Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(8): 5222-5236, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39007280

RESUMO

Osteochondral damage, affecting the articular cartilage and the underlying subchondral bone, presents significant challenges in clinical treatment. Such defects, commonly seen in knee and ankle joints, vary from small localized lesions to larger defects. Current medical therapies encounter several challenges, such as donor shortages, drug side effects, high costs, and rejection problems, often resulting in only temporary relief. Highly porous emulsion-templated polymers (polyHIPEs) offer numerous potential benefits in the fabrication of scaffolds for tissue engineering and regenerative medicine. Polymeric scaffolds synthesized using a high internal phase emulsion (HIPE) technique, called PolyHIPEs, involve polymerizing a continuous phase surrounding a dispersed internal phase to form a solid, foam-like structure. A dense, porous design encourages cell ingrowth, nutrient delivery, and waste disposal from the scaffold, mimicking the cells' natural microenvironment. This study used hydroxyethyl methacrylate (HEMA) and acrylamide (AAM) polyHIPE scaffolds combined with extracellular matrix (ECM) components of the tissue, such as methacrylated hyaluronic acid (MHA) and methacrylated chondroitin sulfate (MCS), to prepare polyHIPE scaffolds. The mouse preosteoblast MC3T3-E1 cells and primary rat chondrocytes (harvested from male Wistar rats) were seeded on the scaffolds and cultured for 21 days to assess the osteogenesis and chondrogenesis in vitro. When compared to the AAM-MHA and AAM-MCS groups at day 21, scaffold groups HEMA-MHA and HEMA-MCS showed a significant rise in alkaline phosphatase (ALP) and calcium content. Chondrogenic markers such as glycosaminoglycan (GAG) and hydroxyproline were also assessed over a 21-day time point. On day 21, it was found that GAG and hydroxyproline production were considerably higher in the HEMA-MHA and HEMA-MCS scaffolds than in the AAM-MHA and AAM-MCS scaffolds. The overall studies showed that polyHIPE monolith scaffolds could favor cell adherence, survival ability, proliferation, differentiation, and ECM formation over 21 days. Thus, incorporating ECM components enhanced osteogenesis and chondrogenesis in vitro and can be further used as tissue repair models.


Assuntos
Materiais Biocompatíveis , Condrogênese , Sulfatos de Condroitina , Ácido Hialurônico , Teste de Materiais , Osteogênese , Alicerces Teciduais , Animais , Condrogênese/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Alicerces Teciduais/química , Camundongos , Ratos , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacologia , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Polímeros/química , Polímeros/farmacologia , Tamanho da Partícula , Proliferação de Células/efeitos dos fármacos , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Estirenos
2.
Colloids Surf B Biointerfaces ; 240: 113986, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38795587

RESUMO

The study examines the immobilization of the urease enzyme on a range of High Internal Phase Emulsion (polyHIPE) materials, assessing characteristics, efficiency, and performance. It also investigates the impact of polyHIPE type, quantity, incubation time, and various parameters on the process and enzyme activity. Surface morphology and functional groups of polyHIPE materials were determined through scanning electron microscopy (SEM) and fourier transform infrared spectroscopy (FT-IR) analyses, revealing significant alterations after modification with polyglutaraldehyde (PGA). The maximum immobilization efficiency of 95% was achieved by adding PGA to polyHIPE materials with an incubation period of 15 h. The optimized conditions for immobilized enzyme using a Box-Behnken design (BBD) of response surface methodology (RSM) were as follows: temperature (40.8 °C), pH (7.1) and NaCl concentration (0.007 g/L). Furthermore, the immobilized enzyme demonstrated remarkable reusability, retaining 75% of its initial activity after six cycles, and sustained shelf-life stability, retaining over 40% activity after 10 days at room temperature. Kinetic analyses revealed that immobilized urease exhibited higher affinity for the substrate, but lower rate of substrate conversion compared to the free enzyme. These findings offer valuable insights into optimizing urease immobilization processes and enhancing urease stability and activity, with potential applications in various fields, including biotechnology and biocatalysis.


Assuntos
Estabilidade Enzimática , Enzimas Imobilizadas , Propriedades de Superfície , Urease , Urease/química , Urease/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Cinética , Porosidade , Concentração de Íons de Hidrogênio , Polímeros/química , Temperatura , Espectroscopia de Infravermelho com Transformada de Fourier , Tamanho da Partícula
3.
3D Print Addit Manuf ; 11(2): 496-507, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38689927

RESUMO

High internal phase emulsions (HIPEs) are potential stereolithography-based resins for producing innovative lightweight porous materials; however, the use of these resins has only been shown in bespoke stereolithography setups. These studies indicated that HIPEs tend to scatter the light during structuring through stereolithography, and can produce poorly defined and low-resolution structures, but the inclusion of light absorbers can drastically increase the printing resolution. In this study, we focused on the inclusion of biocompatible light absorbers within the resin and the compatibility of those resins with a commercial vat photopolymerization additive manufacturing (or stereolithography) setup. A surfactant (hypermer)-stabilized water-in-oil emulsion based on 2-ethylhexyl-acrylate and isobornyl-acrylate was used. For the light absorbers, both hydrophobic (beta-carotene) and hydrophilic (tartrazine) molecules were used, which dissolve in the organic phase and aqueous phase, respectively. It was found that using a combination of both beta-carotene and tartrazine provided the best stereolithography-based 3D printing resolution. In addition, the emulsion was stable for the duration of the printing process and showed a porous polyHIPE structure with open surface porosity. The formulation of these HIPE-based resins permits them to be used in a wide range of applications since complex structures could be fabricated from HIPEs.

4.
ACS Appl Mater Interfaces ; 16(5): 5613-5626, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38278772

RESUMO

In vivo, cells reside in a 3D porous and dynamic microenvironment. It provides biochemical and biophysical cues that regulate cell behavior in physiological and pathological processes. In the context of fundamental cell biology research, tissue engineering, and cell-based drug screening systems, a challenge is to develop relevant in vitro models that could integrate the dynamic properties of the cell microenvironment. Taking advantage of the promising high internal phase emulsion templating, we here designed a polyHIPE scaffold with a wide interconnected porosity and functionalized its internal 3D surface with a thin layer of electroactive conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) to turn it into a 4D electroresponsive scaffold. The resulting scaffold was cytocompatible with fibroblasts, supported cellular infiltration, and hosted cells, which display a 3D spreading morphology. It demonstrated robust actuation in ion- and protein-rich complex culture media, and its electroresponsiveness was not altered by fibroblast colonization. Thanks to customized electrochemical stimulation setups, the electromechanical response of the polyHIPE/PEDOT scaffolds was characterized in situ under a confocal microscope and showed 10% reversible volume variations. Finally, the setups were used to monitor in real time and in situ fibroblasts cultured into the polyHIPE/PEDOT scaffold during several cycles of electromechanical stimuli. Thus, we demonstrated the proof of concept of this tunable scaffold as a tool for future 4D cell culture and mechanobiology studies.


Assuntos
Polímeros , Estirenos , Alicerces Teciduais , Alicerces Teciduais/química , Porosidade , Polímeros/farmacologia , Polímeros/química , Técnicas de Cultura de Células , Engenharia Tecidual/métodos
5.
ACS Appl Mater Interfaces ; 15(50): 58917-58930, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38063480

RESUMO

Porous polymers have interesting acoustic properties including wave dampening and acoustic impedance matching and may be used in numerous acoustic applications, e.g., waveguiding or acoustic cloaking. These materials can be prepared by the inclusion of gas-filled voids, or pores, within an elastic polymer network; therefore, porous polymers that have controlled porosity values and a wide range of possible mechanical properties are needed, as these are key factors that impact the sound-dampening properties. Here, the synthesis of acoustic materials with varying porosities and mechanical properties that could be controlled independent of the pore morphology using emulsion-templated polymerizations is described. Polydimethylsiloxane-based ABA triblock copolymer surfactants were prepared using reversible addition-fragmentation chain transfer polymerizations to control the emulsion template and act as an additional cross-linker in the polymerization. Acoustic materials prepared with reactive surfactants possessed a storage modulus of ∼300 kPa at a total porosity of 71% compared to materials prepared using analogous nonreactive surfactants that possessed storage modulus values of ∼150 kPa at similar porosities. These materials display very low longitudinal sound speeds of ∼35 m/s at ultrasonic frequencies, making them excellent candidates in the preparation of acoustic devices such as metasurfaces or lenses.

6.
Front Chem ; 11: 1236944, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37681209

RESUMO

High internal phase emulsion (HIPE) templating is a well-established method for the generation of polymeric materials with high porosity (>74%) and degree of interconnectivity. The porosity and pore size can be altered by adjusting parameters during emulsification, which affects the properties of the resulting porous structure. However, there remain challenges for the fabrication of polyHIPEs, including typically small pore sizes (∼20-50 µm) and the use of surfactants, which can limit their use in biological applications. Here, we present the use of gelatin, a natural polymer, during the formation of polyHIPE structures, through the use of two biodegradable polymers, polycaprolactone-methacrylate (PCL-M) and polyglycerol sebacate-methacrylate (PGS-M). When gelatin is used as the internal phase, it is capable of stabilising emulsions without the need for an additional surfactant. Furthermore, by changing the concentration of gelatin within the internal phase, the pore size of the resulting polyHIPE can be tuned. 5% gelatin solution resulted in the largest mean pore size, increasing from 53 µm to 80 µm and 28 µm to 94 µm for PCL-M and PGS-M respectively. In addition, the inclusion of gelatin further increased the mechanical properties of the polyHIPEs and increased the period an emulsion could be stored before polymerisation. Our results demonstrate the potential to use gelatin for the fabrication of surfactant-free polyHIPEs with macroporous structures, with potential applications in tissue engineering, environmental and agricultural industries.

7.
Int J Mol Sci ; 24(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37445620

RESUMO

Cartilage defects can be difficult to treat; therefore, tissue engineering of cartilage is emerging as a promising potential therapy. One interesting area of research explores the delivery of cells to the cartilage defect via scaffold-based cell delivery vehicles and microsurgery. This study explores the use of novel poly(glycerol sebacate) methacrylate (PGSm)-polymerised high internal phase emulsion (polyHIPE) microspheres as scaffolds with embedded cells for cartilage tissue engineering. Porous microsphere scaffolds (100 µm-1 mm diameter) were produced from emulsions consisting of water and a methacrylate-based photocurable resin of poly(glycerol sebacate). These resins were used in conjunction with a T-junction fluidic device and an ultraviolet (UV) curing lamp to produce porous microspheres with a tuneable size. This technique produced biodegradable PGSm microspheres with similar mechanical properties to cartilage. We further explore these microspheres as scaffolds for three-dimensional culture of chondrocytes. The microspheres proved to be very efficient scaffolds for primary chondrocyte culture and were covered by a dense extracellular matrix (ECM) network during the culture period, creating a tissue disk. The presence of glycosaminoglycans (GAGs) and collagen-II was confirmed, highlighting the utility of the PGSm microspheres as a delivery vehicle for chondrocytes. A number of imaging techniques were utilised to analyse the tissue disk and develop methodologies to characterise the resultant tissue. This study highlights the utility of porous PGSm microspheres for cartilage tissue engineering.


Assuntos
Condrócitos , Engenharia Tecidual , Engenharia Tecidual/métodos , Microesferas , Materiais Biocompatíveis , Porosidade , Metacrilatos , Cartilagem , Alicerces Teciduais , Células Cultivadas
8.
ACS Appl Mater Interfaces ; 15(25): 30769-30779, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37310213

RESUMO

The use of polymerized high internal phase emulsions (polyHIPEs) as templates for electroless nickel plating is a promising method for producing ultra-porous metallic lattice structures with consistent wall thickness. These structures have desirable properties such as low density, high specific strength, resilience, and absorbency, making them suitable for various applications including battery electrodes, catalyst supports, and acoustic or vibration damping. This study aimed to optimize and investigate the electroless nickel plating process on polyHIPEs. Initially, a surfactant (Hypermer)-stabilized water-in-oil emulsion based on 2-ethylhexyl-acrylate and isobornyl-acrylate was used as a 3D printing resin to create polyHIPE structures. Then, the electroless nickel plating process was optimized using polyHIPE discs. The study also examined the effects of air, argon, and reducing atmospheres during the heating process to remove the polyHIPE template using metallized 3D-printed polyHIPE lattice structures. The findings indicated that different atmospheres led to the formation of distinct compounds. While nickel-coated polyHIPEs were fully oxidized in an air atmosphere, nickel phosphide (Ni3P) structures occurred in argon and reducing atmospheres along Ni metal. Moreover, in argon and reducing atmospheres, the porous structure of the polyHIPEs was retained as the internal structure was completely carbonized. Overall, the study demonstrated that intricate polyHIPE structures can be used as templates to create ultra-porous metal-based lattices for a wide range of applications.

9.
Bioengineering (Basel) ; 10(5)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237592

RESUMO

Cancer is a becoming a huge social and economic burden on society, becoming one of the most significant barriers to life expectancy in the 21st century. In particular, breast cancer is one of the leading causes of death for women. One of the most significant difficulties to finding efficient therapies for specific cancers, such as breast cancer, is the efficiency and ease of drug development and testing. Tissue-engineered (TE) in vitro models are rapidly developing as an alternative to animal testing for pharmaceuticals. Additionally, porosity included within these structures overcomes the diffusional mass transfer limit whilst enabling cell infiltration and integration with surrounding tissue. Within this study, we investigated the use of high-molecular-weight polycaprolactone methacrylate (PCL-M) polymerised high-internal-phase emulsions (polyHIPEs) as a scaffold to support 3D breast cancer (MDA-MB-231) cell culture. We assessed the porosity, interconnectivity, and morphology of the polyHIPEs when varying mixing speed during formation of the emulsion, successfully demonstrating the tunability of these polyHIPEs. An ex ovo chick chorioallantoic membrane assay identified the scaffolds as bioinert, with biocompatible properties within a vascularised tissue. Furthermore, in vitro assessment of cell attachment and proliferation showed promising potential for the use of PCL polyHIPEs to support cell growth. Our results demonstrate that PCL polyHIPEs are a promising material to support cancer cell growth with tuneable porosity and interconnectivity for the fabrication of perfusable 3D cancer models.

10.
J Colloid Interface Sci ; 645: 502-512, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37159992

RESUMO

Elastomeric materials combining multiple properties within a single composite are highly desired in applications including biomaterials interfaces, actuators, and soft robotics. High spatial resolution is required to impart different properties across the composite for the intended application, but many techniques used to prepare these composites rely on multistep and complex methods. There is a need for the development of simple and efficient platforms to design layered composite materials. Here, we report the synthesis of horizontally- and vertically-patterned composites consisting of PDMS-based polymerized high internal phase emulsion (polyHIPE) porous elastomers and PDMS/PEG hydrogels. Composites with defined interfaces that were mechanically robust were prepared, and rheological analysis of the polyHIPE and hydrogel layers showed storage moduli values of âˆ¼ 35 kPa and 45 kPa respectively. The compressive Young's Modulus and maximum strain of the polyHIPEs were dependent on the thiol to ene ratio in the formulation and obtained values ranging from 6 to 25 kPa and 50-65% respectively. The mechanical properties, total porosity of the polyHIPE, and swelling ratio of the hydrogel were unaffected by the patterning technique compared to non-patterned controls. PolyHIPE-hydrogel composite materials having up to 7-different horizontally pattered layers could be prepared that could expand and contract up hydration and drying.

11.
Water Environ Res ; 95(5): e10875, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37148542

RESUMO

The objective of this study is the synthesis of macroporous polystyrene-based polyHIPE/nanoclay (p[HIPE]/NClay) monoliths and post-functionalization of the monoliths through sulfonation to improve the structural and textural properties as well as adsorption performances toward bisphenol A (BPA) as an endocrine-disrupting chemical. The adsorption tests were conducted with raw p(HIPE), nanoclay, p(HIPE)/NClay, and sulfonated samples in order to obtain insights in the adsorption mechanism. The synergy between clay embedding and sulfonation resulted in higher BPA removal performance of p(HIPE)/NClay@S sample (96% removal) when compared with the raw polyHIPE (52% removal). The adsorption efficiency was mainly attributed to the functionality, followed by porosity and hydrophilicity of the as-synthesized materials. Considering the roles of hydrophobic, hydrogen-bonding, and π-π stacking interactions, the adsorption mechanism was discussed by using X-ray photoelectron spectroscopy (XPS) analysis. Moreover, the experimental parameters including solution pH, co-existing anions, ionic strength, and temperature were investigated in detail. The adsorption data were fitted to isotherm and kinetic models. The composite adsorbents also displayed excellent regeneration and stability until the fifth cycle. This research provides fresh insights into the effective adsorptive removal of endocrine-disrupting hormones by sulfonated porous nanoclay-polymer monoliths. PRACTITIONER POINTS: Sulfonated p (HIPE)/nanoclay monoliths were prepared. Bisphenol A adsorption mechanism was explored in detail. Nanoclay incorporation and sulfonation greatly enhanced the removal efficiency. The composite could be used until the fifth cycle.


Assuntos
Polímeros , Poluentes Químicos da Água , Porosidade , Concentração de Íons de Hidrogênio , Adsorção , Água , Hormônios/análise , Cinética , Poluentes Químicos da Água/química
12.
Polymers (Basel) ; 15(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37112009

RESUMO

The immobilized cell fermentation technique (IMCF) has gained immense popularity in recent years due to its capacity to enhance metabolic efficiency, cell stability, and product separation during fermentation. Porous carriers used as cell immobilization facilitate mass transfer and isolate the cells from an adverse external environment, thus accelerating cell growth and metabolism. However, creating a cell-immobilized porous carrier that guarantees both mechanical strength and cell stability remains challenging. Herein, templated by water-in-oil (w/o) high internal phase emulsions (HIPE), we established a tunable open-cell polymeric P(St-co-GMA) monolith as a scaffold for the efficient immobilization of Pediococcus acidilactici (P. acidilactici). The porous framework's mechanical property was substantially improved by incorporating the styrene monomer and cross-linker divinylbenzene (DVB) in the HIPE's external phase, while the epoxy groups on glycidyl methacrylate (GMA) supply anchoring sites for P. acidilactici, securing the immobilization to the inner wall surface of the void. For the fermentation of immobilized P. acidilactici, the polyHIPEs permit efficient mass transfer, which increases along with increased interconnectivity of the monolith, resulting in higher L-lactic acid yield compared to that of suspended cells with an increase of 17%. The relative L-lactic acid production is constantly maintained above 92.9% of their initial relative production after 10 cycles, exhibiting both its great cycling stability and the durability of the material structure. Furthermore, the procedure during recycle batch also simplifies downstream separation operations.

13.
Artigo em Inglês | MEDLINE | ID: mdl-36981793

RESUMO

Polymers via high internal phase emulsion (polyHIPEs) were molecularly imprinted with Irbesartan, an antihypertensive drug belonging to the class of angiotensin II receptor antagonists (sartan drugs), chosen for the proof-of-concept extraction of hazardous emerging contaminants from water. Different analyte-functional monomer molar ratios (1:100, 1:30 and 1:15) were investigated, and the MIP polyHIPEs have been characterized, parallel to the not imprinted polymer (NIP), by batch sorption experiments. The material with the highest template-functional monomer ratio was the best for Irbesartan removal, showing a sorption capacity fivefold higher than the NIP. Regarding the adsorption kinetics, the analyte-sorbent equilibrium was reached after about 3 h, and the film diffusion model best fitted the kinetic profile. Selectivity was further demonstrated by testing Losartan, another sartan drug, observing a fourfold lower sorption capacity, but still higher than that of NIP. The polymers were also synthesized in cartridges for solid-phase extraction (SPE), which was helpful for evaluating the breakthrough curves and performing pre-concentrations. These have been done in tap and river water samples (100-250 mL, 15-500 µg L-1 Irbesartan), obtaining quantitative sorption/desorption on the MIP-polyHIPE (RSD < 14%, n = 3). The NIP provided a recovery of just around 30%, evidence of partial uptake of the target from water.


Assuntos
Impressão Molecular , Cromatografia Líquida de Alta Pressão , Antagonistas de Receptores de Angiotensina , Bloqueadores do Receptor Tipo 2 de Angiotensina II , Irbesartana , Bloqueadores do Receptor Tipo 1 de Angiotensina II , Água/química , Polímeros/química , Extração em Fase Sólida , Adsorção
14.
Front Bioeng Biotechnol ; 11: 1321197, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260750

RESUMO

Tumour survival and growth are reliant on angiogenesis, the formation of new blood vessels, to facilitate nutrient and waste exchange and, importantly, provide a route for metastasis from a primary to a secondary site. Whilst current models can ensure the transport and exchange of nutrients and waste via diffusion over distances greater than 200 µm, many lack sufficient vasculature capable of recapitulating the tumour microenvironment and, thus, metastasis. In this study, we utilise gelatin-containing polymerised high internal phase emulsion (polyHIPE) templated polycaprolactone-methacrylate (PCL-M) scaffolds to fabricate a composite material to support the 3D culture of MDA-MB-231 breast cancer cells and vascular ingrowth. Firstly, we investigated the effect of gelatin within the scaffolds on the mechanical and chemical properties using compression testing and FTIR spectroscopy, respectively. Initial in vitro assessment of cell metabolic activity and vascular endothelial growth factor expression demonstrated that gelatin-containing PCL-M polyHIPEs are capable of supporting 3D breast cancer cell growth. We then utilised the chick chorioallantoic membrane (CAM) assay to assess the angiogenic potential of cell-seeded gelatin-containing PCL-M polyHIPEs, and vascular ingrowth within cell-seeded, surfactant and gelatin-containing scaffolds was investigated via histological staining. Overall, our study proposes a promising composite material to fabricate a substrate to support the 3D culture of cancer cells and vascular ingrowth.

15.
Chemosphere ; 309(Pt 1): 136526, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36150494

RESUMO

High internal phase emulsion (HIPE) technology has been emerged as a prodigious source to create tailor-made porous structures. This type of emulsion contains significantly higher amount of water in it, which is only possible with special type of stabilizers. Most specifically, the monomers with sufficiently high solubility in water such as methyl methacrylate (MMA) make it more cumbersome to stabilize in the form of HIPE. Here we have reported the combination of stabilizers including fluorinated block copolymer Poly (2-dimethylamino)ethyl methacrylate-b-Poly(trifluoroethyl methacrylate) (PDMAEMA-b-PTFEMA) and humic acid modified iron-oxide (HA-Fe3O4) nanoparticles (NPs) to stabilize HIPE, which resulted in highly porous and interconnected products. Fluorinated block copolymers with inherent hydrophobic nature along with iron oxide nanoparticles increased the water repellency of MMA based polymeric monoliths. Increasing the amount of stabilizer increased the porosity and BET specific surface area to 83.8% and 27 ± 0.8 µm, respectively. The prepared porous materials demonstrated hydrophobic characteristics while adsorbing oil from the surface of water up to 16 g/g. Moreover, the adsorbed oil from the prepared monolith was recovered by using simple centrifugation method without damaging the structure. This research opens new avenues to prepare more useful oil and water separation materials such as membranes, pollutant adsorbers, and so on.


Assuntos
Poluentes Ambientais , Substâncias Húmicas , Metilmetacrilato , Emulsões/química , Metacrilatos/química , Óxidos , Ferro
16.
Polymers (Basel) ; 14(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35406212

RESUMO

1,6-hexanediol diacrylate (HDDA) or divinyl adipate (DVA) and pentaerythritol tetrakis(3-mercaptopropionate) (TT) were polymerised via a thiol-ene radical initiated photopolymerisation using emulsions with a high volume fraction of internal droplet phase and monomers in the continuous phase as precursors. The porous structure derived from the high internal phase emulsions (HIPEs) followed the precursor emulsion setup resulting in an open porous cellularly structured polymer. Changing the emulsion composition and polymerisation conditions influenced the resulting morphological structure significantly. The investigated factors influencing the polymer monolith morphology were the emulsion phase ratio and surfactant concentration, leading to either interconnected cellular type morphology, bicontinuous porous morphology or a hollow sphere inverted structure of the polymerised monoliths. The samples with interconnected cellular morphology had pore diameters between 4 µm and 10 µm with approx. 1 µm sized interconnecting channels while samples with bicontinuous morphology featured approx. 5 µm wide pores between the polymer domains. The appropriate choice of emulsion composition enabled the preparation of highly porous poly(thiol-enes) with either polyHIPE or bicontinuous morphology. The porosities of the prepared samples followed the emulsion droplet phase share and could reach up to 88%.

17.
J Chromatogr A ; 1671: 462976, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35381560

RESUMO

The pH transition method, developed for the determination of the ion-exchange group density on chromatographic stationary phase, was used for the quantification of immobilized protein A. Monolithic epoxy polyHIPE and particulate CNBr-Sepharose supports were used for immobilization. A lactate buffer was selected, having a buffer capacity peak approximately 0.5 pH units below the maximum buffer capacity of protein A. The pH transition measurements were performed at pH 4.3, where protein A exhibits maximum buffer capacity, with a lactate buffer concentration of 1 mM for protein A immobilized on polyHIPE monoliths and of 5 mM for protein A immobilized on CNBr-Sepharose. The pH transition height and full width at half maximum for the particulate support and the height for the polyHIPE matrix, showed a linear correlation with the amount of immobilized protein A determined from the absorbance difference before and after immobilization for both supports. The developed method allows a simple, non-invasive on-line determination of immobilized protein A using biological buffers, even for chromatographic columns with an amount of immobilized protein A as low as 0.25 mg. In addition, its sensitivity and duration can be easily adjusted by varying the buffer concentration and pH.


Assuntos
Cromatografia , Proteína Estafilocócica A , Cromatografia/métodos , Enzimas Imobilizadas/química , Concentração de Íons de Hidrogênio , Lactatos , Sefarose/química
18.
Chemosphere ; 286(Pt 1): 131597, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34293568

RESUMO

Adsorbents reported for liquid phase decontamination under both aqueous and non-aqueous media are all dispersed phase sorbents that further require a tedious separation step post adsorption. Herein, a monolith, highly porous, and mechanically robust scaffold was synthesized for the adsorption of pollutants from both aqueous and non-aqueous media with facile separation and regeneration. Methylcellulose-tannic acid complex particles were prepared and systematically decorated on the surface of interpenetrating polymer network (IPN) scaffold via Pickering emulsion. Due to the surface coating of the particles, plausible amphiphilic adsorption of quinoline (QUI) and methylene blue (MB) was achieved from fuel and water, respectively. The hydroxyl (OH-) and carboxyl (COOH-) groups of tannic acid, alginate, and polyacrylic acid created hydrogen bonding, electrostatic interaction, acid-base interaction, and π-π stacking. Maximum adsorption capacity of 791.17 mg/g MB and 460.92 mg/g QUI was recorded with facile separation, excellent adsorbent regeneration, and reusability. Although both followed the pseudo-second-order adsorption kinetic model, a different mechanism was identified to govern the adsorption under aqueous and non-aqueous environment i.e. only the surface particles were active for QUI adsorption while the scaffold was also involved for MB adsorption.


Assuntos
Quinolinas , Poluentes Químicos da Água , Purificação da Água , Adsorção , Alginatos , Hidrogéis , Cinética , Metilcelulose , Azul de Metileno/análise , Taninos , Poluentes Químicos da Água/análise
19.
Materials (Basel) ; 14(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34640059

RESUMO

Polysiloxane networks were prepared by hydrosilylation of poly(methylvinylsiloxane) (V3 polymer) with 1,3,5,7-tetramethylcyclotetrasiloxane (D4H) at various Si-Vinyl: Si-H groups molar ratios in water-in-oil high internal phase emulsion (HIPE). Curing the emulsions followed by removal of water led to foamed cross-linked polysiloxane systems differing in the cross-linking degrees, as well as residual Si-H and Si-Vinyl group concentrations. Treatment of thus obtained materials in Pd(OAc)2 solution in tetrahydrofuran resulted in the formation of porous palladium/polymer nanocomposites with different Pd contents (1.09-1.70 wt %). Conducted investigations showed that pyrolysis of the studied materials at 1000 °C in argon atmosphere leads to porous Si-C-O and Si-C-O/Pd ceramics containing amorphous carbon and graphitic phases. Thermogravimetric (TG) analysis of the starting cross-linked polymer materials and those containing Pd nanoparticles revealed that the presence of palladium deteriorates thermal stability and decreases ceramic yields of preceramic networks. The extent of this effect depends on polymer cross-linking density in the system.

20.
Polymers (Basel) ; 13(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34641179

RESUMO

A facile method for the preparation of hierarchically porous spherical particles using high internal phase water-in-oil-in-water (w/o/w) double emulsions via the photopolymerization of the water-in-oil high internal phase emulsion (w/o HIPE) was developed. Visible-light photopolymerization was used for the synthesis of microspherical particles. The HIP emulsion had an internal phase volume of 80% and an oil phase containing either thiol pentaerythritol tetrakis(3-mercaptopropionate) (PETMP) or trimethylolpropane tris(3-mercaptopropionate) (TMPTMP) and acrylate trimethylolpropane triacrylate (TMPTA). This enabled the preparation of microspheres with an open porous morphology, on both the surface and within the microsphere, with high yields in a batch manner. The effect of the thiol-to-acrylate ratio on the microsphere diameter, pore and window diameter, and degradation was investigated. It is shown that thiol has a minor effect on the microsphere and pore diameter, while the acrylate ratio affects the degradation speed, which decreases with increasing acrylate content. The possibility of free thiol group functionalization was demonstrated by a reaction with allylamine, while the microsphere adsorption capabilities were tested by the adsorption of methylene blue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA