Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.867
Filtrar
1.
Chemosphere ; 364: 143027, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39137867

RESUMO

Membrane filtration is a mainstream method for landfill leachate treatment, leaving the landfill leachate membrane concentrates (LLMCs) a high-toxicity residue. Conventional LLMCs disposal technology shows specific challenges due to the low biodegradability, high inorganic salts, and high heavy metal ions content of LLMCs. Therefore, it is necessary to degrade LLMCs with a more suitable technology. In this study, a special method was proposed to convert some organic chemicals into valuable compounds by aqueous phase reforming (APR). Ni-based catalysts (Ni//La2O3, Ni/CeO2, Ni/MgO, and Ni/Al2O3) were prepared to investigate the effect of different supports on the APR of LLMCs. APR performed outstanding characteristics in the decrease of chemical oxygen demand (COD) and total organic carbon (TOC), the degradation of macromolecules, and the removal of heavy metal ions in the aqueous phase. In addition, H2 was generated which is beneficial for energy compensating during the APR process. The best-performing catalyst (Ni/Al2O3) was selected to investigate the effects of reaction temperature, reaction time, and catalyst addition on product distribution. The optimal H2 selectivity (44.71%) and H2 production (11.63 mmol/g COD) were obtained at 250 °C with 2 g Ni/Al2O3 usage for 1 h. This paper provided a new perspective on the disposal of LLMCs, which will degrade pollutants efficiently.

2.
Natl Sci Rev ; 11(9): nwae254, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39184135

RESUMO

Ni-rich LiNi x Co y Mn z O2 (NCMxyz, x + y + z = 1, x ≥ 0.8) layered oxide materials are considered the main cathode materials for high-energy-density Li-ion batteries. However, the endless cracking of polycrystalline NCM materials caused by stress accelerates the loss of active materials and electrolyte decomposition, limiting the cycle life. Hence, understanding the chemo-mechanical evolution during (de)lithiation of NCM materials is crucial to performance improvement. In this work, an optical fiber with µÎµ resolution is designed to in operando detect the stress evolution of a polycrystalline LiNi0.8Co0.1Mn0.1O2 (P-NCM811) cathode during cycling. By integrating the sensor inside the cathode, the stress variation of P-NCM811 is completely transferred to the optical fiber. We find that the anisotropy of primary particles leads to the appearance of structural stress, inducing the formation of microcracks in polycrystalline particles, which is the main reason for capacity decay. The isotropy of primary particles reduces the structural stress of polycrystalline particles, eliminating the generation of microcracks. Accordingly, the P-NCM811 with an ordered arrangement structure delivered high electrochemical performance with capacity retention of 82% over 500 cycles. This work provides a brand-new perspective with regard to understanding the operando chemo-mechanical evolution of NCM materials during battery operation, and guides the design of electrode materials for rechargeable batteries.

3.
Angew Chem Int Ed Engl ; : e202413348, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39185626

RESUMO

Inevitable leaching and corrosion under anodic oxidative environment greatly restrict the lifespan of most catalysts with excellent primitive activity for oxygen production. Here, based on Fick' s Law, we present a surface cladding strategy to mitigate Ni dissolution and stabilize lattice oxygen triggering by directional flow of interfacial electrons and strong electronic interactions via constructing elaborately cladding-type NiO/NiS heterostructure with controlled surface thickness. Multiple in-situ characterization technologies indicated that this strategy can effectively prevent the irreversible Ni ions leaching and inhibit lattice oxygen from participating in anodic reaction. Combined with density functional theory calculations, we reveal that the stable interfacial O-Ni-S arrangement can facilitate the accumulation of electrons on surficial NiO side and weaken its Ni-O covalency. This would suppress the overoxidation of Ni and simultaneously fixing the lattice oxygen, thus enabling catalysts with boosted corrosion resistance without sacrificing its activity. Consequently, this cladding-type NiO/NiS heterostructure exhibits excellent performance with a low overpotential of 256 mV after 500 h. Based on Fick's law, this work demonstrates the positive effect of surface modification through precisely adjusting of the oxygen-sulfur exchange process, which has paved an innovative and effective way to solve the instability problem of anodic oxidation.

4.
ChemSusChem ; : e202400823, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39172755

RESUMO

Lithium-ion batteries have gained widespread use in various applications, including portable devices, electric vehicles, and energy storage systems. High Ni cathode, LiNixCoyMnzO2 (NCM, x ≥ 0.8, x + y + z = 1), have garnered significant attention owing to their high energy density. However, the limited lithium-ion transfer rate and transition metal cross-talk to anode pose obstacles to further improvement of electrochemical performance. To tackle these challenges, metal-organic frameworks (MOFs) with chelating agents are employed as additive materials for electrode. MOFs with chelating agents offer three key attributes: (1) Effective mitigation of transition metal cross-talk to the anode, (2) Partial desolvation of Li+ ions through MOF pores, and (3) Immobilization of anions via metal sites in the MOF. Leveraging these advantages, the chelating MOF-modified NCM cathode demonstrates reduced charge transfer resistance, both in their pristine and cycled states. In addition, they exhibit significantly improved lithium-ion diffusion coefficients after 100 cycles. These findings underscore the potential of MOFs with chelating agents as promising additive materials for enhancing the performance of LIBs.

5.
Artigo em Inglês | MEDLINE | ID: mdl-39189119

RESUMO

Long-wavelength near-infrared (LWNIR) imaging technology has exciting application potential across various fields due to its ability of deeper penetration and unique properties related to its emission wavelength, when compared to short-wavelength near-infrared imaging. However, the limited availability of materials for LWNIR light sources, due to the lack of suitable host materials that constitute luminescence centers, has been a major challenge and technical obstacle in realizing such applications. Here, we developed MgIn2O4:Ni2+ phosphors with an antispinel structure and LWNIR luminescence properties through a sol-gel combustion method. Under excitation at 365 nm, its emission wavelength covers the range of 1000-2000 nm, with a peak emission at approximately 1520 nm, a full width at half-maximum of ∼340 nm, and an optimized photoluminescence quantum yield of ∼21.22%, when an optimal Ni2+ doping content of 1 mol % was used. Studies on the crystal structure of MgIn2O4 have shown that Ni2+ ions preferentially replace the lattice position occupied by Mg2+ ions in the [MgO6] octahedrons, which provides a crystal field microenvironment of weak strength to the Ni2+ luminescence centers and promotes their LWNIR emission with a large Stokes shift. A LWNIR pc-LED device was assembled using the optimized MgIn2O4:Ni2+ phosphor and a near-ultraviolet LED chip (@ 365 nm), and its potential applications, including NIR night vision imaging, nonvisual detection, and anticounterfeiting displays, were demonstrated. Our results show that the antispinel MgIn2O4:Ni2+ phosphor prepared by the sol-gel combustion method is a promising LWNIR luminescence material.

6.
Adv Sci (Weinh) ; : e2403752, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39159050

RESUMO

Herein, a heterogeneous structure of Ni-Mo catalyst comprising Ni4Mo nanoalloys decorated on a MoOx matrix via electrodeposition is introduced. This catalyst exhibits remarkable hydrogen evolution reaction (HER) activity across a range of pH conditions. The heterogeneous Ni-Mo catalyst showed low overpotentials only of 24 and 86, 21 and 60, and 37 and 168 mV to produce a current density of 10 and 100 mA cm-2 (η10 and η100) in alkaline, acidic, and neutral media, respectively, which represents one of the most active catalysts for the HER. The enhanced activity is attributed to the hydrogen spillover effect, where hydrogen atoms migrate between the Ni4Mo alloys and the MoOx matrix, forming hydrogen molybdenum bronze as additional active sites. Additionally, the Ni4Mo facilitated the water dissociation process, which helps the Volmer step in the alkaline/neutral HER. Through electrochemical analysis, in situ Raman spectroscopy, and density functional theory calculations, the fast HER mechanism is elucidated.

7.
J Colloid Interface Sci ; 677(Pt B): 597-607, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39154451

RESUMO

Methanol oxidation reaction (MOR) and urea oxidation reaction (UOR) can be utilized as effective alternatives to the anodic oxygen evolution reaction (OER) in overall water-splitting. Nevertheless, the development of cost-effective, highly efficient and durable electrocatalysts for MOR and UOR remains a significant challenge. Herein, the Ohmic junction (Ni-CuCoN0.6@CC) comprising CuCoN0.6 nanosheets and Ni nanoparticles anchored on carbon cloth (CC) was successfully synthesized via a two-step hydrothermal process followed by pyrolysis. The Ni-CuCoN0.6@CC demonstrates exceptional performance in both MOR (1.334 V@10 mA cm-2) and UOR (1.335 V@10 mA cm-2), coupled with outstanding durability, maintaining 88.70 % current density for MOR and 88.92 % for UOR after a rigorous 50-h stability test. Furthermore, the Ni-CuCoN0.6@CC demonstrates a high selectivity for oxidizing methanol to formic acid, achieving Faraday efficiencies exceeding 90 % at various current densities in the context of MOR. The outstanding performance of Ni-CuCoN0.6@CC in terms of MOR and UOR either surpasses or closely approaches the levels reported in previous literature, primarily due to the synergistic effect resulting from the Ohmic junction: in this system, Ni serves as the principal active component, Co augments catalytic activity and diminishes onset potential, while Cu enhances long-term durability. Moreover, CuCoN0.6 nanosheets effectively modulate electronic structure and optimize the morphology of Ni, leading to the exposure of numerous defects that provide a wealth of active sites for the reaction. Additionally, the exceptional hydrophilic and aerophobic surface promotes enhanced mass transfer. Density functional theory (DFT) calculations show that Ni-CuCoN0.6@CC enhances reactant adsorption and product desorption, reducing energy barriers and expediting MOR and UOR kinetics.

8.
Artigo em Inglês | MEDLINE | ID: mdl-39158412

RESUMO

Stabilizing the crystalline structure and surface chemistry of Ni-rich layered oxides is critical for enhancing their capacity output and cycle life at a high cutoff voltage. Herein, we adopted a simple one-step solid-state method by directly sintering the Ni0.9Co0.1(OH)2 precursor with LiOH and Ta2O5, to simultaneously achieve the bulk material synthesis of LiNi0.9Co0.1O2 and in situ construction of a rock-salt Ta-doped interphase and an amorphous LiTaO3 outer layer, forming a chemically bonded surface biphase coating on LiNi0.9Co0.1O2. Such a cathode architectural design has been demonstrated with superior advantages: (1) eliminating surface residual alkali, (2) strengthening the layered oxygen lattice, (3) suppressing bulk-phase transformation, and (4) facilitating Li-ion transport. The obtained cathode exhibits excellent electrochemical performance, including a high initial reversible capacity of 180.3 mAh g-1 at 1.0 C with 85.5% retention after 300 cycles (2.8-4.35 V) and a high initial reversible capacity of 182.5 mAh g-1 at 0.2 C with 87.6% retention after 100 cycles (2.8-4.5 V). Notably, this facile and scalable electrode engineering makes Ni-rich layered oxides promising for practical applications.

9.
Biosens Bioelectron ; 264: 116660, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39142230

RESUMO

Expanding the family of fluorescent metal clusters beyond gold, silver, and copper has always been an issue for researchers to solve. In this study, a novel type of cysteine-capped nickel nanoclusters (Cys-Ni NCs) with bright turquoise emission was developed. The as-synthesized Ni NCs showed aggregation-induced emission enhancement (AIEE) properties across Cd2+ and various polar organic solvents. Concurrently, solvents with different viscosities were used to explore the principle of solvent-induced AIEE of Cys-Ni NCs, revealing a positive correlation between fluorescence intensity and solution viscosity. In addition, the concentration of Cd2+ that induced the AIEE effect was reduced by nearly two orders of magnitude in highly viscous solvents, indicating the possibility of Cys-Ni NCs as a promising nanomaterial platform for Cd2+ sensing analysis. Moreover, we propose a novel fluorescent sensing method for rapid detection of Cu2+ based on the carboxyl group of Cys-Ni NCs coupling with Cu2+. Further, validation of Cu2+ detecting methodologies in environmental water samples with the accuracy up to 93.94% underscores their potential as robust and efficient sensing platforms. This study expands the repertoire of fluorescent metal nanoclusters for highly sensitive and selective sensing of hazardous ions and paves the way for further exploration and wide applications in Cu2+ detection in biological and medicine fields.

10.
J Colloid Interface Sci ; 677(Pt B): 91-100, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39137566

RESUMO

The further commercialization of layer-structured Ni-rich LiNi0.83Co0.11Mn0.06O2 (NCM83) cathode for high-energy lithium-ion batteries (LIBs) has been challenged by severe capacity decay and thermal instability owing to the microcracks and harmful phase transitions. Herein, Ti4+-doped NCM83 cathode materials are rationally designed via a simple and low-cost in-situ modification method to improve the crystal structure and electrode-electrolyte interface stability by inhibiting irreversible polarizations and harmful phase transitions of the NCM83 cathode materials due to Ti4+-doped forms stronger metal-O bonds and a stable bulk structural. In addition, the optimal doping amount of the composite cathode material is also determined through the results of physical characterization and electrochemical performance testing. The optimized Ti4+-doped NCM83 cathode material presents wider Li+ ions diffusion channels (c = 14.1687 Å), lower Li+/Ni2+ mixing degree (2.68 %), and compact bulk structure. The cell assembled with the optimized Ti4+-doped NCM83 cathode material exhibits remarkable capacity retention ratio of 95.4 % after 100cycles at 2.0C and room temperature, and outstanding reversible discharge specific capacity of 148.2 mAh g-1 at 5.0C. Even under elevated temperature of 60 °C, it delivers excellent capacity retention ratio of 92.2 % after 100cycles at 2.0C, which is significantly superior to the 47.9 % of the unmodified cathode material. Thus, the in-situ Ti4+-doped strategy presents superior advantages in enhancing the structural stability of Ni-rich cathode materials for LIBs.

11.
Chem Asian J ; : e202400630, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39152731

RESUMO

The development of an efficient, low-cost and earth-abundant electrocatalyst for water splitting is crucial for the production of sustainable hydrogen energy. However their practical applications are largely restricted by their limited synthesis methods, large overpotential and low surface area. Hierarchical materials with a highly porous three-dimensional nanostructure have garnered significant attention due to their exceptional electrocatalytic properties. These hierarchical porous frameworks enable the fast electron transfer, rapid mass transport, and high density of unsaturated metal sites and maximize product selectivity. Here the process involved obtaining monodispersed microrod-shaped Ni(OH)2 through a hydrothermal reaction, followed by a heat treatment to convert it into hierarchical microrod-shaped NiO materials. N2 sorption analysis revealed that the BET surface area increased from 9 to 89 m2/g as a result of the heat treatment. The hierarchical microrod-shaped NiO materials demonstrated outstanding bifunctional electrocatalytic water splitting capabilities, excelling in both HER and OER in basic solution. Overpotential of 347 mV is achieved at 10 mA/cm2 for OER activity, with a Tafel slope of 77 mV/dec. Similarly, overpotential of 488 mV is achieved at 10 mA/cm2 for HER activity, with a Tafel slope of 62 mV/dec.

12.
Sci Rep ; 14(1): 18885, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143374

RESUMO

To improve the mechanical properties of the rolling body surface of wind power bearings, extend its service life. In this study, a large-scale molecular/atomic parallel processor LAMMPS was introduced, and then the process of magnetron sputtering technology in the preparation of DLC/Ni-DLC thin films on the 42CrMo substrate material was simulated. The effects of deposition parameters such as sputtering temperature, sputtering voltage, deposition air pressure, and Ni doping on the residual stress, film base bonding, and organizational structure of the thin films were investigated. The simulation results show that for different deposition parameters, the atomic tensile and compressive stresses existed simultaneously in DLC/Ni-DLC films, and the residual stresses were between - 0.504-5.003 Gpa and - 2.11-0.065 Gpa, respectively; the doping of Ni effectively improved the distribution of hybrid structure and the mechanical properties of the DLC films, and the ratio of the sp3 hybrid structure in the film organization was about 2.56 times higher than that of the non-doped films, and the membrane base bonding force was increased by 32.78% and the residual stress is reduced and transitioned from tensile stress to compressive stress. In addition, it was observed that the thickness of the mixed layer of DLC/Ni-DLC films with the substrate was not increased after the thickness of the mixed layer was extended to about 2 nm. Nickel doping and reasonable control of deposition parameters help to reduce the residual stress and improve the bonding strength of the film by changing the organizational structure of the film, which provides an important theoretical and scientific basis for the preparation of low-stress, high-performance and long-life DLC films and the wide application of rolling bodies for wind power bearings under complex working conditions.

13.
Small ; : e2405309, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148192

RESUMO

Zinc-air batteries employing non-Pt cathodes hold significant promise for advancing cathodic oxygen reduction reaction (ORR). However, poor intrinsic electrical conductivity and aggregation tendency hinder the application of metal-organic frameworks (MOFs) as active ORR cathodes. Conductive MOFs possess various atomically dispersed metal centers and well-aligned inherent topologies, eliminating the additional carbonization processes for achieving high conductivity. Here, a novel room-temperature electrochemical cathodic electrodeposition method is introduced for fabricating uniform and continuous layered 2D bimetallic conductive MOF films cathodes without polymeric binders, employing the organic ligand 2,3,6,7,10,11-hexaiminotriphenylene (HITP) and varying the Ni/Cu ratio. The influence of metal centers on modulating the ORR performance is investigated by density functional theory (DFT), demonstrating the performance of bimetallic conductive MOFs can be effectively tuned by the unpaired 3d electrons and the Jahn-Teller effect in the doped Cu. The resulting bimetallic Ni2.1Cu0.9(HITP)2 exhibits superior ORR performance, boasting a high onset potential of 0.93 V. Moreover, the assembled aqueous zinc-air battery demonstrates high specific capacity of 706.2 mA h g-1, and exceptional long-term charge/discharge stability exceeding 1250 cycles.

14.
ChemSusChem ; : e202401178, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39108218

RESUMO

Lithium-sulfur (Li-S) batteries are considered promising energy-storage systems because of their high theoretical energy density, low cost, and eco-friendliness. However, problems such as the shuttle effect can result in the loss of active materials, poor cyclability, and rapid capacity degradation. The utilization of a structural configuration that enhances electrochemical performance via dual adsorption-catalysis strategies can overcome the limitations of Li-S batteries. In this study, an integrated interlayer structure, in which hollow carbon fibers (HCFs) were modified with in-situ-generated Ni nanoparticles, was prepared by scalable one-step carbonization. Highly hierarchically porous HCFs act as the carbon skeleton and provide a continuous three-dimensional conductive network that enhances ion/electron diffusion. Ni nanoparticles with superior anchoring and catalytic abilities can prevent the shuttle effect and increase the conversion rate, thereby promoting the electrochemical performance. This synergistic effect resulted in a high capacity retention of 582 mAh g-1 at 1 C after 100 cycles, providing an excellent rate capability of up to 3 C. The novel structure, wherein Ni nanoparticles are embedded in cotton-tissue-derived HCFs, provides a new avenue for enhancing electrochemical performance at high C rates. This results in a low-cost, sustainable, and high-performance hybrid material for the development of practical Li-S batteries.

15.
Chemistry ; : e202402325, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39114891

RESUMO

In this work we developed a hydrothermal method for synthesizing amorphous Ni-Co hydroxide (NC(OH)) and in the subsequent step crystalline NiCo2O4 (NCO) has been produced using water as the solvent. For nickel-zinc batteries, NC(OH) was found to have superior performance to its NCO prepared by two-step process. The XRD pattern showed mixed phases containing both Ni and Co hydroxides (during the initial step) and in the subsequent step (calcined) the formation of cubic spinel structure was noticed. For NC(OH), aggregated particles with irregular morphology were observed while clustered nanorod-like shapes were noticed for NCO samples. The nanorod morphology was obtained through a facile approach without employing any structure-directing agent. Both NC(OH) and NCO were employed as cathodes for Ni-Zn battery studies against Zn foil anode with a polyamide-based separator soaked in 6M KOH saturated with ZnO additive was used as electrolyte. The NC(OH) had a capacity of 268 mAhg-1 against 120 mAhg-1 for NCO at a current density of 1 Ag-1. The Ni-Zn battery presents energy and power densities of 428.8 WhKg-1 and 2.68 kWKg-1, respectively surpassing the normal values reported for aqueous rechargeable batteries. This work provides a facile approach for developing bimetallic hydroxides for optimal energy storage performance.

16.
Nanomaterials (Basel) ; 14(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39120401

RESUMO

The addition of Co to Ni-based alloys can reduce the stacking fault energy. In this study, a novel Ni-26.6Co-18.4Cr-4.1Mo-2.3Al-0.3Ti-5.4Nb alloy was developed by increasing the Co addition to 26.6 wt.%. A new strategy to break the trade-off between strength and ductility is proposed by introducing dense nanosized precipitations, stacking faults, and nanoscale twins in the as-prepared alloys. The typical characteristics of the deformed alloy include dense dislocations tangles, nanotwins, stacking faults, and Lomer-Cottrell locks. In addition to the pinning effect of the bulky δ precipitates to the grain boundaries, the nanosized γ' particles with a coherent interface with the matrix show significant precipitation strengthening. As a result, the alloy exhibits a superior combination of yield strength of 1093 MPa and ductility of 29%. At 700 °C, the alloy has a high yield strength of 833 MPa and an ultimate tensile strength of 1024 MPa, while retaining a ductility of 6.3%.

17.
Sensors (Basel) ; 24(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39123871

RESUMO

Excessive ammonia nitrogen can potentially compromise the safety of drinking water. Therefore, developing a rapid and simple detection method for ammonia nitrogen in drinking water is of great importance. Nickel-copper hydroxides exhibit strong catalytic capabilities and are widely applied in ammonia nitrogen oxidation. In this study, a self-supported electrode made of nickel-copper carbonate hydroxide was synthesized on a carbon cloth collector via a straightforward one-step hydrothermal method for rapid ammonia nitrogen detection in water. It exhibits sensitivities of 3.9 µA µM-1 cm-2 and 3.13 µA µM-1 cm-2 within linear ranges of 1 µM to 100 µM and 100 µM to 400 µM, respectively, using a simple and rapid i-t method. The detection limit is as low as 0.62 µM, highlighting its excellent anti-interference properties against various anions and cations. The methodology's simplicity and effectiveness suggest broad applicability in water quality monitoring and environmental protection, particularly due to its significant cost-effectiveness.

18.
Materials (Basel) ; 17(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39124349

RESUMO

As the integration of chips in 3D integrated circuits (ICs) increases and the size of micro-bumps reduces, issues with the reliability of service due to electromigration and thermomigration are becoming more prevalent. In the practical application of solder joints, an increase in the grain size of intermetallic compounds (IMCs) has been observed during the reflow process. This phenomenon results in an increased thickness of the IMC layer, accompanied by a proportional increase in the volume of the IMC layer within the joint. The brittle nature of IMC renders it susceptible to excessive growth in small-sized joints, which has the potential to negatively impact the reliability of the welded joint. It is therefore of the utmost importance to regulate the formation and growth of IMCs. The following paper presents the electrodeposition of a Ni-W layer on a Cu substrate, forming a barrier layer. Subsequently, the barrier properties between the Sn/Cu reactive couples were subjected to a comprehensive and systematic investigation. The study indicates that the Ni-W layer has the capacity to impede the diffusion of Sn atoms into Cu. Furthermore, the Ni-W layer is a viable diffusion barrier at the Sn/Cu interface. The "bright layer" Ni2WSn4 can be observed in all Ni-W coatings during the soldering reflow process, and its growth was almost linear. The structure of the Ni-W layer is such that it reduces the barrier properties that would otherwise be inherent to it. This is due to the "bright layer" Ni2WSn4 that covers the original Ni-W barrier layer. At a temperature of 300 °C for a duration of 600 s, the Ni-W barrier layer loses its blocking function. Once the "bright layer" Ni2WSn4 has completely covered the original Ni-W barrier layer, the diffusion activation energy for Sn diffusion into the Cu substrate side will be significantly reduced, particularly in areas where the distortion energy is concentrated due to electroplating tension. Both the "bright layer" Ni2WSn4 and Sn will grow rapidly, with the formation of Cu-Sn intermetallic compounds (IMCs). At temperatures of 250 °C, the growth of Ni3Sn4-based IMCs is controlled by grain boundaries. Conversely, the growth of the Ni2WSn4 layer (consumption of Ni-W layer) is influenced by a combination of grain boundary diffusion and bulk diffusion. At temperatures of 275 °C and 300 °C, the growth of Ni3Sn4-based IMCs and the Ni2WSn4 layer (consumption of Ni-W layer) are both controlled by grain boundaries. The findings of this study can inform the theoretical design of solder joints with barrier layers as well as the selection of Ni-W diffusion barrier layers for use in different soldering processes. This can, in turn, enhance the reliability of microelectronic devices, offering significant theoretical and practical value.

19.
Materials (Basel) ; 17(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39124490

RESUMO

High-entropy alloys (HEAs) are recognized as a class of advanced materials with outstanding mechanical properties and corrosion resistance. Among these, nickel-based HEAs stand out for their impressive strength, ductility, and oxidation resistance. This review delves into the latest advancements in nickel-containing HEAs, covering their fundamental principles, alloy design strategies, and additive manufacturing techniques. We start by introducing HEAs and their unique properties, emphasizing the crucial role of nickel. This review examines the complex relationships between alloy composition, valence electron concentration (VEC), and the resulting crystal structures. This provides insights into design principles for achieving desired microstructures and mechanical properties. Additive manufacturing (AM) techniques like selective laser melting (SLM), electron beam melting (EBM), and laser metal deposition (LMD) are highlighted as powerful methods for fabricating intricate HEA components. The review addresses the challenges of AM processes, such as porosity, fusion defects, and anisotropic mechanical properties, and discusses strategies to mitigate these issues through process optimization and improved powder quality. The mechanical behavior of AM-processed nickel-based HEAs is thoroughly analyzed, focusing on compressive strength, hardness, and ductility. This review underscores the importance of microstructural features, including grain size, phase composition, and deformation mechanisms, in determining the mechanical performance of these alloys. Additionally, the influence of post-processing techniques, such as heat treatment and hot isostatic pressing (HIP) on enhancing mechanical properties is explored. This review also examines the oxidation behavior of nickel-containing HEAs, particularly the formation of protective oxide scales and their dependence on aluminum content. The interplay between composition, VEC, and oxidation resistance is discussed, offering valuable insights for designing corrosion resistant HEAs. Finally, this review outlines the potential applications of nickel-based HEAs in industries such as aerospace, automotive, and energy, and identifies future research directions to address challenges and fully realize the potential of these advanced materials.

20.
Adv Mater ; : e2406672, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39129666

RESUMO

High mobility of twin boundaries in modulated martensites of Ni-Mn-Ga-based ferromagnetic shape memory alloys holds a promise for unique magnetomechanical applications. This feature has not been fully understood so far, and in particular, it has yet not been unveiled what makes the lattice mechanics of modulated Ni-Mn-Ga specifically different from other martensitic alloys. Here, results of dedicated laser-ultrasonic measurements on hierarchically twinned five-layer modulated (10M) crystals fill this gap. Using a combination of transient grating spectroscopy and laser-based resonant ultrasound spectroscopy, it is confirmed that there is a shear elastic instability in the lattice, being significantly stronger than in any other martensitic material and also than what the first-principles calculations for Ni-Mn-Ga predict. The experimental results reveal that the instability is directly related to the lattice modulations. A lattice-scale mechanism of dynamic faulting of the modulation sequence that explains this behavior is proposed; this mechanism can explain the extraordinary mobility of twin boundaries in 10M.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA