Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Sci Rep ; 14(1): 13578, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866859

RESUMO

Our research focuses on enhancing the broadband absorption capability of organic solar cells (OSCs) by integrating plasmonic nanostructures made of Titanium nitride (TiN). Traditional OSCs face limitations in absorption efficiency due to their thickness, but incorporating plasmonic nanostructures can extend the path length of light within the active material, thereby improving optical efficiency. In our study, we explore the use of refractory plasmonics, a novel type of nanostructure, with TiN as an example of a refractory metal. TiN offers high-quality localized surface plasmon resonance in the visible spectrum and is cost-effective, readily available, and compatible with CMOS technology. We conducted detailed numerical simulations to optimize the design of nanostructured OSCs, considering various shapes and sizes of nanoparticles within the active layer (PM6Y6). Our investigation focused on different TiN plasmonic nanostructures such as nanospheres, nanocubes, and nanocylinders, analyzing their absorption spectra in a polymer environment. We assessed the impact of their incorporation on the absorbed power and short-circuit current (Jsc) of the organic solar cell.

2.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732228

RESUMO

Herein, I will review our efforts to develop a comprehensive and robust model for the estimation of the first oxidation potential, Ep1, and antioxidant activity, AA, of flavonoids that would, besides enabling fast and cheap prediction of Ep1 and AA for a flavonoid of interest, help us explain the relationship between Ep1, AA and electronic structure. The model development went forward with enlarging the set of flavonoids and, that way, we had to learn how to deal with the structural peculiarities of some of the 35 flavonoids from the final calibration set, for which the Ep1 measurements were all made in our laboratory. The developed models were simple quadratic models based either on atomic spin densities or differences in the atomic charges of the species involved in any of the three main oxidation mechanisms. The best model takes into account all three mechanisms of oxidation, single electron transfer-proton transfer (SET-PT), sequential proton loss electron transfer (SPLET) and hydrogen atom transfer (HAT), yielding excellent statistics (R2 = 0.970, S.E. = 0.043).


Assuntos
Antioxidantes , Flavonoides , Oxirredução , Antioxidantes/química , Flavonoides/química , Flavonoides/metabolismo , Elétrons , Transporte de Elétrons , Modelos Teóricos
3.
ACS Appl Mater Interfaces ; 16(20): 26348-26359, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38728664

RESUMO

Organic solar cells (OSCs) could benefit from the ternary bulk heterojunction (BHJ), a method that allows for fine-tuning of light capture, cascade energy levels, and film shape, in order to increase their power conversion efficiency (PCE). In this work, the third components of PM6:Y6 and PM6:BTP-eC9 BHJs are a set of four star-shaped unfused ring electron acceptors (SSUFREAs), i.e., BD-IC, BFD-IC, BD-2FIC, and BFD-2FIC, that are facilely synthesized by direct C-H arylation. The four SSUFREAs all show complete complementary absorption with PM6, Y6, and BTP-eC9, which facilitates light harvesting and exciton collection. When BFD-2FIC is added as a third component, the PCEs of PM6:Y6 and PM6:BTP-eC9 binary BHJs are able to be improved from 15.31% to 16.85%, and from 16.23% to 17.23%, respectively, showing that BFD-2FIC is useful for most effective ternary OSCs in general, and increasing short circuit current (JSC) and better film morphology are two additional benefits. The ternary PM6:Y6:BFD-2FIC exhibits a 9.7% percentage of increase in PCE compared to the PM6:Y6 binary BHJ, which is one of the highest percentage increases among the reported ternary BHJs, showing the huge potential of BFD-2FIC for ternary BHJ OSCs.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38573046

RESUMO

Tracking the dynamics of ultrafast hole injection into copper thiocyanate (CuSCN) at the interface can be experimentally challenging. These challenges include restrictions in accessing the ultraviolet spectral range through transient electronic spectroscopy, where the absorption spectrum of CuSCN is located. Time-resolved vibrational spectroscopy solves this problem by tracking marker modes at specific frequencies and allowing direct access to dynamical information at the molecular level at donor-acceptor interfaces in real time. This study uses photoabsorber PM6 (poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)-benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))]) as a model system to explore and decipher the hole transfer dynamics of CuSCN using femtosecond (fs) mid-infrared (IR) spectroscopy. The time-resolved results indicate that excited PM6 exhibits a sharp vibrational mode at 1599 cm-1 attributed to the carbonyl group, matching the predicted frequency position obtained from time-dependent density functional theory (DFT) calculations. The fs mid-IR spectroscopy demonstrates a fast formation (<168 fs) and blue spectral shift of the CN stretching vibration from 2118 cm-1 for CuSCN alone to 2180 cm-1 for PM6/CuSCN, confirming the hole transfer from PM6 to CuSCN. The short interfacial distance and high frontier orbital delocalization obtained from the interfacial DFT models support a coherent and ultrafast regime for hole transfer. These results provide direct evidence for hole injection at the interface of CuSCN for the first time using femtosecond mid-IR spectroscopy and serve as a new investigative approach for interfacial chemistry and solar cell communities.

5.
Adv Mater ; : e2302005, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37623325

RESUMO

Over the past three years, remarkable advancements in organic solar cells (OSCs) have emerged, propelled by the introduction of Y6-an innovative A-DA'D-A type small molecule non-fullerene acceptor (NFA). This review provides a critical discussion of the current knowledge about the structural and physical properties of the PM6:Y6 material combination in relation to its photovoltaic performance. The design principles of PM6 and Y6 are discussed, covering charge transfer, transport, and recombination mechanisms. Then, the authors delve into blend morphology and degradation mechanisms before considering commercialization. The current state of the art is presented, while also discussing unresolved contentious issues, such as the blend energetics, the pathways of free charge generation, and the role of triplet states in recombination. As such, this review aims to provide a comprehensive understanding of the PM6:Y6 material combination and its potential for further development in the field of organic solar cells. By addressing both the successes and challenges associated with this system, this review contributes to the ongoing research efforts toward achieving more efficient and stable organic solar cells.

6.
J Mol Model ; 29(9): 284, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608199

RESUMO

CONTEXT: In recent years, semiempirical methods such as PM6, PM6-D3H4, and PM7 have been increasingly used for modeling proteins, in particular enzymes. These methods were designed for more general use, and consequently were not optimized for studying proteins. Because of this, various specific errors have been found that could potentially cast doubt on the validity of these methods for modeling phenomena of biochemical interest such as enzyme catalytic mechanisms and protein-ligand interactions. To correct these and other errors, a new method specifically designed for use in organic and biochemical modeling has been developed. METHODS: Two alterations were made to the procedures used in developing the earlier PMx methods. A minor change was made to the theoretical framework, which affected only the non-quantum theory interatomic interaction function, while the major change involved changing the training set for optimizing parameters, moving the focus to systems of biochemical significance. This involved both the selection of reference data and the weighting factors, i.e., the relative importance that the various data were given. As a result of this change of focus, the accuracy in prediction of heats of formation, hydrogen bonding, and geometric quantities relating to non-covalent interactions in proteins was improved significantly.


Assuntos
Temperatura Alta , Catálise , Ligação de Hidrogênio
7.
J Mol Graph Model ; 124: 108552, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37379759

RESUMO

Noradrenaline (NA), one of the important excitatory catecholamine neurotransmitters, is used as a medication for Parkinson's Disease (PD). The ß-cyclodextrin (ß-CD) is one of the most effective drug carrier & also used in chiral separation. So, in this theoretical investigation, the R/S-Noradrenaline (R/S-NA) forms binding & chiral recognition mechanisms and energies with ß-CD were explored. Using the AutoDock, R/S forms were first docked into the cavity of ß-CD giving host-guest complexes with the free energy of binding for S-NA (-4.81 kcal/mol) larger than R-NA (-4.53 kcal/mol). The host-guest inclusion 1:1 complexes between R/S-NA and ß-CD have been also modeled and optimized with ONIOM2 (B3LYP/6-31g++DP: PM6) method by using the Gaussian software. Further, frequency calculations were carried out to obtain the free energies. In comparison to the R-NA (-54.59 kcal/mol), it was observed that the S-NA (-56.48 kcal/mol) with ß-CD is more stable. Furthermore, the H-bond results from molecular dynamics simulation revealed that S-NA/ß-CD was more stable than R-NA/ß-CD. In addition, the thermodynamic properties, vibrational analysis (IR), HOMO-LUMO band gap energy, inter molecular hydrogen bond interactions, and conformational analysis were investigated for both the R/S forms to support & compare the stability of the inclusion complex. These inclusion & high stability of S-NA/ß-CD and in turn its theoretical chiral recognition behavior observed agreeing well with the reported NMR experimental data have implications in drug delivery and chiral separation research.


Assuntos
Simulação de Dinâmica Molecular , Norepinefrina/química , beta-Ciclodextrinas/química , Conformação Molecular , Modelos Moleculares , Ligação de Hidrogênio , Termodinâmica , Vibração
8.
Arh Hig Rada Toksikol ; 74(2): 99-105, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37357878

RESUMO

In this paper, I tested our quadratic regression models for the estimation of flavonoid oxidation potentials based on spin populations, the differences in the net atomic charges between a cation and a neutral flavonoid, between a radical and an anion of a flavonoid, and between a radical and a neutral flavonoid on a larger set of flavonoids (N = 35). By including six new flavonoids (5,6,7-trihydroxyflavone, 3,3',4',7-tetrahydroxyflavone, 3,7-dihydroxyflavone, 4',7-dihydroxyflavone, 4',5,7-trihydroxyisoflavone, and 6-hydroxyflavone), we created a respectable calibration set of 35 flavonoids with their oxidation potentials all measured at the same conditions by the same experimentalist. The best model was based on the mean values of the three variables using differences in the net atomic charges (R 2 = 0.970, S.E. = 0.043), which are connected with the three different mechanisms of electrochemical oxidation, SET-PT, SPLET, and HAT.


Assuntos
Flavonoides , Oxirredução
9.
Small ; 19(11): e2206952, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36541718

RESUMO

All-inorganic perovskite CsPbI3 contains no volatile organic components and is a thermally stable photoactive material for wide-bandgap perovskite solar cells (PSCs); however, CsPbI3 readily undergoes undesirable phase transitions due to the hygroscopic nature of the ionic dopants used in commonly used hole transport materials. In the current study, the popular donor material PM6 in organic solar cells is used as a hole transport layer (HTL). The benzodithiophene-based backbone-conjugated polymer requires no dopant and leads to a higher power conversion efficiency (PCE) than 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (Spiro-OMeTAD). Moreover, PM6 also shows priorities in hole mobility, hydrophobicity, cascade energy level alignment, and even defect passivation of perovskite films. With PM6 as the dopant-free HTL, the PSCs achieve a champion PCE of 18.27% with a competitive fill factor of 82.8%. Notably, the present PCE is based on the dopant-free HTL in CsPbI3 PSCs reported thus far. The PSCs with PM6 as the HTL retain over 90% of the initial PCE stored in a glovebox filled with N2 for 3000 h. In contrast, the PSCs with Spiro-OMeTAD as the HTL maintain ≈80% of the initial PCE under the same conditions.

10.
Adv Sci (Weinh) ; 9(34): e2203513, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36316244

RESUMO

PM6 is a widely used D-A copolymer donor in the polymer solar cells (PSCs). Incorporating second electron-withdrawing (A2 ) units into PM6 backbone by ternary D-A1 -D-A2 random copolymerization strategy is an effective approach to further improve its photovoltaic performance. Here, the authors synthesize the PM6-based terpolymers by introducing thiazolothiazole as the A2 units connecting with thiophene π-bridges attaching alkyl substituent towards the A2 unit (PMT-CT) or towards D-unit (PMT-FT), and study the effect of the alkyl substituent position on the photovoltaic performance of them. Two terpolymers PMT-FT-10 and PMT-CT-10 are obtained by incorporating 10% A2 units in the terpolymers. The film of PMT-CT-10 shows slightly up-shifted highest occupied molecular orbital (HOMO) energy levels while better co-planar structure than that of PMT-FT-10. Meanwhile, the PMT-CT-10:Y6 blend film exhibits better molecular packing properties, more proper phase separation and more balanced hole and electron mobilities, which are beneficial to more efficient exciton dissociation, efficient charge transport and weaker bimolecular recombination. Consequently, the PMT-CT-10 based PSCs obtain the highest power conversion efficiency of 18.21%. The results indicate that side chain position on the thiophene π-bridges influence the device performance of the terpolymer donors, and PMT-CT-10 is a high efficiency polymer donor for the PSCs.

11.
ACS Appl Mater Interfaces ; 14(34): 39109-39119, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35976775

RESUMO

The device efficiency of PM6:Y6-based nonfullerene organic solar cells is fast advanced recently. To maintain organic solar cells (OSCs) with high power conversion efficiency over 16% in long-term operation, however, remains a challenge. Here, a novel non-volatile additive, an open-cage [60]fullerene (8OC60Me), is incorporated into PM6:Y6-based OSCs for high-performance with high durability. With optimized addition of 1.0 wt % 8OC60Me, the PCE value of PM6:Y6/8OC60Me OSCs can be promoted to 16.5% from 15.0%. Most strikingly, such a high PCE performance can maintain nearly 100% for over 500 h at room temperature; at an elevated operation temperature of 80 °C, the PCE can be stabilized above 15.0% after 45 h of operation. Grazing incidence small- and wide- angle X-ray scattering studies reveal improved orientation and crystallinity of Y6 in a fractal-like network structure of PM6 in PM6:Y6/8OC60Me films under in situ annealing, parallel to the enhanced electron mobility. Analysis of charge distributions lines up possible van der Waals interaction between the thienyl/carbonyl moiety of 8OC60Me and difluorophenyl-based FIC-end groups of Y6. This result is of great contrast to those devices with the best-selling PC61BM as the additives─8OC60Me might be of interest to be incorporated into future Y6-based OSCs for concomitantly improved PCE and excellent stability.

12.
Molecules ; 27(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35268779

RESUMO

Recently, we reported a new approach to develop pairwise analytical corrections to improve the description of noncovalent interactions, by approximate methods of electronic structures, such as semiempirical quantum mechanical (SQM) methods. In particular, and as a proof of concept, we used the PM6 Hamiltonian and we named the method PM6-FGC, where the FGC acronym, corresponding to Functional Group Corrections, emphasizes the idea that the corrections work for specific functional groups rather than for individual atom pairs. The analytical corrections were derived from fits to B3LYP-D3/def2-TZVP (reference). PM6 interaction energy differences, evaluated for a reduced set of small bimolecular complexes, were chosen as representatives of saturated hydrocarbons, carboxylic, amine and, tentatively, amide functional groups. For the validation, the method was applied to several complexes of well-known databases, as well as to complexes of diglycine and dialanine, assuming the transferability of amine group corrections to amide groups. The PM6-FGC method showed great potential but revealed significant inaccuracies for the description of some interactions involving the -NH2 group in amines and amides, caused by the inadequate selection of the model compound used to represent these functional groups (an NH3 molecule). In this work, methylamine and acetamide are used as representatives of amine and amide groups, respectively. This new selection leads to significant improvements in the calculation of noncovalent interactions in the validation set.

13.
J Comput Chem ; 43(11): 804-821, 2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-35297513

RESUMO

The influence of hydrogen bonds in model intercalated systems between guanine-cytosine and adenine-thymine DNA base pairs (bps) was analyzed with the popular intercalator 1,10-phenanthroline (phen) and derivatives obtained by substitution with OH and NH2 groups in positions 4 and 7. Semiempirical and Density Functional Theory (DFT) methods were used both including dispersion effects: PM6-DH2, M06-2X and B3LYP-D3 along with the recently developed near linear-scaling coupled cluster method DLPNO-CCSD(T) for benchmark calculations. Our results given by QTAIM and non-covalent interaction analysis confirmed the existence of hydrogen bonds created by OH and NH2 . The trends in the energy decomposition analysis for the interaction energy, ΔEint , showed that the ΔEelstat contributions are equal or even a little bit higher than the values for ΔEdisp . Such important ΔEelstat attractive contribution comes mainly from the conventional hydrogen bonds formed by OH and NH2 functional groups with DNA not only with bps but specially with the sugar and phosphate backbone. This behavior is very different from that of phen and other classical intercalators that cannot form conventional hydrogen bonds, where the ΔEdisp is the most important attractive contribution to the ΔEint . The inclusion of explicit water molecules in molecular dynamics simulations showed, as a general trend, that the hydrogen bonds with the bps disappear during the simulations but those with the sugar and phosphate backbone remain in time, which highlights the important role of the sugar and phosphate backbone in the stabilization of these systems.


Assuntos
Fenantrolinas , Açúcares , DNA/química , Ligação de Hidrogênio , Substâncias Intercalantes/química , Fenantrolinas/química , Fosfatos
14.
Molecules ; 27(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35209108

RESUMO

The coordination chemistry of the title ligands with Mo metal centers was investigated. Thus, the synthesis and characterization (NMR, X-ray diffraction) of four mononuclear formally Mo(6+) complexes of (Z)-1-R-2-(4',4'-dimethyl-2'-oxazolin-2'-yl)-eth-1-en-1-ates (L: R = -Ph, -Ph-p-NO2, -Ph-p-OMe and -t-Bu), derived from the part enols (LH), is described. The resulting air-stable MoO2L2 complexes (1-4) exist, as shown by single-crystal X-ray diffraction experiments, in the cis-dioxido-trans(N)-κ2-N,O-L conformation in the solid state for all four examples. This situation was further probed using semi-empirical PM6(tm) calculations. Complexes 1-4 represent the first Mo complexes of this ligand class and, indeed, of Group 6 metals in general. Structural and spectroscopic comparisons were made between these and related Mo(6+) compounds. Complex 1 (R = -Ph) was studied for its ability to selectively catalyze the production of poly-norbornene from the monomer in the presence of MAO. This, unfortunately, only resulted in the synthesis of insoluble, presumably highly cross-linked, polymeric and/or oligomeric materials. However, complexes 1-4 were demonstrated to be highly effective for catalyzing benzoin to benzil conversion using DMSO as the O-transfer agent. This catalysis work is likewise put into perspective with respect to analogous Mo(6+) complexes.

16.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33979434

RESUMO

Experimentally estimating peptide-major histocompatibility complex (pMHC) binding affinity has been quite challenging due to the many receptors and the many potential ligands implicated in it. We have thus proposed a straightforward computational methodology considering the different mechanisms involved in pMHC binding to facilitate studying such receptor-ligand interactions. We have developed a pipeline using semi-empirical quantum mechanical methods for calculating pMHC class I and II molecules' binding energy (BE). This pipeline can systematize the methodology for calculating pMHC system BE, enabling the rational design of T-cell epitopes to be used as pharmaceuticals and vaccines.


Assuntos
Biologia Computacional/métodos , Antígenos de Histocompatibilidade/química , Modelos Moleculares , Oligopeptídeos/química , Teoria Quântica , Software , Algoritmos , Sequência de Aminoácidos , Antígenos de Histocompatibilidade/imunologia , Antígenos de Histocompatibilidade/metabolismo , Humanos , Ligantes , Oligopeptídeos/imunologia , Oligopeptídeos/metabolismo , Ligação Proteica , Relação Estrutura-Atividade
17.
Heliyon ; 6(7): e04456, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32715132

RESUMO

Graphene has attracted great concern in recent years as one of the potential 2D materials in various applications. This work is devoted for assessing the feasibility of functionalizing 2D graphene sheets with ferromagnetic and antiferromagnetic metal oxides namely magnetite (Fe3O4) and nickel oxide (NiO). Molecular models of the proposed candidates are exposed to energy calculations at DFT level, in addition to geometry optimization processes at PM6 method. HOMO/LUMO orbitals, MESP maps and QSAR descriptors are calculated. Results ensure that graphene doped with NiO has the highest reactivity since it possesses the largest TDM and the smallest HOMO/LUMO band gap. MESP maps illustrate that the benzene rings of graphene are most probable to undergo nucleophilic interactions. Addition of Fe3O4 creates new negatively charged active sites that are ready for nucleophilic interactions. The calculated QSAR parameters demonstrate a hydrophobic nature for pure and modified graphene suggesting that they need further modification with further groups for usage in biological applications.

18.
Anticancer Agents Med Chem ; 20(7): 897-908, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32167430

RESUMO

Indroduction: This article presents a theoretical analysis of the safe form and dosage of the amygdalin derivative. By making a precise socio-anthropological analysis of the life of the ancient people of Botra (Hunza people, Burusho/Brusho people), a hypothesis has been postulated through a number of modern quantum-mechanical, molecular-topological and bio analytical checks, and has also been confirmed by two proofs. METHODS: The proposed hypothesis underwent theoretical and logical analysis to confirm and/or reject it. The methodological scheme was: determining the optimal chemical formula, determination of the pharmaceutical molecular form and determination of the drug dose. RESULTS: A convenient, harmless, form of amygdalin derivative is available that has the same biological and chemical activity and could be used in conservative clinical oncology. The article also presents a theoretical comparative analysis of biochemical reactivity in in vivo and in vitro media, by which we also determine the recommended dosage for patient administration. A comparative analysis of the data, obtained in published clinical studies of amygdalin, is presented, summarizing a scheme of the anti-tumor activity of the proposed molecular form. CONCLUSION: The hydrolyzed to amide / carboxylic acid cyano / nitrile glycosides are potential drugs. Their biological activity remains unchanged, but their toxicity is many times lower than unmodified native molecules. We claim that this study we have conducted on amygdalin / dhurrin-derived amide is the only study on this molecular form. Other substances in these groups with pronounced biological activity (including anti-tumor) are the hydrolyzed nitrile groups by Prunasin, Lucumin, Vicianin, Sambunigrin, Dhurrin, Taxiphyllin, Zierin, Preteacin, p-Glucosyloxymandelonitrile, Linamarin, Lotaustralin, Acaciapetalin, Triglochinin, Dejdaclin, Tetraphyllin A, Tetrallin B, Gynocardin etc., to their amide/carboxylic acid.


Assuntos
Amigdalina/análise , Antineoplásicos Fitogênicos/análise , Neoplasias/tratamento farmacológico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Amigdalina/análogos & derivados , Amigdalina/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Conformação Molecular , Adulto Jovem
19.
Int J Mol Sci ; 21(3)2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31991574

RESUMO

Four cyclodextrins (CD) including ß-cyclodextrin (ß-CD), γ-cyclodextrin (γ-CD), heptakis-O-(2-hydroxypropyl)-ß-cyclodextrin (HP-ß-CD), and heptakis-O-(2, 6-di-O-methyl)-ß-cyclodextrin (DM-ß-CD) were used as solubilizer to study the solubility enhancement of myricetin. The results of the phase solubility study showed that the presence of CDs could enhance the solubility of myricetin by forming 1:1 complexes. Among all CDs, HP-ß-CD had the highest solubilization effect to myricetin. The concentration of myricetin could be 1.60 × 10-4 moL/L when the presence of HP-ß-CD reached 1.00 × 10-2 moL/L, which was 31.45 times higher than myricetin's aqueous solubility. Subsequently, the HP-ß-CD:myricetin complex was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). In order to get an insight of the plausible structure of the complex, molecular docking was used to study the complexation process of HP-ß-CD and myricetin. In the complex, the A ring and C ring of myricetin were complexed into the hydrophobic cavity of HP-ß-CD, while the ring B was located at the wide rim of HP-ß-CD. Four hydrogen bonding interactions were found between HP-ß-CD and -OH groups of the guest in the HP-ß-CD: myricetin complex. The complexation energy (△E) for the host-guest interactions was calculated with a negative sign, indicating the formation of the complex was an exergonic process. A 30-ns molecular dynamics simulation was conducted to the HP-ß-CD: myricetin complex. Calculation results showed that no large structural deformation or position change were observed during the whole simulation time span. The average root-mean-square deviation (RMSD) changes of the host and guest were 2.444 and 1.145 Å, respectively, indicating the complex had excellent stability.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/química , Flavonoides/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Varredura Diferencial de Calorimetria , Composição de Medicamentos , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
20.
J Mol Graph Model ; 93: 107447, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31521880

RESUMO

In the present work, semiempirical quantum chemical method (PM6) has been used for the simulation of molecular descriptors of first row transition metal ions incorporated benzimidazole metal complexes. Metal complexes with and without substituents are considered for the analysis. In both the cases, molecules show distinct properties with respect to the molecular descriptors. Since the dimension of the data set is large, principal component analysis has been used and the obtained principal components, PCA1 and PCA2, are linearly regressed with hyperpolarizability values. The obtained results indicate that molecular energy plays a dominant role in the nonlinear optical properties of benzimidazole metal complexes. Further, it is observed that the bond angle, global hardness and heat of formation of the molecules have considerable impact on the hyperpolarizability values.


Assuntos
Benzimidazóis/química , Análise de Componente Principal/métodos , Complexos de Coordenação/química , Teoria Quântica , Elementos de Transição/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA