of ZnOFe nanoparticles derived from an aqueous olive leaf extract. Various factors affecting the conversion of substrates and the formation of monoesterified and diesterified products, such as the amount of biocatalyst and the molar ratio of the substrates and reaction solvents were investigated. Both CaLB and TLL-ZnOFe achieved 100% conversion yield of naringenin to naringenin acetate after 72 h of reaction time, while TLL-ZnOFe achieved higher conversion yields of quercetin, morin and fisetin (73, 85 and 72% respectively). Notably, CaLB-ZnOFe displayed significantly lower conversion yields for morin compared with TLL-ZnOFe. Molecular docking analysis was used to elucidate this discrepancy, and it was revealed that the position of the hydroxyl groups of the B ring on morin introduced hindrances on the active site of CaLB. Finally, selected flavonoid esters showed significantly higher antimicrobial activity compared with the original compound. This work indicated that these lipase-based nanobiocatalysts can be successfully applied to produce lipophilic derivatives of aglycon flavonoids with improved antimicrobial activity.


Assuntos
Enzimas Imobilizadas , Flavonoides , Proteínas Fúngicas , Lipase , Simulação de Acoplamento Molecular , Flavonoides/química , Flavonoides/metabolismo , Lipase/metabolismo , Lipase/química , Enzimas Imobilizadas/metabolismo , Enzimas Imobilizadas/química , Acetilação , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Biocatálise , Eurotiales/enzimologia
10.
Int J Mol Sci ; 25(16)2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39201333

RESUMO

Lysosomal acid lipase deficiency (LALD) varies from a severe infantile-onset form (Wolman disease) to a late-onset form known as cholesteryl ester storage disease (CESD), both of which are autosomal recessive disorders caused by biallelic LIPA pathogenic variants. We evaluated seventy-three patients enlisted for liver transplant (LT) at Instituto da Criança (HCFMUSP-Brazil) who were subjected to LAL activity measurement and LIPA Sanger sequencing analysis, resulting in a positive LALD diagnosis for only one of these individuals. This LALD patient presented recurrent diarrhea, failure to thrive, hepatomegaly, and dyslipidemia at the age of 4 months and liver failure by the age of 13 years. The LALD diagnosis confirmation was conducted at 24 years old due to low levels of LAL enzyme activity. The causal homozygous variant LIPA(NM_000235.4):c.266T>C(p.Leu89Pro) was identified, but the patient had already undergone his first LT at 18 years with several rejection episodes. Despite beginning treatment with sebelipase alfa at 26 years old (total of five infusions), this patient died at 28 years from complications after his second liver transplant. LALD is an important differential diagnosis in cases presenting with hepatomegaly, elevated liver enzymes, and dyslipidemia. Detecting low/absent LAL activity and identifying the LIPA causal variant are essential for diagnosis and specific treatment, as well as for appropriate genetic counseling. Early diagnosis, along with sebelipase alfa therapy, may improve the prognosis of affected patients.


Assuntos
Transplante de Fígado , Esterol Esterase , Doença de Wolman , Humanos , Doença de Wolman/genética , Doença de Wolman/diagnóstico , Masculino , Esterol Esterase/genética , Esterol Esterase/deficiência , Feminino , Adolescente , Lactente , Adulto , Pré-Escolar , Criança , Adulto Jovem
11.
Enzyme Microb Technol ; 180: 110497, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39154569

RESUMO

Substrate specificity in non-aqueous esterification catalyzed by commercial lipases activated by hydration-aggregation pretreatment was investigated. Four microbial lipases from Rhizopus japonicus, Burkholderia cepacia, Rhizomucor miehei, and Candida antarctica (fraction B) were used to study the effect of the carbon chain length of saturated fatty acid substrates on the esterification activity with methanol in n-hexane. Hydration-aggregation pretreatment had an activation effect on all lipases used, and different chain length dependencies of esterification activity for lipases from different origins were demonstrated. The effects of various acidic substrates with different degrees of unsaturation, aromatic rings, and alcohol substrates with different carbon chain lengths on esterification activity were examined using R. japonicus lipase, which demonstrated the most remarkable activity enhancement after hydration-aggregation pretreatment. Furthermore, in the esterification of myristic acid with methanol catalyzed by the hydrated-aggregated R. japonicus lipase, maximum reaction rate (5.43 × 10-5 mmol/(mg-biocat min)) and Michaelis constants for each substrate (48.5 mM for myristic acid, 24.7 mM for methanol) were determined by kinetic analysis based on the two-substrate Michaelis-Menten model.

12.
Chemistry ; : e202402687, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158121

RESUMO

Generally, an esterase lipase enzyme can hydrolyze specific substrates called esters in an aqueous solution. Herein, we investigate how a G-quadruplex self-assembly affects the hydrolysis equilibrium in reverse. The biocatalyst, lipase, activates the individual building-blocks through fuel consumption, causing them to undergo a higher degree of self-organization into nanofibers within spheres. We have synthesized five peptide-lipid-conjugated guanine base functionalized molecules to explore how the equilibrium can be shifted through reverse hydrolysis. Among these, NAC5 self-assembled into a G-quadruplex structure which has been confirmed by various spectroscopic techniques. The wide-angle powder XRD, ThT dye binding assay and circular dichroism study is carried out to support the presence of the G-quadruplex structure. The biocatalytic formation of nanofibers enclosed spheres is analyzed using CLSM, FE-SEM and HR-TEM experiments. Additionally, we assess the biocompatibility of the enzyme fueled dissipative self-assembled fibers enclosed spheres, as they have potential applications as a biomaterial in protocells. MTT assay is performed to check the cytotoxicity of G-quadruplex hydrogel, using HEK 293 and McCoy cell lines for viability assessment. Finally, the utility of the novel NAC5 hydrogel as a wound repairing biomaterial is demonstrated by cell migration experiment in a scratch assay.

13.
BMC Biol ; 22(1): 171, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39135168

RESUMO

BACKGROUND: Free fatty acids (FFAs) play vital roles as energy sources and substrates in organisms; however, the molecular mechanism regulating the homeostasis of FFA levels in various circumstances, such as feeding and nonfeeding stages, is not fully clarified. Holometabolous insects digest dietary triglycerides (TAGs) during larval feeding stages and degrade stored TAGs in the fat body during metamorphosis after feeding cessation, which presents a suitable model for this study. RESULTS: This study reported that two lipases are differentially regulated by hormones to maintain the homeostasis of FFA levels during the feeding and nonfeeding stages using the lepidopteran insect cotton bollworm Helicoverpa armigera as a model. Lipase member H-A-like (Lha-like), related to human pancreatic lipase (PTL), was abundantly expressed in the midgut during the feeding stage, while the monoacylglycerol lipase ABHD12-like (Abhd12-like), related to human monoacylglycerol lipase (MGL), was abundantly expressed in the fat body during the nonfeeding stage. Lha-like was upregulated by juvenile hormone (JH) via the JH intracellular receptor methoprene-tolerant 1 (MET1), and Abhd12-like was upregulated by 20-hydroxyecdysone (20E) via forkhead box O (FOXO) transcription factor. Knockdown of Lha-like decreased FFA levels in the hemolymph and reduced TAG levels in the fat body. Moreover, lipid droplets (LDs) were small, the brain morphology was abnormal, the size of the brain was small, and the larvae showed the phenotype of delayed pupation, small pupae, and delayed tissue remodeling. Knockdown of Abhd12-like decreased FFA levels in the hemolymph; however, TAG levels increased in the fat body, and LDs remained large. The development of the brain was arrested at the larval stage, and the larvae showed a delayed pupation phenotype and delayed tissue remodeling. CONCLUSIONS: The differential regulation of lipases expression by different hormones determines FFAs homeostasis and different TAG levels in the fat body during the feeding larval growth and nonfeeding stages of metamorphosis in the insect. The homeostasis of FFAs supports insect growth, brain development, and metamorphosis.


Assuntos
Encéfalo , Ácidos Graxos não Esterificados , Homeostase , Animais , Encéfalo/metabolismo , Encéfalo/crescimento & desenvolvimento , Ácidos Graxos não Esterificados/metabolismo , Lipase/metabolismo , Lipase/genética , Mariposas/crescimento & desenvolvimento , Mariposas/fisiologia , Mariposas/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Hormônios Juvenis/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Metamorfose Biológica/fisiologia , Ecdisterona/metabolismo
14.
Clin Cosmet Investig Dermatol ; 17: 1815-1822, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139846

RESUMO

Introduction: Epidermoid cysts (E.C.s), also known as sebaceous cysts, are benign asymptomatic subepidermal nodules filled with keratin material. These cysts originate from the follicular infundibulum, which when obstructed by keratin, results in cyst formation. Conventionally, E.C.s have been managed surgically with a high success rate and minimal complications. In this report, we present the successful resolution of an E.C. using a minimally invasive technique involving the intralesional injection of recombinant hydrolytic enzymes like hyaluronidase, collagenase, and lipase. Case Presentation: A 44-year-old woman with no significant medical history presented to the clinic with a mass on her right cheek that had been evolving for over 10 years. Skin and soft tissue ultrasound confirmed the presence of an E.C. of 9.3×6.6 × 9.3 mm. Owing to the size and location of the cyst, a decision was made to infiltrate the lesion with recombinant enzymes. Remarkably, significant clinical improvement was observed on Day 21, and complete dissolution of the E.C. occurred 40 days after the initial intervention. Importantly, no recurrences were observed during the 4-year follow-up period. Conclusion: Intralesional administration of hydrolytic enzymes represents an innovative technique in the management of E.C.s. However, further controlled studies are required to determine the efficacy and safety of this procedure.

15.
Food Res Int ; 193: 114860, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39160055

RESUMO

Grape seed proanthocyanidin (GSP), as a natural antioxidant, has great potential to be developed into a lipid-lowering agent, but its low lipophilicity and stability greatly limit its application. In this study, an enzymatic esterification strategy was developed to introduce fatty acid chains into GSP, resulting in the successful synthesis of a series of new GSP derivatives. The results showed that up to 85% conversion of GSP and 35% TAG inhibition rate of GSP derivatives were achieved. The structures of GSP derivatives were identified by UPLC-MS/MS, and seven derivatives were confirmed as catechin-3'-O-laurate, epicatechin-3'-O-laurate, epicatechin gallate-3″,5″-di-O-laurate, epicatechin gallate-3',3″,5″-tri-O-laurate, procyanidin B1-3',3″-di-O-laurate, procyanidin B2-3',3″-di-O-laurate and procyanidin C1-3',3″,3‴-tri-O-laurate by NMR. GSP derivatives exhibited higher inhibitory effects on lipid accumulation, intracellular TAG and TC than parent GSP. These results indicate that GSP derivatives have potential as lipid-lowering agents for utilization in the food industry.


Assuntos
Catequina , Extrato de Sementes de Uva , Proantocianidinas , Proantocianidinas/farmacologia , Proantocianidinas/química , Extrato de Sementes de Uva/farmacologia , Extrato de Sementes de Uva/química , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/química , Hipolipemiantes/farmacologia , Hipolipemiantes/química , Esterificação , Espectrometria de Massas em Tandem , Biflavonoides/farmacologia , Biflavonoides/química , Antioxidantes/farmacologia , Antioxidantes/química , Triglicerídeos , Humanos
16.
Bioorg Med Chem ; 111: 117844, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39106652

RESUMO

Monoacylglycerol lipase (MAGL) is a key enzyme responsible for the metabolism of the endocannabinoid 2-arachidonoylglycerol (2-AG), and has attracted great interest due to its involvement in various physiological and pathological processes, such as cancer progression. In the past, a number of covalent irreversible inhibitors have been reported for MAGL, however, experimental evidence highlighted some drawbacks associated with the use of these irreversible agents. Therefore, efforts were mainly focused on the development of reversible MAGL inhibitor in recent years. Here, we designed and synthesized a series of naphthyl amide derivatives (12-39) as another type of reversible MAGL inhibitors, exemplified by ± 34, which displayed good MAGL inhibition with a pIC50 of 7.1, and the potency and selectivity against endogenous MAGL were further demonstrated by competitive ABPP. Moreover, the compound showed appreciable antiproliferative activities against several cancer cells, including H460, HT29, CT-26, Huh7 and HCCLM-3. The investigations culminated in the discovery of the naphthyl amide derivative ± 34, and it may represent as a new scaffold for MAGL inhibitor development, particularly for the reversible ones.


Assuntos
Amidas , Antineoplásicos , Proliferação de Células , Desenho de Fármacos , Inibidores Enzimáticos , Monoacilglicerol Lipases , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo , Humanos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Amidas/química , Amidas/farmacologia , Amidas/síntese química , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Naftalenos/farmacologia , Naftalenos/síntese química , Naftalenos/química , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular
17.
Food Res Int ; 192: 114833, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147522

RESUMO

This study examined the suppressive effects of 16 selected plant-based foods on α-glucosidase and pancreatic lipase and their antioxidant properties. Among these, the bark of Cinnamomum cassia (Cinnamon, WLN-FM 15) showed the highest inhibitory activity against α-glucosidase and the highest antioxidant activity. Additionally, WLN-FM 15 showed promising results in the other tests. To further identify the bioactive constituents of WLN-FM 15, a multi-bioactivity-labeled molecular networking approach was used through a combination of GNPS-based molecular networking, DPPH-HPLC, and affinity-based ultrafiltration-HPLC. A total of nine procyanidins were identified as antioxidants and inhibitors of α-glucosidase and pancreatic lipase in WLN-FM 15. Subsequently, procyanidins A1, A2, B1, and C1 were isolated, and their efficacy was confirmed through functional assays. In summary, WLN-FM 15 has the potential to serve as a functional food ingredient with the procyanidins as its bioactive constituents. These results also suggest that the multi-bioactivity-labeled molecular networking approach is reliable for identifying bioactive constituents in plant-based foods.


Assuntos
Antioxidantes , Biflavonoides , Catequina , Cinnamomum aromaticum , Inibidores de Glicosídeo Hidrolases , Lipase , Casca de Planta , Proantocianidinas , Proantocianidinas/farmacologia , Proantocianidinas/química , Proantocianidinas/análise , Lipase/antagonistas & inibidores , Lipase/metabolismo , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/análise , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Casca de Planta/química , Cinnamomum aromaticum/química , Biflavonoides/farmacologia , Biflavonoides/análise , Biflavonoides/química , Catequina/análise , Catequina/química , Catequina/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Cromatografia Líquida de Alta Pressão , Pâncreas/enzimologia , alfa-Glucosidases/metabolismo , Farmacologia em Rede , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
18.
3 Biotech ; 14(9): 207, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39184912

RESUMO

The present study examines the use of waste cooking oil (WCO) as a substrate for medium-chain-length polyhydroxyalkanoates (mcl-PHA) production by Pseudomonas rhizophila S211. The genome analysis revealed that the S211 strain has a mcl-PHA cluster (phaC1ZC2DFI) encoding two class II PHA synthases (PhaC1 and PhaC2) separated by a PHA depolymerase (PhaZ), a transcriptional activator (PhaD) and two phasin-like proteins (PhaFI). Genomic annotation also identified a gene encoding family I.3 lipase that was able to hydrolyze plant oils and generate fatty acids as favorable carbon sources for cell growth and PHA synthesis via ß-oxidation pathway. Using a three-variable Doehlert experimental design, the optimum conditions for mcl-PHA accumulation were achieved in 10% of WCO-based medium with an inoculum size of 10% and an incubation period of 48 h at 30 °C. The experimental yield of PHA from WCO was 1.8 g/L close to the predicted yield of 1.68 ± 0.14 g/L. Moreover, 1H nuclear magnetic resonance spectroscopy analysis confirmed the extracted mcl-PHA. Overall, this study describes P. rhizophila as a cell factory for biosynthesis of biodegradable plastics and proposes green and efficient approach to cooking oil waste management by decreasing the cost of mcl-PHA production, which can help reduce the dependence on petroleum-based plastics.

19.
J Pharm Biomed Anal ; 251: 116430, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39197203

RESUMO

Enzyme immobilization by metal organic frameworks (MOFs) is an efficient way for screening active constituents in natural products. However, the enzyme's biocatalysis activity is usually decreased due to unfavorable conformational changes during the immobilization process. In this study, sodium cholate was firstly used as the modifier for zeolitic imidazolate framework-8 (ZIF-8) immobilized lipase to increase both the stability and activity. More importantly, with the help of solubilization of sodium cholate, a total of 3 flavonoids and 6 alkaloids candidate compounds were fished out. Their structures were identified and the enzyme inhibitory activities were verified. In addition, the binding information between the candidate compound and the enzyme was displayed by molecular docking. This study provides valuable information for the improvement of immobilized enzyme activity and functional active ingredients in complicated medicinal plant extracts.

20.
Int J Biol Macromol ; 279(Pt 1): 135107, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39197610

RESUMO

A hyperstable lipase from Thermotoga naphthophila (TnLip) was cloned and overexpressed as a soluble and active monomeric protein in an effectual mesophilic host system. Sequence study revealed that TnLip is a peptidase S9 prolyl oligopeptidase domain (acetyl esterase/lipase-like protein), belongs to alpha/beta (α/ß)-hydrolase superfamily containing a well-conserved α/ß-hydrolase fold and penta-peptide (GLSAG) motif. Various cultivation and induction strategies were applied to improve the heterologous expression and bacterial biomass, but TnLip intracellular activity was enhanced by 14.25- fold with IPTG-independent auto-induction approach after 16 h (26 °C, 150 rev min-1) incubation. Purified TnLip (35 kDa) showed peak activity at 85 °C in McIlvaine buffer (pH 7.0-8.0), and has great stability over a broad range of pH (5.0-10.0), and temperature (40-85 °C) for 8 h. TnLip exhibited prodigious resistance toward various commercial detergents, chemical additives, and salt. TnLip activity was improved by 170.51 %, 130.67 %, 127.42 %, 126.54 %, 126.61 %, 120.32 %, and 116.31 % with 50 % (v/v) of methanol, ethanol, n-butanol, isopropanol, acetone, glycerol, and acetic acid, respectively. Moreover, with 3.0 M of NaCl, and 10 mM of Ca2+, Mn2+, and Mg2+ TnLip activity was augmented by 210 %, 185.64 %, 152.03 %, and 116.26 %, respectively. TnLip has an affinity with various substrates (p-nitrophenyl ester and natural oils) but maximal hydrolytic activity was perceived with p-nitrophenyl palmitate (pNPP, 3600 U mg-1) and olive oil (1182.05 U mg-1). The values of Km (0.576 mM), Vmax (4216 µmol mg-1 min-1), VmaxKm-1 (7319.44 min-1), kcat (1106.74 s-1), and kcatKm-1 (1921.42 mM-1 s-1) were calculated using pNPP substrate. Additionally, TnLip degraded animals' fats and removed oil stains within 3 h and 5 min, respectively. All these features make halo-alkali-thermophilic TnLip as an auspicious contender for laundry detergents (cleaning bio-additive), fat degradation, wastewater treatment and endorse eco-friendly stewardship along with various other biotechnological applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA